首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.  相似文献   

2.
The refuge strategy is designed to delay evolution of pest resistance to transgenic crops producing Bacillus thuringiensis Berliner (Bt) toxins. Movement of insects between Bt crops and refuges of non-Bt crops is essential for the refuge strategy because it increases chances that resistant adults mate with susceptible adults from refuges. Conclusions about optimal levels of movement for delaying resistance are not consistent among previous modeling studies. To clarify the effects of movement on resistance evolution, we analyzed simulations of a spatially explicit model based partly on the interaction of pink bollworm, Pectinophora gossypiella (Saunders), with Bt cotton. We examined resistance evolution as a function of insect movement under 12 sets of assumptions about the relative abundance of Bt cotton (50 and 75%), temporal distribution of Bt cotton and refuge fields (fixed, partial rotation, and full rotation), and spatial distribution of fields (random and uniform). The results show that interactions among the relative abundance and distribution of refuges and Bt cotton fields can alter the effects of movement on resistance evolution. The results also suggest that differences in conclusions among previous studies can be explained by differences in assumptions about the relative abundance and distribution of refuges and Bt crop fields. With fixed field locations and all Bt cotton fields adjacent to at least one refuge, resistance evolved slowest with low movement. However, low movement and fixed field locations favored rapid resistance evolution when some Bt crop fields were isolated from refuges. When refuges and Bt cotton fields were rotated to the opposite crop type each year, resistance evolved fastest with low movement. Nonrecessive inheritance of resistance caused rapid resistanceevolution regardless of movement rate. Confirming previous reports, results described here show that resistance can be delayed effectively by fixing field locations and distributing refuges uniformly to ensure that Bt crop fields are not isolated from refuges. However, rotating fields provided better insect control and reduced the need for insecticide sprays.  相似文献   

3.
We propose a biological pest control system that invests part of a crop in feeding a pest in a cage. The fed pest maintains a predator that attacks the pest in the target area (i.e., the area for storing or growing crops). The fed pest cannot leave the cage nor the target pest cannot enter the cage. The predator, however, can freely attack both the fed and target pests in the target area. By introducing a refuge in the cage against the predator for the fed pest, the fed pest and predator may be stably sustained. In this study, we analyzed the potential performance of this system by modeling the population dynamics of the target pest, fed pest, and predator as differential equations. First, we show analytically that the target pest can be suppressed at extremely low abundance by adjusting both refuge efficiency and crop investment. Second, we show numerically that crop damage by the pest may be effectively suppressed by investing only small amounts of the crop. Third, we show numerically that the magnitude of required crop investment can be estimated by an index comprising of the predator's searching cost for prey and the relative growth efficiency of the predator with respect to the pest. Even if the system structure is changed or its population dynamics is modeled based on host–parasitoid interactions, crop damage can be suppressed effectively by small amounts of crop investment.  相似文献   

4.
In order to delay the development of pest resistance to genetically engineered insecticidal crop varieties, it is current practice to grow "refugees" of non-toxic plants close to insecticidal crops. We model such a toxic/nontoxic crop complex as an open system with a small stream of toxin-susceptible immigrants. We find that, for intermediate values of the dominance of a pest gene for resistance to the toxin, the local refuge can spoil the benefit that is provided by the immigrant stream. We provide formulas for some important boundaries in parameter space.  相似文献   

5.
A mathematical model was constructed to describe the evolution of resistance to the Bacillus thuringiensis toxin (Bt) in an insect pest (European corn borer) population on a transgenic crop (Bt corn). The model comprises a set of partial differential equations of the reaction-diffusion type; local interactions of three competing pest genotypes formed by alleles of Bt resistance and susceptibility are described as in the Kostitzin model, and the spread of insects is modeled as diffusion. The model was used to evaluate the influence of pest characteristics on the efficacy of the high-dose/refuge strategy aiming to prevent or delay the spread of Bt resistance in pest populations. It was shown, by contrast, that a model based on Fisher-Haldane-Wright equations and formally incorporating a diffusion term cannot adequately describe the evolution of Bt resistance in a spatially inhomogeneous pest population. Further development of the proposed demo-genetic model is discussed.  相似文献   

6.
Toxic plants have been used for years in agriculture to control major crop pests. However, the continuous exposure of targeted pests to toxins dramatically increases the rate of resistance evolution (Gassman et al. in Annu Rev Entomol 54:147–163, 2009a; Tabashnik et al. Nat Biotechnol 26:199–202, 2008). To prevent or delay resistance, non toxic host plants can be used as refuges. Our study considers spatial and temporal refuges that are respectively implemented concurrently or alternatively a toxic crop. A conceptual model based on impulsive differential equations is proposed to describe the dynamics of the susceptible and resistant pest populations over time. The mathematical study enlightens threshold values of the proportion of the spatial refuge and key parameters that should help to understand evolution of pest resistance to toxic crop.  相似文献   

7.
Insect resistance to Bt crops: evidence versus theory   总被引:7,自引:0,他引:7  
Evolution of insect resistance threatens the continued success of transgenic crops producing Bacillus thuringiensis (Bt) toxins that kill pests. The approach used most widely to delay insect resistance to Bt crops is the refuge strategy, which requires refuges of host plants without Bt toxins near Bt crops to promote survival of susceptible pests. However, large-scale tests of the refuge strategy have been problematic. Analysis of more than a decade of global monitoring data reveals that the frequency of resistance alleles has increased substantially in some field populations of Helicoverpa zea, but not in five other major pests in Australia, China, Spain and the United States. The resistance of H. zea to Bt toxin Cry1Ac in transgenic cotton has not caused widespread crop failures, in part because other tactics augment control of this pest. The field outcomes documented with monitoring data are consistent with the theory underlying the refuge strategy, suggesting that refuges have helped to delay resistance.  相似文献   

8.
Parasitoid disturbance populations in agroecosystems can be maintained through the provision of habitat refuges with host resources. However, specialized herbivores that feed on different host plants have been shown to form host-specialized races. Parasitoids may subsequently specialize on these herbivore host races and therefore prefer parasitizing insects from the refuge, avoiding foraging on the crop. Evidence is therefore required that parasitoids are able to move between the refuge and the crop and that the refuge is a source of parasitoids, without being an important source of herbivore pests. A North-South transect trough the Chilean Central Valley was sampled, including apple orchards and surrounding Pyracantha coccinea (M. Roem) (Rosales: Rosacea) hedges that were host of Eriosoma lanigerum (Hemiptera: Aphididae), a globally important aphid pest of cultivated apples. At each orchard, aphid colonies were collected and taken back to the laboratory to sample the emerging hymenopteran parasitoid Aphelinus mali (Hymenoptera: Aphelinidae). Aphid and parasitoid individuals were genotyped using species-specific microsatellite loci and genetic variability was assessed. By studying genetic variation, natural geographic barriers of the aphid pest became evident and some evidence for incipient host-plant specialization was found. However, this had no effect on the population-genetic features of its most important parasitoid. In conclusion, the lack of genetic differentiation among the parasitoids suggests the existence of a single large and panmictic population, which could parasite aphids on apple orchards and on P. coccinea hedges. The latter could thus comprise a suitable and putative refuge for parasitoids, which could be used to increase the effectiveness of biological control. Moreover, the strong geographical differentiation of the aphid suggests local reinfestations occur mainly from other apple orchards with only low reinfestation from P. cocinnea hedges. Finally, we propose that the putative refuge could act as a source of parasitoids without being a major source of aphids.  相似文献   

9.
A deterministic two-locus model was used to examine how small fitness costs to individuals carrying resistance alleles could impact the risk of panmictic insect pest populations adapting to crop varieties that produced two distinct toxins. Parameters examined were (1) level of toxicity of each toxin, (2) initial frequencies of alleles for adaptation to the toxins, (3) percentage of population feeding on nontoxic plants, and (4) level of fitness cost associated with adaptation to each of the two toxins. Resistance to each toxin was assumed to be biochemically independent, controlled by a resistance coding allele at a single locus, and inherited as a partially recessive trait in the field. When plants are extremely toxic to the pest, effective refuge size is 10%, and there is a fitness cost to resistance alleles only when in homozygous form (5%), the pest population is never predicted to adapt to either toxin as long as the initial frequencies of the resistance alleles are below 0.05. Even if the initial frequency of the allele for adapting to one toxin is 0.95 when a two-toxin cultivar completely replaces a one-toxin cultivar, the model predicts that a low equilibrium allelic frequency will develop for both resistance alleles, as long as the frequency of the allele for adapting to the second toxin is initially 0.001 or less. If cultivars with one and two toxins are planted, the model predicts that resistance will develop. Nonrandom mating and stochastic variation within subpopulations also could lead to evolution of resistance.  相似文献   

10.
Myths, models and mitigation of resistance to pesticides   总被引:3,自引:0,他引:3  
Resistance to pesticides in arthropod pests is a significant economic, ecological and public health problem. Although extensive research has been conducted on diverse aspects of pesticide resistance and we have learned a great deal during the past 50 years, to some degree the discussion about ''resistance management'' has been based on ''myths''. One myth involves the belief that we can manage resistance. I will maintain that we can only attempt to mitigate resistance because resistance is a natural evolutionary response to environmental stresses. As such, resistance will remain an ongoing dilemma in pest management and we can only delay the onset of resistance to pesticides. ''Resistance management'' models and tactics have been much discussed but have been tested and deployed in practical pest management programmes with only limited success. Yet the myth persists that better models will provide a ''solution'' to the problem. The reality is that success in using mitigation models is limited because these models are applied to inappropriate situations in which the critical genetic, ecological, biological or logistic assumptions cannot be met. It is difficult to predict in advance which model is appropriate to a particular situation; if the model assumptions cannot be met, applying the model sometimes can increase the rate of resistance development rather than slow it down. Are there any solutions? I believe we already have one. Unfortunately, it is not a simple or easy one to deploy. It involves employing effective agronomic practices to develop and maintain a healthy crop, monitoring pest densities, evaluating economic injury levels so that pesticides are applied only when necessary, deploying and conserving biological control agents, using host-plant resistance, cultural controls of the pest, biorational pest controls, and genetic control methods. As a part of a truly multi-tactic strategy, it is crucial to evaluate the effect of pesticides on natural enemies in order to preserve them in the cropping system. Sometimes, pesticide-resistant natural enemies are effective components of this resistance mitigation programme. Another name for this resistance mitigation model is integrated pest management (IPM). This complex model was outlined in some detail nearly 40 years ago by V. M. Stern and colleagues. To deploy the IPM resistance mitigation model, we must admit that pest management and resistance mitigation programmes are not sustainable if based on a single-tactic strategy. Delaying resistance, whether to traditional pesticides or to transgenic plants containing toxin genes from Bacillus thuringiensis, will require that we develop multi-tactic pest management programmes that incorporate all appropriate pest management approaches. Because pesticides are limited resources, and their loss can result in significant social and economic costs, they should be reserved for situations where they are truly needed--as tools to subdue an unexpected pest population outbreak. Effective multi-tactic IPM programmes delay resistance (= mitigation) because the number and rates of pesticide applications will be reduced.  相似文献   

11.
We constructed a reaction-diffusion model of the development of resistance to transgenic insecticidal Bt crops in pest populations. Kostitzin’s demo-genetic model describes local interactions between three competing pest genotypes with alleles conferring resistance or susceptibility to transgenic plants, the spatial spread of insects being modelled by diffusion. This new approach makes it possible to combine a spatial demographic model of population dynamics with classical genetic theory. We used this model to examine the effects of pest dispersal and of the size and shape of the refuge on the efficiency of the “high-dose/refuge” strategy, which was designed to prevent the development of resistance in populations of insect pests, such as the European corn borer, Ostrinia nubilalis Hübner (Lepidoptera, Crambidae). We found that, with realistic combinations of refuge size and pest dispersal, the development of resistance could be considerably delayed. With a small to medium-sized farming area, contiguous refuge plots are more efficient than a larger number of smaller refuge patches. We also show that the formal coupling of classical Fisher–Haldane–Wright population genetics equations with diffusion terms inaccurately describes the development of resistance in a spatially heterogeneous pest population, notably overestimating the speed with which Bt resistance is selected in populations of pests targeted by Bt crops.  相似文献   

12.
Bt crop pyramids produce two or more Bt proteins active to broaden the spectrum of action and to delay the development of resistance in exposed insect populations. The cross‐resistance between Bt toxins is a vital restriction factor for Bt crop pyramids, which may reduce the effect of pyramid strategy. In this review, the status of the cross‐resistance among more than 20 Bt toxins that are most commonly used against 13 insect pests was analyzed. The potential mechanisms of cross‐resistance are discussed. The corresponding measures, including pyramid RNA interference and Bt toxin, “high dose/refuge,” and so on are advised to be taken for adopting the pyramided strategy to delay the Bt evolution of resistance and control the target pest insect.  相似文献   

13.
In the context of genetically modified crops expressing the Bacillus thuringiensis (Bt) toxin, a ‘refuge’ refers to a crop of the same or a related species that is planted nearby to enable growth and reproduction of the target pest without the selection pressure imposed by the Bt toxin. The goal of this study is to discuss the role of natural refuge crops in slowing down the buildup of resistance of cotton bollworm (CBW), and to evaluate China’s no-refuge policy for Bt cotton. We describe in detail the different factors that China should consider in relation to the refuge policy. Drawing on a review of scientific data, economic analyses of other cases, and a simulation exercise using a bio-economic model, we show that in the case of Bt cotton in China, the no-refuge policy is defensible.  相似文献   

14.
This paper develops a dynamic model of the evolution of pest a population and pest resistance to characterize the socially optimal refuge strategy for managing a pest's resistance to genetically modified crops. Previous theoretical economic analyses of this problem focus on steady states; we also address refuge policies along the optimal path to the final equilibrium. To elaborate on our theoretical analysis of the resistance problem, we develop a simulation model calibrated to cotton (Gossypium spp.) production in China. Our results show the importance of fitness cost as a determinant of the qualitative nature of optimal refuge policies.  相似文献   

15.
Field tests on managing resistance to Bt-engineered plants   总被引:9,自引:0,他引:9  
Several important crops have been engineered to express toxins of Bacillus thuringiensis (Bt) for insect control. In 1999, US farmers planted nearly 8 million hectares (nearly 20 million acres) of transgenic Bt crops approved by the EPA. Bt-transgenic plants can greatly reduce the use of broader spectrum insecticides, but insect resistance may hinder this technology. Present resistance management strategies rely on a "refuge" composed of non-Bt plants to conserve susceptible alleles. We have used Bt-transgenic broccoli plants and the diamondback moth as a model system to examine resistance management strategies. The higher number of larvae on refuge plants in our field tests indicate that a "separate refuge" will be more effective at conserving susceptible larvae than a "mixed refuge" and would thereby reduce the number of homozygous resistant (RR) offspring. Our field tests also examined the strategy of spraying the refuge to prevent economic loss to the crop while maintaining susceptible alleles in the population. Results indicate that great care must be taken to ensure that refuges, particularly those sprayed with efficacious insecticides, produce adequate numbers of susceptible alleles. Each insect/Bt crop system may have unique management requirements because of the biology of the insect, but our studies validate the need for a refuge. As we learn more about how to refine our present resistance management strategies, it is important to also develop the next generation of technology and implementation strategies.  相似文献   

16.
A stochastic spatially explicit computer model is described that simulates the adaptation by western corn rootworm, Diabrotica virgifera virgifera LeConte, to rootworm-resistance traits in maize. The model reflects the ecology of the rootworm in much of the corn belt of the United States. It includes functions for crop development, egg and larval mortality, adult emergence, mating, egg laying, mortality and dispersal, and alternative methods of rootworm control, to simulate the population dynamics of the rootworm. Adaptation to the resistance trait is assumed to be controlled by a monogenic diallelic locus, whereby the allele for adaptation varies from incompletely recessive to incompletely dominant, depending on the efficacy of the resistance trait. The model was used to compare the rate at which the adaptation allele spread through the population under different nonresistant maize refuge deployment scenarios, and under different levels of crop resistance. For a given refuge size, the model indicated that placing the nonresistant refuge in a block within a rootworm-resistant field would be likely to delay rootworm adaptation rather longer than planting the refuge in separate fields in varying locations. If a portion of the refuge were to be planted in the same fields or in-field blocks each year, rootworm adaptation would be delayed substantially. Rootworm adaptation rates are also predicted to be greatly affected by the level of crop resistance, because of the expectation of dependence of functional dominance on dose. If the dose of the insecticidal protein in the maize is sufficiently high to kill >90% of heterozygotes and approximately 100% of susceptible homozygotes, the trait is predicted to be much more durable than if the dose is lower. A partial sensitivity analysis showed that parameters relating to adult dispersal affected the rate of pest adaptation. Partial validation of the model was achieved by comparing output of the model with field data on population dynamics, and with field data documenting rootworm adaptation to cyclodienes and organophosphates.  相似文献   

17.
The augmentation of natural enemies against agricultural pests is a common tactic undertaken to minimize crop damage without the use of chemical pesticides. Failures of this strategy may result from (i) Allee effects acting on biological control agent; (ii) trophic interactions between the released control agent and native species in the local ecosystem; (iii) excessively rapid spreading agents. To investigate the interplay of these mechanisms in pest biocontrol efficiency in the context of intraguild predation (IGP), we develop a one-dimensional dynamical model of a spatial, tritrophic food web with intraguild predation. We show that the agent’s diffusivity (i.e., agent’s dispersal speed), and intraguild predator’s addition of alternative food sources are important factors in determining the success or failure of pest biocontrol. These results are obtained for spatially explicit models by considering the speed of dispersal of the control agent and the pest. Feedback from theoretical models as the one constructed in this work can provide useful guidelines for practitioners in biological control.  相似文献   

18.
The impact of structured strip row refugia (varying from 10% to 50%) in the Bt cotton crops JKCH1947Bt (producing one toxin, Cry1Ac) and MRC7017BGII (producing two toxins, Cry1Ac and Cry2Ab) on the pest complex and cotton yield was studied. During the cropping season (June 2008 to November 2008), sucking pest incidence was negligible. However, the incidences of spotted bollworm, Earias vittella, and the leafroller, Sylepta derogata, were high on the non-Bt cotton. The total cotton seed yield of the Bt crop plus the refuge decreased proportionately with respect to the increase in proportion of non-Bt cotton. Total cotton production decreased significantly when 40% non-Bt cotton was planted as refuge. These studies showed that a refuge of up to 30% non-Bt cotton in JKCH1947Bt and up to 20% non-Bt cotton in MRC7017Bt did not affect total seed cotton yield compared to 100% Bt cotton.  相似文献   

19.
The efficacy of entomopathogenic nematodes for biological control is assessed using deterministic models. Typically, the examination of such models involves stability analyses to determine the long-term persistence of control. However, in agricultural systems, control is often needed within a single season. Hence, the transient dynamics of the systems were assessed under specific, short-term control scenarios using stage-structured models. Analyses suggest that preemptive application may be the optimum strategy if nematode mortality rates are low; applying before pest invasion can result in greater control than applying afterward. In addition, repeated applications will suppress a pest, providing the application rate exceeds a threshold. However, the period between applications affects control success, so the economic injury level of the crop and the life history of the pest should be evaluated before deciding the strategy. In all scenarios, the most important parameter influencing control is the transmission rate. These findings are applicable to more traditional biological control agents (e.g., microparasites and parasitoids), and we recommend the approach adopted here when considering their practical use. It is concluded that it is essential to consider the specific crop and pest characteristics and the definition of control success before selecting the appropriate control strategy.  相似文献   

20.
For maize and cotton, transgenic varieties that express toxins derived from Bacillus thuriengensis (Bt) are now planted in several countries. To slow resistance evolution, the “high-dose/refuge” strategy is broadly implemented in which resistance is recessive and some fields (or areas within fields) are planted exclusively with Bt crops and other fields planted exclusively with non-transgenic refuge crops for susceptible insects. This strategy, however, could potentially be undermined by contamination. Here, we investigate general models of resistance evolution for high-dose events in which fields are contaminated due to the inadvertent mixing of seeds, volunteer plants, or pollen flow between Bt and non-Bt varieties coupled with seed-saving by farmers. Contamination of the refuge by Bt plants increases selection for resistance, thereby speeding resistance evolution. Nonetheless, in most situations this effect is small. Contamination of Bt fields by non-transgenic plants might be expected to have the opposite effect and always reduce the rate of resistance evolution. While this is often the case, it is not always so. If larvae move among plants within a field, then high movement rates may reverse the effect of contamination of Bt fields to slow resistance evolution. Furthermore, if the dispersal rates of adult females between Bt and refuge fields are low, then contamination of Bt fields may speed resistance. These results suggest that contamination has the potential to undermine the efficacy of the high-dose/refuge strategy, yet depending upon the particular pest and situation, contamination may not be a concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号