首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wetland sedge Carex brevicuspis reproduces vegetatively by producing short rhizomes to form clumping ramets phalanx) and long rhizomes to form spreading ramets (guerrilla), resulting in a combined growth form. As an initial step towards understanding the adaptation of Carex growth strategies to seasonal fluctuations in wetland habitats, we investigated the density and composition of C. brevicuspis rhizome populations immediately after flooding (November), in winter (January), in spring (March), and before flooding (May) in the Dongting Lake wetlands, China. The total rhizome density peaked in winter and was lowest before flooding. A large rhizome population in winter may enable C. brevicuspis to survive the seasonal cold weather and recruit a shoot population in the spring. A small rhizome population before flooding may optimize reproductive allocations and be a strategy for enduring the long flooding season. Regardless of date, short rhizomes comprised the majority of the rhizome population (73.0% in March to 98.2% in May). This indicates that C. brevicuspis primarily uses a phalanx growth strategy to utilize locally abundant resources in wetlands. The percentage of long rhizomes in the rhizome population varies significantly between seasons (1.8% in May to 27.0% in March), indicating that growth form also changes with seasonal fluctuation of wetland habitats. The results show that C. brevicuspis may adapt to seasonal changes in wetland habitats through changes in demography of rhizome populations.  相似文献   

2.
Both competition and burial are important factors that influence plant growth and structuring plant communities. Competition intensity may decline with increased burial stress. However, experimental evidence is scarce. The aim of this study was to elucidate the role of burial stress in influencing plant competition by investigating biomass accumulation, biomass allocation, and clonal growth performance of Carex brevicuspis, one of the dominant species in the Dongting Lake wetland in China. The experiment was conducted with two typical wetland species, C. brevicuspis (target plant) and Polygonum hydropiper (neighbor plant), in a target-neighbor design containing three densities (0, 199, and 398 neighbor plants m-2) and two burial depths (0 and 12 cm). The biomass accumulation of C. brevicuspis decreased with increment of P. hydropiper density in the 0 cm burial treatment. However, in the 12 cm burial treatment, biomass accumulation of C. brevicuspis did not change under medium and high P. hydropiper densities. The relative neighbor effect index (RNE) increased with enhancement of P. hydropiper density but decreased with increasing burial depth. The shoot mass fraction decreased with P. hydropiper density in the 12 cm burial treatments, but the root mass fraction was only affected by burial depth. However, the rhizome mass fraction increased with both P. hydropiper density and burial depth. The number of ramets decreased with increasing P. hydropiper density. With increasing burial depth and density, the proportion of spreading ramets increased from 34.23% to 80.44%, whereas that of clumping ramets decreased from 65.77% to 19.56%. Moreover, increased P. hydropiper density and burial depth led to greater spacer length. These data indicate that the competitive effect of P. hydropiper on C. brevicuspis was reduced by sand burial, which was reflected by different patterns of biomass accumulation and RNE at the two burial depth treatments. A change from a phalanx to a guerrilla growth form and spacer elongation induced by sand burial helped C. brevicuspis to acclimate to competition.  相似文献   

3.
Water regime can be described by the depth, duration, frequency, and timing and predictability of flooded and dry phases. Despite growing recognition of the importance of water regimes in the regulation of plant growth and distribution, which components of water regimes that determine plant growth are not well known. To identify the causative components, 72 ramets of Carex brevicuspis were grown under six different water regime treatments (treatment A: constant 0 cm water level; treatment B: constant 30 cm water level; treatment C: 0 cm water level to 30 cm water level for 30 days, repeated 2 times; treatment D: 30 cm water level to 0 cm water level for 30 days, repeated 2 times; treatment E: 0 cm water level to 30 cm water level for 5 days, repeated 12 times; and treatment F: 30 cm water level to 0 cm water level for 5 days, repeated 12 times). Biomass accumulation, below:above ground biomass ratio, number of ramets, and proportions of spreading and clumping ramet were assessed. Biomass accumulation decreased only in relation to length of flooding. The highest biomass accumulation occurred in the 120‐day + 0 cm water level treatment, it was intermediate in the four 60 day + 30 cm water level treatments, and lowest in the 120 day + 30 cm water level treatment. Likewise, the below:above ground ratio decreased only with increasing length of flooding. Ramet number was highest in the 120 day + 0 cm water level treatment, intermediate in the four 60 day + 30 cm water level treatments, and lowest in the 120 day + 30 cm water level treatment. The proportion of spreading ramets increased from 28.0% in the 120 day + 0 cm water level treatment to 76.4% in the 120 day + 30 cm water level treatment. These data suggest that the growth of C. brevicuspis was only limited by the duration of flooding. Reduction of the below:above ground ratio and change from phalanx to guerrilla growth form are effective strategies for C. brevicuspis to acclimate to flooding stress, because they allow the plant to grow above the water surface and escape from anoxic conditions. Our study provides experimental information on the role of different components of water regimes in regulating plant growth, and may assist in protection and restoration of the C. brevicuspis community.  相似文献   

4.
Ye XH  Yu FH  Dong M 《Annals of botany》2006,98(1):187-191
BACKGROUND AND AIMS: A phalanx growth form enables clonal plants to make better use of resource-rich patches, whereas a guerrilla growth form provides them with opportunities to escape from resource-poor sites. Leymus secalinus produces both spreading (guerrilla form) and clumping ramets (phalanx form). Here, the hypothesis that a trade-off between the two growth forms in L. secalinus exists under different resource levels is tested. METHODS: Ramets of L. secalinus were grown under three levels of nutrient supply. KEY RESULTS: With increasing nutrient supply, the proportion of clumping ramets (in total number of ramets) increased, whereas that of spreading ramets decreased. With increasing nutrient supply, the number of buds increased, whereas biomass per bud decreased. A trade-off between bud number and size further supports the above hypothesis because larger buds were more likely to develop into spreading ramets, and smaller buds into clumping ramets. Mean spacer length between spreading ramets was significantly smaller under the high than under the medium nutrient supply. CONCLUSIONS: The results suggest that a trade-off between the two growth forms in L. secalinus exists under different nutrient supplies. Such a trade-off together with plasticity in spacer morphology may enable L. secalinus to make better use of small-scale heterogeneity in resource supply.  相似文献   

5.
刘凤红  刘建  董鸣 《生态学报》2005,25(12):3415-3419
克隆植物根据其构型可以分为游击型和密集型。游击型克隆植物的间隔子长,分株在水平空间的扩展范围大,可以利用更大空间范围内的资源,其通过克隆生理整合作用发生的非局部反应的能力强。由此可以得出的推论之一是,小生境斑块的环境发生变化,生长于其中的密集型克隆植物的反应可能会更灵敏。这种反应可能会体现在生物量以及配置格局的变化上。以毛乌素地区沙生半灌木群落中两种优势克隆植物羊柴(H edy sarum laeve)和油蒿(A rtem isia ord osica)为研究对象,前者是典型的游击型克隆植物,后者是密集型克隆植物。采取野外调查的方式,观测在不同植被盖度的小生境斑块内二者地上生物量分配格局的变化情况,并结合二者的克隆构型和生活史特征试图探讨产生这种格局的原因。结果表明:羊柴的地上各部分生物量对植被盖度变化的响应不如油蒿敏感。这或者是因为羊柴的游击型克隆构型决定其可以跨越小尺度斑块实现克隆生理整合,可以利用不同小生境斑块的资源导致的。油蒿只能利用小生境斑块内的资源,当小生境斑块的条件改变,其生物量以及配置方式也随之发生相应的变化。在繁殖方式上,羊柴的有性繁殖结构以及有性繁殖投资显著小于油蒿。在资源有限的条件下,对一种繁殖方式的投资常常会削弱另一种繁殖方式。羊柴主要依靠克隆繁殖,这或者符合并支持配置理论的观点。  相似文献   

6.
Soil nutrients are commonly heterogeneously distributed at different spatial scales. Although numerous studies have tested the effects of soil nutrient heterogeneity on growth of clonal plants producing either spreading ramets or clumping ramets, no study has examined the effects on the growth of clonal plants producing both spreading and clumping ramets and how spatial scale affects such effects. To test these effects, clones of Buchloe dactyloides, a stoloniferous clonal plant that produces both clumping and spreading ramets, were grown in six heterogeneous environments with different patch sizes and one homogeneous environment containing the same quantity of nutrients. Total biomass, total number of ramets, number of clumping ramets, number of spreading ramets, spacer length, or root:shoot ratio of the whole plants did not differ significantly among the seven treatments. However, at the patch level there were significant effects of patch size by nutrient level on biomass, number of ramets, number of spreading ramets, and number of clumping ramets, and these four variables were significantly larger in the nutrient-rich patches than in the nutrient-poor patches in the heterogeneous treatment with the largest patch size, but not in the other five heterogeneous treatments with smaller patch sizes. Neither nutrient level nor patch size significantly affected spacer length or root:shoot ratio. Based on our results, we propose that B. dactyloides can efficiently exploit nutrient-rich patches by a plastic response of clumping ramets and spreading ramets at larger spatial scales of soil heterogeneity but not at smaller ones.  相似文献   

7.
不同高程短尖苔草对水位变化的生长及繁殖响应   总被引:1,自引:0,他引:1  
在淡水湿地生态系统中,水位通常是制约植被生长和繁殖动态的关键因素,进而对物种组成、群落演替和植被分布格局产生决定性影响。无性繁殖是洞庭湖湿地克隆植物适应环境胁迫的重要策略之一,以洞庭湖湿地典型克隆植物-短尖苔草(Carex brevicuspis C.B.Clarke)为对象,研究了不同分布高程(23.7 m和25.8 m)的植物对水位变化(0 cm,-15 cm,-30 cm)的生长和繁殖特征响应。结果表明:水位变化对不同分布高程分布短尖苔草的生长和克隆繁殖特征均产生显著影响(P0.05)。对高程区的短尖苔草而言,克隆繁殖特征如分株数、分株总生物量、芽数和芽生物量随水位的降低而增加,而对生长特征(株高及总生物量)无显著影响(P0.05),表明适当干旱有利于高程区苔草的克隆繁殖。对于低程区分布短尖苔草而言,水位变化对其生长特征有显著影响(P0.05),如株高和总生物量随着水位的降低而增加;分株数和总芽生物量等克隆繁殖特征则随水位的降低而减少,而水位对低程区短尖苔草的分株总生物量和总芽数影响不显著(P0.05)。因此,短尖苔草的克隆繁殖特征除受到水位的影响外,还受其分布高程的影响。可见,同一种短尖苔草因长期适应于不同生境而对相同的环境胁迫表现出了不同的生长繁殖策略,  相似文献   

8.
The purpose of this article was to study the trade-offs among vegetative growth, clonal, and sexual reproduction in an aquatic invasive weed Spartina alterniflora that experienced different inundation depths and clonal integration. Here, the rhizome connections between mother and daughter ramets were either severed or left intact. Subsequently, these clones were flooded with water levels of 0, 9, and 18 cm above the soil surface. Severing rhizomes decreased growth and clonal reproduction of daughter ramets, and increased those of mother ramets grown in shallow and deep water. The daughter ramets disconnected from mother ramets did not flower, while sexual reproduction of mother ramets was not affected by severing. Clonal integration only benefited the total rhizome length, rhizome biomass, and number of rhizomes of the whole clones in non-inundation conditions. Furthermore, growth and clonal reproduction of mother, daughter ramets, and the whole clone decreased with inundation depth, whereas sexual reproduction of mother ramets and the whole clones increased. We concluded that the trade-offs among growth, clonal, and sexual reproduction of S. alterniflora would be affected by inundation depth, but not by clonal integration.  相似文献   

9.
Feng Li  Yonghong Xie   《Aquatic Botany》2009,91(3):219-223
The aim of this study is to identify how submerged macrophyte Vallisneria spiralis acclimate to sedimentation by investigating the growth, biomass allocation and clonal characteristics in a greenhouse experiment of 30 days. Experimental treatments combined two sediment types (mud and sand) with four sedimentation depths (0, 2, 4 and 8 cm) in a factorial design. Biomass accumulation (0.98–1.33 versus 0.36 g per plant) and relative growth rate (RGR, 0.082–0.093 versus 0.046 g g−1 day−1) decreased only in the 8 cm sand treatment. Neither sedimentation depth nor sediment type influenced biomass allocation. The ratio of spacer length to biomass was significantly higher in the 8 cm sand (20.4 cm g−1) than in other treatments (6.0–8.5 cm g−1). Branching angles and the depths between ramet basal and sediment surface were only affected by sedimentation depth. Clonal ramets developed nearly vertical branching angles (ranged from 78° to 101°) in the 0 cm sedimentation treatment, but the angles of treated plants decreased at the initial 3–5 ramets (ranged from 68° to 78° at the first ramet level), then remained a relatively constant value (about 90°) in the following spacers. These data indicate that plagiotropic stolons were formed to project the ramets to sediment surface and to escape sedimentation stress primarily by elongating spacer length and decreasing branching angle, rather than by adjusting biomass allocation.  相似文献   

10.
Recently, considerable attention has been paid to the invasion of the clonal plant Spartina alterniflora into coastal wetlands at lower elevations. In this experiment, we tested whether clonal integration improved flood tolerance in S. alterniflora daughter ramets. Daughter ramets at two growth stages (young and old ramets) were flooded to water levels of 0, 9 and 18 cm above the soil surface, and the rhizomes between mother and daughter ramets were either severed or left intact. Biomasses of connected ramets grown in controls or in shallow and deep water treatments were 119%, 108% and 149% higher in the old ramet group than those of severed ramets, respectively, whereas they were 3.0, 3.3 and 11.2 times higher in the young ramet group, respectively. At the end of the experimental period, the shoot height, connected with young ramets, in shallow and deep water treatments increased by 19% and 26%, respectively, over that in the control treatments, whereas the old ramets increased by 11% and 39%, respectively. In contrast, the shoot height of the severed young ramets was 27% and 26% lower in shallow and deep water treatments than in the control treatment, respectively. However, the shoot height of the severed old ramets remained constant with increasing water depth. We conclude that clonal integration enhances the flood tolerance of S. alterniflora daughter ramets, and the trait of clonal integration plays more important roles in severe flooding stress conditions and at early growth stages.  相似文献   

11.
The evolution of clonal growth is a widespread phenomenon among plant species, characterized by the production of genetically identical clonal fragments (ramets) via rhizomes or stolons that form an interconnected clonal organism (genet). Clonal plant species are known to differ in their investment into ramet production, and exhibit considerable variation in ramet morphology both within and among species. While patterns of resource allocation are thought to be linked to a number of plant characteristics, many analyses are limited by uncertainty in how clonal plants determine the morphology and resources allocated to new ramets. In this study, we attempted to discern what aspects of parent ramets best predicted resource allocation to new daughter ramets, and the relationship between resource allocation and daughter ramet rhizome morphology. We grew two sedge species, Schoenoplectus tabernaemontani and Eleocharis elliptica, in a greenhouse under two levels of fertilizer addition. By harvesting daughter ramets that had initiated stem production, yet remained aphotosynthetic, we were able to isolate parental investment into non-independent daughter ramets at a point where daughter ramet spacer length became fixed. Our results indicate that parent ramets allocated a non-linear proportion of parent rhizome biomass to the production of daughter ramets. Moreover, this relationship was unaffected by environmental nutrient availability. Daughter ramet biomass, in turn, was strongly correlated with daughter ramet spacer length. These observations shed light on key processes governing clonal growth in plants, and their potential application in unifying allocational and morphological perspectives to explore the fitness implications of variability in clonal growth.  相似文献   

12.
The purpose of this study was to explore clonal integration of Spartina alterniflora under gradually changing substrate salinity conditions. We hypothesized that there might be a trade-off between growth and sexual reproduction influenced by soil salinity and, that clonal integration would change this trade-off. The experiment consisted of three levels of substrate salinity (5‰, 20‰ and 35‰), two clonal integration treatments (rhizomes severed or not), and three growth stages of daughter ramets (21, 40 and 60 cm tall). Both growth and sexual reproduction of S. alterniflora greatly decreased with increasing salinity. Clonal integration enhanced the survival, growth and sexual reproduction of daughter ramets experiencing salt stress, especially for young ramets, whereas the performance of mother ramets was reduced by clonal integration. Therefore, clonal integration did not affect performance of the whole clones. Contrary to expectations, there was no evidence for a trade-off between growth and sexual reproduction associated with salinity. In addition, clonal integration did not change the effect of salinity on the growth and sexual reproduction of mother and daughter ramets nor of the whole clones.  相似文献   

13.
Herbaceous species possess several mechanisms to compensate for tissue loss. For clonal herbaceous species, clonal integration may be an additional mechanism. This may especially hold true when tissue loss is very high, because other compensatory mechanisms may be insufficient. On inland dunes in northern China, we subjected Bromus ircutensis and Psammochloa villosa ramets within 0.5 m×0.5 m plots to three clipping treatments, i.e., no clipping, moderate (50% shoot removal) and heavy clipping (90% shoot removal), and kept rhizomes at the plot edges connected or disconnected. Moderate clipping did not reduce ramet, leaf or biomass density of either species. Under moderate clipping, rhizome connection significantly improved the performance of Psammochloa, but not that of Bromus. Heavy clipping reduced ramet, leaf and biomass density in the disconnected plots of both species, but such negative effects were negated or greatly ameliorated when the rhizomes were connected. Therefore, clonal integration contributed greatly to the compensatory growth of both species. The results suggest that clonal integration is an additional compensatory mechanism for clonal plants and may be important for their long-term persistence in the heavily grazed regions in northern China.  相似文献   

14.
The distribution pattern of natural ramet population in the rhizomatous herb, Thermopsis lanceolata R.Br., at 5 scales (0.2 m, 0.4 m, 0.6 m, 0.8 m and 1.0 m) was investigated using grid samphng and spatial auto-correlation analysis (Moran' s I) in Maowusu sandland of Inner Mongolia of China. The result showed that the ramet population had non-random distribution pattern at four scales (0.2 m, 0.4 m, 0.6 m and 1.0 m). The most frequently observed pattern was contagious at the scale of 0.2 m. The genet had sympodial growth and nearly phalanx architecture. The branching angle of the rhizomes was from 10˚ to 30˚.The density of the ramet population was from 35 to 131 ramets·m-2. The mean height of ramets was between 11.0 cm and 25.9 cm. The biomass of the ramet population was 263.63 g·m-2 and 306.19 g·m-2 in the two plots, respectively. 33.71% and 44.97% of the biomass allocation to rhizomes were observed and the biomass allocation to roots was 29.91% and 29.95% and that to leaves was 25.12% and 36.35% in the two plots, respectively. The ratio of root to shoot was 0.44 in both plots while the ratio of below- to above- ground biomass was 2.12 and 3.59, respectively.  相似文献   

15.
 羊柴(Hedysarum laeve)是豆科多年生半灌木,在自然条件下可以同时进行有性繁殖和克隆繁殖。该文在野外条件下研究了不同水平的水分和养 分处理对羊柴种群的繁殖权衡的影响。结果表明,与对照相比,增加一定量的水分处理显著减少了花和荚果的生物量;显著增加了克隆分株枝 的生物量,显著减少了分株根茎的生物量, 但没有影响其它部分的生物量。增加一定量的水分会抑制有性繁殖,改变生物量对克隆繁殖分株各 部分的分配比例。与对照相比,增加一定量的养分能够促进有性繁殖,抑制克隆繁殖。  相似文献   

16.
王沫竹  董必成  李红丽  于飞海 《生态学报》2016,36(24):8091-8101
自然界中光照和养分因子常存在时空变化,对植物造成选择压力。克隆植物可通过克隆生长和生物量分配的可塑性来适应环境变化。尽管一些研究关注了克隆植物对光照和养分因子的生长响应,但尚未深入全面了解克隆植物对光照和养分资源投资的分配策略。以根茎型草本克隆植物扁秆荆三棱(Bolboschoenus planiculmis)为研究对象,在温室实验中,将其独立分株种植于由2种光照强度(光照和遮阴)和4种养分水平(对照、低养分、中养分和高养分)交叉组成的8种处理组合中,研究了光照和养分对其生长繁殖及资源贮存策略的影响。结果表明,扁秆荆三棱的生长、无性繁殖及资源贮存性状均受到光照强度的显著影响,在遮阴条件下各生长繁殖性状指标被抑制。且构件的数目、长度等特征对养分差异的可塑性响应先于其生物量积累特征。在光照条件下,高养分处理的总生物量、叶片数、总根茎分株数、长根茎分株数、总根茎长、芽长度、芽数量等指标大于其他养分处理,而在遮阴条件下,其在不同养分处理间无显著差异,表明光照条件可影响养分对扁秆荆三棱可塑性的作用,且高营养水平不能补偿由于光照不足而导致的生长能力下降。光照强度显著影响了总根茎、总球茎及大、中、小球茎的生物量分配,遮阴条件下,总生物量减少了对地下部分根茎和球茎的分配,并将有限的生物量优先分配给小球茎。总根茎的生物量分配未对养分发生可塑性反应,而随着养分增加,总球茎分配下降,说明在养分受限的环境中球茎的贮存功能可缓冲资源缺乏对植物生长的影响。在相同条件下,根茎生物量对长根茎的分配显著大于短根茎,以保持较高的繁殖能力;而总球茎对有分株球茎的生物量分配小于无分株球茎,表明扁秆荆三棱总球茎对贮存功能的分配优先于繁殖功能。研究为进一步理解根茎型克隆植物对光强及基质养分环境变化的生态适应提供了依据。  相似文献   

17.
Life history trade-offs among clonal growth, storage, and sexual reproduction were investigated in the perennial grass Amphibromus scabrivalvis in relation to soil nutrients. This species exhibits clonal growth by producing rhizomes and stores reserves in the form of basal corms; seeds are matured in cleistogamous spikelets on panicles enclosed within the leaf sheaths along each culm. Ten seed-derived genotypes (clones) were separated into 72 ramets and planted in the greenhouse. Control ramets received only water while the remainder received fertilizer applied every 2 wk. Twenty-four ramets were harvested per clone at 11, 20, and 26 wk. The dry mass of corms, rhizomes, roots, shoots, and seeds were recorded. Biomass partitioning to rhizomes provided a measure of carbon allocation to clonal growth, partitioning to corms provided a measure of allocation to storage, and partitioning to seeds provided a measure of allocation to sexual reproduction. Allocation to most organs was significantly influenced by clone identity; fertilizer significantly increased allocation to corms and seeds at 20 wk, but never affected rhizome allocation at any age. Corm allocation increased from 2% at 11 wk to 27% at 26 wk; rhizome allocation decreased from 10% at 11 wk to 3% at 26 wk. Significant negative relationships were detected for rhizome vs. seed and corm vs. rhizome allocation in fertilized clones at 20 wk. This suggests an age-dependent physiological life history trade-off between clonality and sexual reproduction and between clonality and storage. In contrast, a significant positive relationship was consistently noted for corm vs. seed allocation in fertilized and unfertilized clones at 20 and 26 wk. The absence of a trade-off between storage and sexual reproduction may indicate that these two processes are not necessarily mutually exclusive components of life history.  相似文献   

18.
Physiological integration and foraging behavior have both been proposed as advantages for clonal growth in heterogeneous environments. We tested three predictions concerning their short- and long-term effects on the growth of the clonal perennial sedge Schoenoplectus pungens (Pers.) Volk. ex Schinz and R. Keller: (1) growth would be greatest for clones with connected rhizomes and on heterogeneous soil, (2) clones would preferentially place biomass in the nutrient-rich patches of a spatially heterogeneous environment, and (3) physiological integration would decrease a clone’s ability to forage. We tested our predictions by growing S. pungens clones for 2 years in an experimental garden with two severing treatments (connected and severed rhizomes) crossed with two soil treatments (homogeneous and heterogeneous nutrient distribution). Severing treatments were only carried out in the first year. As predicted, severing significantly decreased total biomass and per capita growth rate in year one and individual ramet biomass both in year one and the year after severing stopped. This reduction in growth was most likely caused by severing damage, because the total biomass and growth rate in severed treatments did not vary with soil heterogeneity. Contrary to our prediction, total biomass and number of ramets were highest on homogeneous soil at the end of year two, regardless of severing treatment, possibly because ramets in heterogeneous treatments were initially planted in a nutrient-poor patch. Finally, as predicted, S. pungens concentrated ramets in the nutrient-rich patches of the heterogeneous soil treatment. This foraging behavior seemed enhanced by physiological integration in the first year, but any possible enhancement disappeared the year after severing stopped. It seems that over time, individual ramets become independent, and parent ramets respond independently to the conditions of their local microsite when producing offspring, a life-history pattern that may be the rule for clonal species with the spreading “guerrilla” growth form.  相似文献   

19.
The life-history characteristics of Cardamine leucantha (Tausch) O. E. Schulz (Brassicaceae) are described. The species is an herbaceous perennial that favors open but relatively moist habitats. It is distributed from Kyushu to Hokkaido in Japan but also occurs in Korea, Mongolia, China and the Russian Far East. In southwestern Japan, shoots start sprouting from mid- to late April, reaching approximately 30–70 cm in height, with 5–10 compound leaves. Ramets simultaneously produce one or more stoloniferous rhizomes that elongate until new ramets are formed at the tips. Cardamine leucantha has a pseudo-annual life cycle, in which mother ramets wither at the end of each season and only daughter ramets appear aboveground in the next year. As a result, ramet positions change annually. In a study population, the number of flowers averaged 23.9 ± 21.0 per ramet and fruit set was 44.2 ± 24.8% (10.4 ± 10.1 fruits per ramet). Ramets produced 3.8 ± 2.3 rhizomes that were 22.0 ± 15.6 cm long. The species sometimes forms large populations. A single genet develops into a group of disconnected ramets spreading via clonal growth. Reproductive characteristics (e.g., fruit set and numbers of flowers and rhizomes) vary among populations, resulting in interpopulation differences in genet structure. Because the reference genome became available recently, established molecular tools will be applied effectively for the investigations of C. leucantha as a model clonal plant.  相似文献   

20.
自然条件下风箱果的克隆构型   总被引:1,自引:0,他引:1       下载免费PDF全文
在自然条件下,风箱果(Physocarpus amurensis)主要靠克隆繁殖维持种群。植物克隆构型的可塑性变化对于其适应环境异质性具有重要意义。为探求风箱果的克隆构型及根茎生长动态,研究了其地下根茎的构筑型、形态特征、根茎的直径随长度变化的规律和地下根茎间的夹角。结果表明:风箱果的地下根茎的构筑型基本上属于游击型;风箱果无性系平均含有(6±2)个分株和(9.33±3.48)个根茎;根茎的直径随长度变化的曲线为抛物线型;分枝夹角较为稳定,多为30°和70°。风箱果生产大量的根茎系统,每一个克隆片段能够占据一定的空间,以保证自身生存和维持种群繁衍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号