首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxisome biogenesis disorders   总被引:1,自引:0,他引:1  
Defects in PEX genes impair peroxisome assembly and multiple metabolic pathways confined to this organelle, thus providing the biochemical and molecular bases of the peroxisome biogenesis disorders (PBD). PBD are divided into two types--Zellweger syndrome spectrum (ZSS) and rhizomelic chondrodysplasia punctata (RCDP). Biochemical studies performed in blood and urine are used to screen for the PBD. DNA testing is possible for all of the disorders, but is more challenging for the ZSS since 12 PEX genes are known to be associated with this spectrum of PBD. In contrast, PBD-RCDP is associated with defects in the PEX7 gene alone. Studies of the cellular and molecular defects in PBD patients have contributed significantly to our understanding of the role of each PEX gene in peroxisome assembly.  相似文献   

2.
The peroxisome-biogenesis disorders (PBDs) are a genetically and phenotypically diverse group of diseases caused by defects in peroxisome assembly. One of the milder clinical variants within the PBDs is neonatal adrenoleukodystrophy (NALD), a disease that is usually associated with partial defects in the import of peroxisomal matrix proteins that carry the type 1 or type 2 peroxisomal targeting signals. Here, we characterize the sole representative of complementation group 13 of the PBDs, a patient with NALD (patient PBD222). Skin fibroblasts from patient PBD222 display defects in the import of multiple peroxisomal matrix proteins. However, residual matrix-protein import can be detected in cells from patient PBD222, consistent with the relatively mild phenotypes of the patient. PEX13 encodes a peroxisomal membrane protein with a cytoplasmically exposed SH3 domain, and we find that expression of human PEX13 restores peroxisomal matrix-protein import in cells from patient PBD222. Furthermore, these cells are homozygous for a missense mutation at a conserved position in the PEX13 SH3 domain. This mutation attenuated the activity of human PEX13, and an analogous mutation in yeast PEX13 also reduced its activity. The mutation was absent in >100 control alleles, indicating that it is not a common polymorphism. Previous studies have demonstrated extragenic suppression in the PBDs, but the phenotypes of patient PBD222 cells could not be rescued by expression of any other human PEX genes. Taken together, these results provide strong evidence that mutations in PEX13 are responsible for disease in patient PBD222 and, by extension, in complementation group 13 of the PBDs.  相似文献   

3.
Peroxisomal biogenesis disorders (PBDs) represent a spectrum of autosomal recessive metabolic disorders that are collectively characterized by abnormal peroxisome assembly and impaired peroxisomal function. The importance of this ubiquitous organelle for human health is highlighted by the fact that PBDs are multisystemic disorders that often cause death in early infancy. Peroxisomes contribute to central metabolic pathways. Most enzymes in the peroxisomal matrix are linked to lipid metabolism and detoxification of reactive oxygen species. Proper assembly of peroxisomes and thus also import of their enzymes relies on specific peroxisomal biogenesis factors, so called peroxins with PEX being the gene acronym. To date, 13 PEX genes are known to cause PBDs when mutated. Studies of the cellular and molecular defects in cells derived from PBD patients have significantly contributed to the understanding of the functional role of the corresponding peroxins in peroxisome assembly. In this review, we discuss recent data derived from both human cell culture as well as model organisms like yeasts and present an overview on the molecular mechanism underlying peroxisomal biogenesis disorders with emphasis on disorders caused by defects in the peroxisomal matrix protein import machinery. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.  相似文献   

4.
酵母过氧化物体生物合成缺陷突变株的诱变、筛选和鉴定   总被引:2,自引:0,他引:2  
过氧化物体对生物的生长和发育非常重要,人类很多疾病就是由于过氧化物体生物合成缺陷引起。以解脂耶氏酵母E122为出发菌,采用硫酸二乙酯诱变,获得了两株过氧化物体生物合成缺陷突变株,其中一株为温度敏感的突变株。在正常生长条件下,突变株的免疫荧光分析显示弥散的染色模式,且在电镜下观察不到过氧化物体的形态结构。将克隆于表达载体pINA445上的目前所发现的与过氧化物体生物合成有关的基因转化这两株突变株,发现它们均不能恢复其在含油酸的培养基上的生长,表明这两个突变株是由与过氧化物体生物合成相关的新基因的突变引起。这两个突变株的获得为参与过氧化物体生物合成的新基因的发现奠定了基础。  相似文献   

5.
The peroxisome biogenesis disorders (PBDs) are currently difficult-to-treat multiple-organ dysfunction disorders that result from the defective biogenesis of peroxisomes. Genes encoding Peroxins, which are required for peroxisome biogenesis or functions, are known causative genes of PBDs. The human peroxin genes PEX3 or PEX16 are required for peroxisomal membrane protein targeting, and their mutations cause Zellweger syndrome, a class of PBDs. Lack of understanding about the pathogenesis of Zellweger syndrome has hindered the development of effective treatments. Here, we developed potential Drosophila models for Zellweger syndrome, in which the Drosophila pex3 or pex16 gene was disrupted. As found in Zellweger syndrome patients, peroxisomes were not observed in the homozygous Drosophila pex3 mutant, which was larval lethal. However, the pex16 homozygote lacking its maternal contribution was viable and still maintained a small number of peroxisome-like granules, even though PEX16 is essential for the biosynthesis of peroxisomes in humans. These results suggest that the requirements for pex3 and pex16 in peroxisome biosynthesis in Drosophila are different, and the role of PEX16 orthologs may have diverged between mammals and Drosophila. The phenotypes of our Zellweger syndrome model flies, such as larval lethality in pex3, and reduced size, shortened longevity, locomotion defects, and abnormal lipid metabolisms in pex16, were reminiscent of symptoms of this disorder, although the Drosophila pex16 mutant does not recapitulate the infant death of Zellweger syndrome. Furthermore, pex16 mutants showed male-specific sterility that resulted from the arrest of spermatocyte maturation. pex16 expressed in somatic cyst cells but not germline cells had an essential role in the maturation of male germline cells, suggesting that peroxisome-dependent signals in somatic cyst cells could contribute to the progression of male germ-cell maturation. These potential Drosophila models for Zellweger syndrome should contribute to our understanding of its pathology.  相似文献   

6.
The peroxisome biogenesis disorders (PBDs) are a set of lethal genetic diseases characterized by peroxisomal metabolic deficiencies, multisystem abnormalities, mental retardation, and premature death. These disorders are genetically heterogeneous and are caused by mutations in genes, termedPEXgenes, required for import of proteins into the peroxisomal matrix. We have previously reported the identification of humanPEX13,the gene encoding the docking factor for the PTS1 receptor, or PEX5 protein. As such, mutations inPEX13would be expected to abrogate peroxisomal protein import and result in PBD phenotypes. We report here the structure of the humanPEX13gene.PEX13spans approximately 11 kb on chromosome 2 and contains four exons, one more than previously thought. The corrected PEX13 cDNA is predicted to encode a protein product with a molecular mass of 44,312 Da. We examined the ability ofPEX13expression to rescue the peroxisomal protein import defects of fibroblast cells representing all known PBD complementation groups. No complementation was observed, suggesting that this gene is not mutated in any set of existing patients. However, given that complementation group assignments have been determined for only a subset of PBD patients, it is possible thatPEX13-deficient patients may exist at a low frequency within our existing PBD patient population or within ethnic groups underrepresented in our patient pool.  相似文献   

7.
Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.  相似文献   

8.
Peroxisome biogenesis disorders: genetics and cell biology   总被引:14,自引:0,他引:14  
Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum disease and rhizomelic chondrodysplasia punctata are progressive disorders characterized by loss of multiple peroxisomal metabolic functions. These diseases are inherited in an autosomal recessive manner, are caused by defects in the import of peroxisomal matrix proteins and are referred to as the peroxisome biogenesis disorders (PBDs). Recent studies have identified the PEX genes that are mutated in 11 of the 12 known complementation groups of PBD patients. This article reviews these advances in PBD genetics and discusses how studies of human PEX genes, their protein products and PBD cell lines are shaping current models of peroxisome biogenesis.  相似文献   

9.
Peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy are autosomal recessive diseases caused by defects in peroxisome assembly, for which 13 genotypes have been identified. Expression of the human peroxin Pex3p cDNA encoding a 373-amino-acid peroxisomal membrane protein morphologically and biochemically restored peroxisome biogenesis, including peroxisomal membrane assembly, in fibroblasts from PBDG-02, a patient with complementation group G (CG-G) ZS. Patient PBDG-02 carried a homozygous, inactivating mutation-a 97-bp deletion of nucleotide residues at positions 942-1038-resulting in a 32-amino-acid truncation and in a frameshift inducing both a 3-amino-acid substitution and a termination codon. Genomic PCR analysis revealed mutation of T-->G at eight bases upstream of the splicing site at the boundary of intron 10 and exon 11 of PEX3 gene, giving rise to a deletion of all of exon 11. When assessed by expression in a pex3 mutant of Chinese hamster ovary cells and the patient's fibroblasts, PBDG-02-derived PEX3 cDNA was found to be defective in peroxisome-restoring activity. These results provide evidence that PEX3 is a novel, pathogenic gene responsible for CG-G PBDs.  相似文献   

10.
11.
PEX13 is an integral membrane protein on the peroxisome that regulates peroxisomal matrix protein import during peroxisome biogenesis. Mutations in PEX13 and other peroxin proteins are associated with Zellweger syndrome spectrum (ZSS) disorders, a subtype of peroxisome biogenesis disorder characterized by prominent neurological, hepatic, and renal abnormalities leading to neonatal death. The lack of functional peroxisomes in ZSS patients is widely accepted as the underlying cause of disease; however, our understanding of disease pathogenesis is still incomplete. Here, we demonstrate that PEX13 is required for selective autophagy of Sindbis virus (virophagy) and of damaged mitochondria (mitophagy) and that disease‐associated PEX13 mutants I326T and W313G are defective in mitophagy. The mitophagy function of PEX13 is shared with another peroxin family member PEX3, but not with two other peroxins, PEX14 and PEX19, which are required for general autophagy. Together, our results demonstrate that PEX13 is required for selective autophagy, and suggest that dysregulation of PEX13‐mediated mitophagy may contribute to ZSS pathogenesis.  相似文献   

12.
Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD) are clinically overlapping syndromes, collectively called "peroxisome biogenesis disorders" (PBDs), with clinical features being most severe in ZS and least pronounced in IRD. Inheritance of these disorders is autosomal recessive. The peroxisome biogenesis disorders are genetically heterogeneous, having at least 12 different complementation groups (CGs). The gene affected in CG1 is PEX1. Approximately 65% of the patients with PBD harbor mutations in PEX1. In the present study, we used SSCP analysis to evaluate a series of patients belonging to CG1 for mutations in PEX1 and studied phenotype-genotype correlations. A complete lack of PEX1 protein was found to be associated with severe ZS; however, residual amounts of PEX1 protein were found in patients with the milder phenotypes, NALD and IRD. The majority of these latter patients carried at least one copy of the common G843D allele. When patient fibroblasts harboring this allele were grown at 30 degrees C, a two- to threefold increase in PEX1 protein levels was observed, associated with a recovery of peroxisomal function. This suggests that the G843D missense mutation results in a misfolded protein, which is more stable at lower temperatures. We conclude that the search for the factors and/or mechanisms that determine the stability of mutant PEX1 protein by high-throughput procedures will be a first step in the development of therapeutic strategies for patients with mild PBDs.  相似文献   

13.
Peroxisome biogenesis disorders (PBDs) contain various clinical phenotypes; Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD), decreasing in the clinical severity in this order. We found that all IRD cell lines and some NALD lines belonging to several different complementation groups are temperature-sensitive in peroxisome assembly; that is, they lacked catalase-positive peroxisomes at 37°C, but do gain the peroxisomes at 30°C. We identified heterozygous mutations E55K/R119Stop in the PEX2 gene of an IRD patient of complementation group F. The E55K mutation was the direct cause of the temperature-sensitivity because similar phenotypes could be transferred to PEX2-defective CHO cells by transfecting the mutant gene. Thus, temperature-sensitive peroxisome assembly is representative of milder forms of PBDs. The main part of this study was published by Imamura et al. (1).  相似文献   

14.
Peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome (ZS), are autosomal recessive diseases caused by a deficiency in peroxisome assembly as well as by a malfunction of peroxisomes, among which>10 genotypes have been identified. We have isolated a human PEX16 cDNA (HsPEX16) by performing an expressed-sequence-tag homology search on a human DNA database, by using yeast PEX16 from Yarrowia lipolytica and then screening the human liver cDNA library. This cDNA encodes a peroxisomal protein (a peroxin Pex16p) made up of 336 amino acids. Among 13 peroxisome-deficiency complementation groups (CGs), HsPEX16 expression morphologically and biochemically restored peroxisome biogenesis only in fibroblasts from a CG-D patient with ZS in Japan (the same group as CG-IX in the United States). Pex16p was localized to peroxisomes through expression study of epitope-tagged Pex16p. One patient (PBDD-01) possessed a homozygous, inactivating nonsense mutation, C-->T at position 526 in a codon (CGA) for 176Arg, that resulted in a termination codon (TGA). This implies that the C-terminal half is required for the biological function of Pex16p. PBDD-01-derived PEX16 cDNA was defective in peroxisome-restoring activity when expressed in the patient's fibroblasts. These results demonstrate that mutation in PEX16 is the genetic cause of CG-D PBDs.  相似文献   

15.
Peroxisome biogenesis disorders (PBDs) are fatal autosomal recessive diseases and are caused by impaired peroxisome biogenesis. PBDs are genetically heterogeneous and classified into 13 complementation groups (CGs). CG8 is one of the most common groups and has three clinical phenotypes, including Zellweger syndrome (ZS), neonatal adrenoleukodystrophy, and infantile Refsum disease (IRD). We recently isolated PEX26 as the pathogenic gene for PBD of CG8. Pex26p functions in recruiting to peroxisomes the complexes of the AAA ATPase peroxins, Pex1p and Pex6p. In the present work, we identified four distinct mutations in PEX26 from five patients of CG8 PBD including 2 with ZS and 3 with IRD, in addition to 7 mutant alleles in 8 patients in the first report describing the pathogenic PEX26 gene for CG8 PBD. Phenotype-genotype analyses revealed that temperature-sensitive (ts) peroxisome assembly gave rise to a milder IRD in contrast to the non-ts phenotype of the cells from ZS patients. Furthermore, we present several lines of evidence that show that the instability, insufficient binding to Pex1p x Pex6p complexes, or mislocalization of patient-derived Pex26p mutants is most likely responsible for the CG8 PBDs.  相似文献   

16.
Peroxisome biogenesis and the role of protein import   总被引:2,自引:0,他引:2  
Peroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in β-oxidation of fatty acids, hydrogen peroxide-based respiration and defence against oxidative stress. The steps of their biogenesis involves "peroxins", proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1) import of peroxisomal membrane proteins; (2) import of peroxisomal matrix proteins and (3) peroxisome proliferation. Of these three areas, peroxisomal matrix-protein import is by far the best understood and accounts for most of the available published data on peroxisome biogenesis. Defects in peroxisome biogenesis result in peroxisome biogenesis disorders (PBDs), which although rare, have no known cure to-date. This review explores current understanding of each key area in peroxisome biogenesis, paying particular attention to the role of protein import.  相似文献   

17.
Peroxisomes are ubiquitous organelles with a single membrane that contain over 50 different enzymes that catalyse various metabolic pathways, including beta-oxidation and lipid synthesis. Peroxisome biogenesis disorders (PBDs), such as Zellweger syndrome and neonatal adrenoleukodystrophy, are fatal genetic diseases that are autosomal recessive. Among the PBDs of the 12 complementation groups (CGs), 11 associated PEX genes have been isolated. Accordingly, only the PBD pathogenic gene for CG8 (also called CG-A) remains unidentified. Here we have isolated human PEX26 encoding a type II peroxisomal membrane protein of relative molecular mass 34,000 (M(r) 34K) by using ZP167 cells, a Chinese hamster ovary (CHO) mutant cell line. Expression of PEX26 restores peroxisomal protein import in the fibroblasts of an individual with PBD of CG8. This individual possesses a homozygous, inactivating pathogenic point mutation, Arg98Trp, in Pex26. Pex6 and Pex1 of the AAA ATPase family co-immunoprecipitate with Pex26. Epitope-tagged Pex6 and Pex1 are discernible as puncta in normal CHO-K1 cells, but not in PEX26-defective cells. PEX26 expression in ZP167 cells re-establishes colocalization of Pex6 and Pex1 with Pex26, in a Pex6-dependent manner. Thus, Pex26 recruits Pex6-Pex1 complexes to peroxisomes.  相似文献   

18.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS). Gene defects of peroxins required for both membrane assembly and matrix protein import are identified: ten mammalian pathogenic peroxins for ten complementation groups of PBDs, are required for matrix protein import; three, Pex3p, Pex16p and Pex19p, are shown to be essential for peroxisome membrane assembly and responsible for the most severe ZS in PBDs of three complementation groups 12, 9, and 14, respectively. Patients with severe ZS with defects of PEX3, PEX16, and PEX19 tend to carry severe mutation such as nonsense mutations, frameshifts and deletions. With respect to the function of these three peroxins in membrane biogenesis, two distinct pathways have been proposed for the import of peroxisomal membrane proteins in mammalian cells: a Pex19p- and Pex3p-dependent class I pathway and a Pex19p- and Pex16p-dependent class II pathway. In class II pathway, Pex19p also forms a soluble complex with newly synthesized Pex3p as the chaperone for Pex3p in the cytosol and directly translocates it to peroxisomes. Pex16p functions as the peroxisomal membrane receptor that is specific to the Pex3p-Pex19p complexes. A model for the import of peroxisomal membrane proteins is suggested, providing new insights into the molecular mechanisms underlying the biogenesis of peroxisomes and its regulation involving Pex3p, Pex19p, and Pex16p. Another model suggests that in Saccharomyces cerevisiae peroxisomes likely emerge from the endoplasmic reticulum. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.  相似文献   

19.
Peroxins are proteins involved in peroxisome biogenesis and are encoded by PEX genes. The human PEX2 gene encodes a 35-kDa peroxisomal integral membrane protein which is a member of the zinc finger protein family. Mutations in the PEX2 gene are the primary defect in a subset of patients with Zellweger syndrome and related peroxisome biogenesis disorders. The role of zinc finger proteins in peroxisome assembly and function is poorly understood. Here we report the cloning and characterisation of the human PEX2 structural gene. PEX2 was assigned to human chromosome 8q13-q21 and its murine homologue to mouse chromosome 3. The gene is approximately 17.5 kb in length, and contains four exons. The entire coding sequence is included in one exon, exon 4. The 5'-flanking region has features of housekeeping genes (GC enrichment, two Sp1 sites) and tissue-specific, inducible genes (two CCAAT boxes). In more than 1.5 kb of 5'-flanking sequences we did not identify consensus peroxisomal proliferator responsive elements (PPRE).  相似文献   

20.
The peroxisome-biogenesis disorders (PBDs) are a set of often lethal genetic diseases characterized by mental retardation and defective peroxisomal matrix protein import. Mutations in PEX12 are known to underlie the disease in two patients from complementation group 3 of the PBDs. Here we show that all patients from this group carry mutations on both alleles of PEX12. A comparison between PEX12 genotypes and the clinical and cellular phenotypes of the corresponding PBD patients suggests a relatively straightforward relationship between genotype and phenotype in this group of the PBDs, such that the loss of PEX12 function leads to more-severe cellular and clinical phenotypes. However, one patient who presented relatively mild clinical and cellular phenotypes was a compound heterozygote for two seemingly severe mutations on each PEX12 allele. PEX12 mRNA present in the patient's cells was derived from only one allele, the one that carried a 2-bp deletion early in the PEX12 coding region, c.26,27Delta. The deduced protein product of this mRNA would contain only the first eight amino acids of the protein, and yet this mutant PEX12 cDNA displayed significant PEX12 activity in a functional complementation assay. Surprisingly, the PEX12/c.26, 27Delta cDNA directed the synthesis of a 29-kD PEX12 protein in vitro, a result that is consistent with translation initiation at a downstream AUG codon. Transfection studies confirmed the expression of similarly sized PEX12 proteins from the PEX12/c.26,27Delta allele. Thus, it appears that translation initiation at internal AUG codons may modulate disease phenotypes and should be considered whenever unexpectedly mild phenotypes result from severe mutations early in the coding region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号