首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied Polylepis forests along an elevational transect between 3,650 and 4,050 m a.s.l. at the treeline of the moist eastern cordillera in Bolivia to examine changes in above- and below-ground stand structure, leaf and root morphology, and regeneration in relation to stand microclimate. Field measurements and model predictions indicated relatively cold growth conditions of the Polylepis forests. Tree height, stem diameter, and basal area of the stands decreased markedly while stem density increased with elevation. Leaf morphology differed between the two occurring Polylepis species, and trees at the treeline had smaller leaves with higher specific leaf area. In contrast, fine root biomass increased from 37 g m−2 at the lowermost stand to 234 g m−2 at the treeline. Trees of the uppermost stand had higher specific root surface area and a much higher number of root tips per unit dry mass. Thus, root surface area and total number of root tips per unit ground area increased conspicuously from the lowermost stand to the treeline. Density of young growth inside the forest increased towards the treeline, while density in the open grassland decreased with elevation. Young growth originated from sexual reproduction at the lower forest but was comprised exclusively of root suckers at the treeline stand. We conclude that both the marked change in carbon allocation towards the root system, as well as the changes in root morphology with elevation indicate an adaptation to reduced nutrient supply under cold conditions of these Polylepis stands at the treeline in E Bolivia.
Dietrich HertelEmail:
  相似文献   

2.
Tropical rain forests decrease in tree height and aboveground biomass (AGB) with increasing elevation. The causes of this phenomenon remain insufficiently understood despite a number of explanations proposed including direct or indirect effects of low temperature on carbon acquisition and carbon investment, adverse soil conditions and impaired nutrient supply. For analysing altitudinal patterns of aboveground/belowground carbon partitioning, we measured fine (<2 mm in diameter) and coarse root (2–5 mm) biomass and necromass and leaf area index (LAI), and estimated AGB from stand structural parameters in five tropical mountain rain forests at 1050, 1540, 1890, 2380 and 3060 m along an altitudinal transect in the South Ecuadorian Andes. Average tree height and AGB were reduced to less than 50% between 1050 and 3060 m, LAI decreased from 5.1 to 2.9. The leaf area reduction must have resulted in a lowered canopy carbon gain and thus may partly explain the reduced tree growth in the high-elevation stands. In contrast, both fine and coarse root biomass significantly increased with elevation across this transect. The ratio of root biomass (fine and coarse) to AGB increased more than ten-fold from 0.04 at 1050 m to 0.43 at 3060 m. Under the assumption that fine root biomass does reflect root productivity, our data indicate a marked belowground shift in C allocation with increasing elevation. Possible explanations for this allocation shift are discussed including reduced N supply due to low temperatures, water logging or adverse soil chemical conditions. We conclude that the fine root system and its activity may hold the key for understanding the impressive reduction in tree size along tropical mountain slopes in Ecuador. Analyses of fine root turnover and longevity in relation to environmental factors along altitudinal transects in tropical mountains are urgently needed.  相似文献   

3.
Increasing evidence suggests that forest soils in central and northern Europe as well as in North America have been significantly acidified by acid deposition during the last decades. The present investigation was undertaken to examine the effect of soil acidity on rooting patterns of 40-year-old Norway spruce trees by comparing fine and coarse roots among four stands which differed in soil acidity and Mg (and Ca) nutrition. The coarse root systems of four to five 40-year-old Norway spruce trees per stand were manually excavated. The sum of cross sectional area (CSA) at 60 cm soil depth and below of all vertical coarse roots, as a measure of vertical rooting intensity, was strongly reduced with increasing subsoil acidity of the stands. This pattern was confirmed when 5 additional acidic sites were included in the analysis. Fine root biomass in the mineral soil estimated by repeated soil coring was strongly reduced in the heavily acidified stands, but increased in the humic layer. Using ingrowth cores and a screen technique, we showed that the higher root biomass in the humic layer of the more acidic stands was a result of higher root production. Thus, reduced fine root biomass and coarse root CSA in deeper soil layers coincided with increased root growth in the humic layer. Root mineral analysis showed Ca/Al ratios decreased with decreasing base saturation in the deeper mineral soil (20–40 cm). In the top mineral soil, only minor differences were observed among stands. In general, low Ca/Al ratios coincided with low fine root biomass. Calcium/aluminum ratios determined in cortical cell walls using X-ray microanalysis showed a similar pattern as Ca/Al ratios based on analysis of whole fine roots, although the amplitude of changes among the stands was much greater. Aluminum concentrations and Ca/Al ratios in cortical cell walls were at levels found to inhibit root growth of spruce seedlings in laboratory experiments. The data support the idea that Al (or Ca/Al ratios) and acid deposition-induced Mg (and possibly Ca) deficiency are important factors influencing root growth and distribution in acidic forest soils. Changes in carbon partitioning within the root system may contribute to a reduction in deep root growth.  相似文献   

4.
How tree root systems will respond to increased drought stress, as predicted for parts of Central Europe, is not well understood. According to the optimal partitioning theory, plants should enhance root growth relative to aboveground growth in order to reduce water limitations. We tested this prediction in a transect study with 14 mature forest stands of European beech (Fagus sylvatica L.) by analysing the response of the fine root system to a large decrease in annual precipitation (970–520 mm yr−1). In 3 years with contrasting precipitation regimes, we investigated leaf area and leaf biomass, fine root biomass and necromass (organic layer and mineral soil to 40 cm) and fine root productivity (ingrowth core approach), and analysed the dependence on precipitation, temperature, soil nutrient availability and stand structure. In contrast to the optimal partitioning theory, fine root biomass decreased by about a third from stands with >950 mm yr−1 to those with <550 mm yr−1, while leaf biomass remained constant, resulting in a significant decrease, and not an increase, in the fine root/leaf biomass ratio towards drier sites. Average fine root diameter decreased towards the drier stands, thereby partly compensating for the loss in root biomass and surface area. Both δ13C‐signature of fine root mass and the ingrowth core data indicated a higher fine root turnover in the drier stands. Principal components analyses (PCA) and regression analyses revealed a positive influence of precipitation on the profile total of fine root biomass in the 14 stands and a negative one of temperature and plant‐available soil phosphorus. We hypothesize that summer droughts lead to increased fine root mortality, thereby reducing root biomass, but they also stimulate compensatory fine root production in the drier stands. We conclude that the optimal partitioning theory fails to explain the observed decrease in the fine root/leaf biomass ratio, but is supported by the data if carbon allocation to roots is considered, which would account for enhanced root turnover in drier environments.  相似文献   

5.
Fine root systems may respond to soil chemical conditions, but contrasting results have been obtained from field studies in non-manipulated forests with distinct soil chemical properties. We investigated biomass, necromass, live/dead ratios, morphology and nutrient concentrations of fine roots (<2 mm) in four mature Norway spruce (Picea abies [L.] Karst.) stands of south-east Germany, encompassing variations in soil chemical properties and climate. All stands were established on acidic soils (pH (CaCl2) range 2.8–3.8 in the humus layer), two of the four stands had molar ratios in soil solution below 1 and one of the four stands had received a liming treatment 22 years before the study. Soil cores down to 40 cm mineral soil depth were taken in autumn and separated into four fractions: humus layer, 0–10 cm, 10–20 cm and 20–40 cm. We found no indications of negative effects of N availability on fine root properties despite large variations in inorganic N seepage fluxes (4–34 kg N ha−1 yr−1), suggesting that the variation in N deposition between 17 and 26 kg N ha−1 yr−1 does not affect the fine root system of Norway spruce. Fine root biomass was largest in the humus layer and increased with the amount of organic matter stored in the humus layer, indicating that the vertical pattern of fine roots is largely affected by the thickness of this horizon. Only two stands showed significant differences in fine root biomass of the mineral soil which can be explained by differences in soil chemical conditions. The stand with the lowest total biomass had the lowest Ca/Al ratio of 0.1 in seepage, however, Al, Ca, Mg and K concentrations of fine roots were not different among the stands. The Ca/Al ratio in seepage might be a less reliable stress parameter because another stand also had Ca/Al ratios in seepage far below the critical value of 1.0 without any signs of fine root damages. Large differences in the live/dead ratio were positively correlated with the Mn concentration of live fine roots from the mineral soil. This relationship was attributed to faster decay of dead fine roots because Mn is known as an essential element of lignin degrading enzymes. It is questionable if the live/dead ratio can be used as a vitality parameter of fine roots since both longevity of fine roots and decay of root litter may affect this parameter. Morphological properties were different in the humus layer of one stand that was limed in 1983, indicating that a single lime dose of 3–4 Mg ha−1 has a long-lasting effect on fine root architecture of Norway spruce. Almost no differences were found in morphological properties in the mineral soil among the stands, but vertical patterns were apparently different. Two stands with high base saturation in the subsoil showed a vertical decrease in specific root length and specific root tip density whereas the other two stands showed an opposite pattern or no effect. Our results suggest that proliferation of fine roots increased with decreasing base saturation in the subsoil of Norway spruce stands.  相似文献   

6.
Abstract

Fine roots (<2 mm) are very dynamic and play a key role in forest ecosystem carbon and nutrient cycling and accumulation. We reviewed root biomass data of three main European tree species European beech, (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.), in order to identify the differences between species, and within and between vegetation zones, and to show the relationships between root biomass and the climatic, site and stand factors. The collected literature consisted of data from 36 beech, 71 spruce and 43 pine stands. The mean fine root biomass of beech was 389 g m?2, and that of spruce and pine 297 g m?2 and 277 g m?2, respectively. Data from pine stands supported the hypothesis that root biomass is higher in the temperate than in the boreal zone. The results indicated that the root biomass of deciduous trees is higher than that of conifers. The correlations between root biomass and site fertility characteristics seemed to be species specific. There was no correlation between soil acidity and root biomass. Beech fine root biomass decreased with stand age whereas pine root biomass increased with stand age. Fine root biomass at tree level correlated better than stand level root biomass with stand characteristics. The results showed that there exists a strong relationship between the fine root biomass and the above-ground biomass.  相似文献   

7.
三峡库区马尾松根系生物量的空间分布   总被引:8,自引:0,他引:8  
以三峡库区主要植被马尾松人工林为研究对象,用内径为10 cm的根钻,分别在马尾松中龄林、近熟林和成熟林内,据树干0.5、1.0、1.5 m和2.0 m处设置取样点,各样点按0-10、10-20、20-30、30-40、40-60 cm将土壤分为5个垂直层次,对马尾松根系的空间分布格局进行调查。结果表明:(1)三峡库区马尾松总根系生物量(0-10 mm)为中龄林(4.72 t/hm2)显著高于成熟林(2.94 t/hm2)和近熟林(2.40 t/hm2)(P<0.05)。细根(0-2 mm)生物量随年龄增加而递减,差异不显著(P>0.05);(2)马尾松3个林龄中根系生物量表现出一定的水平分布特征,但具体趋势表现各异,细根生物量最大值均出现在距离样木1.0 m处;(3)细根主要分布在土壤上层,其中47.53%-71.73%的活细根集中在0-20 cm土壤深度内,且随土层的加深,其生物量明显减少。粗根(2-10 mm)则主要分布于20-60 cm土层范围内;(4)根系直径越小,受环境变化越明显。马尾松细根生物量分布主要受土壤深度的影响,树龄和不同水平距离对细根分布格局影响不显著(P>0.05),各因素对粗根生物量的影响均未达到显著水平(P>0.05)。  相似文献   

8.
9.
Relationships between tree parameters above ground and the biomass of the coarse root system were examined in six mixed spruce-beech stands in the Solling Mountain region in northwest Germany. The selected stands were located on comparable sites and covered an age range of 44 to 114 years. Coarse roots (d?\ge?2 mm) of 42 spruce and 27 beech trees were sampled by excavating the entire root system. A linear model with logarithmic transformation of the variables was developed to describe the relationship between the coarse root biomass (CRB, dry weight) and the corresponding tree diameter at breast height (DBH). The coefficients of determination (R 2) attained values between 0.92 for spruce and 0.94 for beech; the logarithmic standard deviation values were between 0.29 and 0.43. A significantly different effect of tree species on the model estimates could not be detected by an analysis of co-variance (ANCOVA). For spruce, the derived relationships were similar to those reported in previous studies, but not for beech. Biomass partitioning in the tree compartments above and below ground differs significantly between spruce (coarse root/shoot ratio 0.16±0.06) and beech (coarse root/shoot ratio 0.10±0.03) in the mixed stands. These results are similar to those given in other studies involving pure spruce and beech stands on comparable sites in the region, although the ratios of pure stands in other regions growing under different site conditions are somewhat higher. Comparing trees of the same DBH classes, root/shoot ratios of spruce are 1.2 to 3 times higher than those of beech. Dominant spruce trees (DBH>60 cm) attained the highest ratios, suppressed beech trees (DBH<10 cm) the lowest. Site conditions of varying climate and soils and interspecific tree competition are likely to affect root/shoot ratio and DBH-coarse root biomass relationships. The greater variability in beech compared with spruce indicates a high 'plasticity' and adaptability of beech carbon allocation. Thus, the derived equations are useful for biomass estimates of coarse roots involving trees of different ages in mixed stands of spruce and beech in the Solling Mountains. However, application of these relationships to stands in other regions would need further testing.  相似文献   

10.
Aluminium (Al), mobilized by acidic deposition, has been claimed to be a major threat to forest vitality. Fine root mortality, decreased root growth and reduced nutrient uptake have been observed in controlled laboratory experiments where roots of tree seedlings were exposed to elevated concentrations of Al. Yet, evidence for Al-induced root damage from forest stands is scarcely reported. Nevertheless, Al dissolved in soil water has received a key role in the critical load concept for forests. Here, we present effects of artificially elevated concentrations of Al in the soil solution on fine roots in a middle-aged stand of Norway spruce (Picea abies (L.) Karst.). Although the inorganic Al concentrations about 200 µM and Ca:Al ratio about 0.7 that were established in the soil solution within this experiment have been associated with reduction of root growth and root mortality for spruce seedlings in hydroponic studies, no acute damage on fine roots was observed. Three years of treatment did not cause visual root damage, nor were effects on fine root necromass observed. Fine root necromass made up about 10% of fine root biomass for all treatments. However, significantly lower molar Ca:Al and Mg:Al ratios in living and dead fine roots were found in the plots where Al concentrations were highest and ratios of Ca to Al in the soil solution were lowest. The lack of response on fine root biomass suggests that forest stands tolerate higher Al levels than results from laboratory experiments indicate. We conclude that effect studies in the laboratory have limited value for field conditions. The key role of Al toxicity, expressed as the Ca/Al ratio, in critical load calculations for forests may have to be reconsidered.  相似文献   

11.
Fine root acclimation to different environmental conditions is crucial for growth and sustainability of forest trees. Relatively small changes in fine root standing biomass (FRB), morphology or mycorrhizal symbiosis may result in a large change in forest carbon, nutrient and water cycles. We elucidated the changes in fine root traits and associated ectomycorrhizal (EcM) fungi in 12 Norway spruce stands across a climatic and N deposition gradient from subarctic‐boreal to temperate regions in Europe (68°N–48°N). We analysed the standing FRB and the ectomycorrhizal root tip biomass (EcMB, g m?2) simultaneously with measurements of the EcM root morphological traits (e.g. mean root length, root tissue density (RTD), N% in EcM roots) and frequency of dominating EcM fungi in different stands in relation to climate, soil and site characteristics. Latitude and N deposition explained the greatest proportion of variation in fine root traits. EcMB per stand basal area (BA) increased exponentially with latitude: by about 12.7 kg m?2 with an increase of 10° latitude from southern Germany to Estonia and southern Finland and by about 44.7 kg m?2 with next latitudinal 10° from southern to northern Finland. Boreal Norway spruce forests had 4.5 to 11 times more EcM root tips per stand BA, and the tips were 2.1 times longer, with 1.5 times higher RTD and about 1/3 lower N concentration. There was 19% higher proportion of root tips colonized by long‐distance exploration type forming EcM fungi in the southern forests indicating importance of EcM symbiont foraging strategy in fine root nutrient acquisition. In the boreal zone, we predict ca. 50% decrease in EcMB per stand BA with an increase of 2 °C annual mean temperature. Different fine root foraging strategies in boreal and temperate forests highlight the importance of complex studies on respective regulatory mechanisms in changing climate.  相似文献   

12.
Introgressive hybridization of Senecio hercynicus and S. ovatus (Compositae, Senecioneae) was studied in a hybrid zone on the southern slopes of Mt Brocken (Harz Mountains, Germany). A total of 415 plants representing 10 stands along an altitudinal gradient were investigated using multivariate statistical analyses of morphological characters and molecular markers (random amplified polymorphic DNA[RAPD]). Both types of traits detected pure S. hercynicus stands on the summit plateau, pure S. ovatus stands at the lowest elevations, and hybrid swarms at intermediate elevations. While morphological and molecular patterns coincided, some individuals in hybrid stands combined morphological patterns typical of S. ovatus with RAPD patterns typical of S. hercynicus, and vice versa. In general, introgression was symmetrical within stands, though one stand combined S. ovatus characters with the glandular hair typical for S. hercynicus, and two stands combined a S. hercynicus typical RAPD genotype with morphological characters shifted towards S. ovatus. Because pure stands of S. hercynicus occurred only on the summit plateau of Mt Brocken, and markers typical for S. ovatus were detectable in stands up to 1040 m a.s.l., future fusion or assimilation of the rare form, S. hercynicus, by the more widespread S. ovatus appears possible at Mt Brocken.  相似文献   

13.
In Europe, spruce grows in two main regions which meet in Poland, one to the north and east, the other to the south and west. The northeastern area ranges from the northern treeline extending from Norway to Siberia, to southern Sweden, north-eastern Poland and the southern Ural mountains. The southwestern spruce region reaches the mountainous areas of the Alps and the Balkans, the mountains and uplands of the Sudety Mountains, the Carpathians and neighbouring lowlands. Opinions about the distribution of Norway spruce have changed over the years, and its scarcity in the centre of Poland has been strongly debated. The favoured current theory is that Norway spruce once had a continuous distribution in Poland. It is assumed that the rare occurrence in the central Polish lowland is due to a combination of unfavourable soil conditions and previous management activity. The main aim of this work was to analyse climate–growth relationships of Norway spruce in eastern Poland and distinguish regions with similar increment patterns with regards to spruce range. Spruce growth in northern Polish sites is positively correlated with rainfall from May to July. Tree-ring widths in southern sites are more correlated with March temperature. Selected homogenous regions are the same as range types. Trees from the so-called “spruceless area” seem to have similar climate–growth relationships to trees from the southern region. This finding does not settle the question of the origin of the trees, but it does indicate that similar environmental conditions exist in these two areas and proves that the climate was not a limiting factor there.
Marcin KoprowskiEmail:
  相似文献   

14.
Questions: How to evaluate the mixture effect on basal area increment in two‐species forest stands? Is a mixed Norway spruce–silver fir stand more productive than pure adjacent stands of either species? How to develop generic modelling approaches to assess mixture effects in forest stands? Location: In addition to a case study on Norway spruce–silver fir stands in French mountain forests, the generic approach used goes beyond local applications. Methods: We took advantage of National Forest Inventory data to develop a unique stand basal‐area‐increment model for pure and mixed stands of Norway spruce and silver fir that responds to ecological site conditions. The database was made up of 284 pure Norway spruce stands, 196 pure silver fir stands, and 323 mixed stands of these species. Results: Pure silver fir basal area increment is strongly influenced by spring climatic conditions, whereas pure Norway spruce is more influenced by soil conditions. The mixture of these species has a positive effect on silver fir, which decreases as the proportion of fir increases. In contrast, the mixture has no noticeable effect on Norway spruce. Conclusion: We developed a stand basal‐area‐increment model evidencing an advantage of the mixture on silver fir basal area increment, but not on Norway spruce. The mathematical formulation of the model developed is generic and can be used in all two‐species mixture situations. It also makes it possible to compare different mixture situations with each other.  相似文献   

15.
We show the potential of a new method combining tree-ring analyses on stems and on coarse roots of individual trees in order to advance the understanding of growth dynamics in forest trees. To this end, we studied the root–shoot allometry of trees and its dependence on site conditions. Along a gradient in water supply in Southern Germany from dry to moist sites we selected 43 Norway spruce trees (Picea abies [L.] H. Karst.) aged 65–100 years. Increment cores were taken from stem and main roots revealing aboveground and belowground growth course over the last 34 years. Annual growth rates in roots and stems and their allometric relationships were applied as surrogate variables for tree resource allocation to aboveground and belowground organs. The mean sensitivities of both stem and root chronologies were found to be site-specific, and increased from the moist through the dry sites. No temporal offset between aboveground and belowground growth reactions to climate conditions was found in Norway spruce at any of the sites. These results suggest that the root–shoot allometry depends on the specific site conditions only at the driest site, following the optimal biomass partitioning theory (the more restricted the water supply, the more organic matter allocation into the belowground organs).  相似文献   

16.

Key message

In black spruce stands on permafrost, trees and understory plants showed higher biomass allocation especially to ‘thin’ fine roots (diam. < 0.5 mm) when growing on shallower permafrost table.

Abstract

Black spruce (Picea mariana) forests in interior Alaska are located on permafrost and show greater below-ground biomass allocation than non-permafrost forests. However, information on fine roots (roots <2 mm in diameter), which have a key role in nutrient uptake and below-ground carbon flux, is still limited especially for effects of different permafrost conditions. In this study, we examined fine root biomass in two black spruce stands with different depths to the permafrost table. In the shallow permafrost (SP) plot, fine root biomass of black spruce trees was 70 % of that in the deep permafrost (DP) plot. In contrast, ratio of the fine root biomass to above-ground biomass was greater in the SP plot than in the DP plot. Understory plants, on the other hand, showed larger fine root biomass in the SP plot than in the DP plot, whereas their above-ground biomass was similar between the two plots. In addition, biomass proportion of ‘thin’ fine roots (diam. <0.5 mm) in total fine roots was greater in the SP plot than in the DP plot. These results suggest that black spruce trees and understory plants could increase biomass allocation to fine roots for efficient below-ground resource acquisition from colder environments with shallower permafrost table. In the SP plot, fine roots of understory plants accounted for 30 % of the stand fine root biomass, suggesting that understory plants such as Ledum and Vaccinium spp. would have significant contribution to below-ground carbon dynamics in permafrost forests.
  相似文献   

17.
Root structure parameters, root biomass and allometric relationships between above- and belowground biomass were investigated in young Norway spruce (Picea abies [L.] Karst.) trees cultivated inside the glass domes with ambient (AC, 375 μmol(CO2) mol?1) and elevated (EC, A + 375 μmol(CO2) mol?1) atmospheric CO2 concentrations ([CO2]). After 8 years of fumigation, a mean EC tree in comparison with AC one exhibited about 37 % higher belowground biomass. The growth of primary root structure was unaffected by elevated [CO2]; however, the biomass of secondary roots growing on the primary root structure and the biomass of secondary roots growing in the zone between the soil surface and the first primary root ramification were significantly higher in EC comparing with AC treatment about 58 and 70 %, respectively. The finest root’s (diameter up to 1 mm) biomass as well as length and surface area of both primary and secondary root structures showed the highest difference between the treatments; advancing EC to AC by 43 % on average. Therefore, Norway spruce trees cultivated under well-watered and rather nitrogen-poor soil conditions responded to the air elevated [CO2] environment by the enhancement of the secondary root structure increment, by enlargement of root length and root absorbing area, and also by alternation of root to aboveground organ biomass proportion. Higher root to leaf and root to stem basal area ratios could be beneficial for Norway spruce trees to survive periods with limited soil water availability.  相似文献   

18.
Extensive investigations on the fine root status of declining and healthy spruce were conducted in several stands at higher elevations of the Bavarian Forest heavily affected by needle yellowing. In most of the root parameters recorded, yellowing trees had significantly lower values than neighbouring green trees. Tight correlations were found between decreasing fine root density and crown transparency, degree of yellowing (increasing) and needle Mg (Ca) contents (decreasing), respectively. Although growing on the same substrate, green trees showed much better Mg (Ca) nutrition than yellow trees, indicating that poor fine root status contributes to Mg (Ca) deficiency in yellowing spruce. Experiments with spruce seedlings growing in soil samples from yellowing stands proved that needle symptoms can easily be reproduced on the seedlings under controlled conditions (i.e. in the absence of adverse atmospheric factors). Furthermore, reduced fine root systems and severe root damage were observed on seedlings grown in soils from yellowing stands, but not on those in soils from green stands. Adding a layer of soil from a yellow stand to a soil from a green stand caused a decrease of root parameters. Needle as well as root symptoms in these experiments were largely ameliorated after soils had been heat (autoclaving, sterilisation) or fungicide treated. Plants from treated soils had significantly longer roots and more root tips. The results of our study indicate that Mg deficiency leading to severe needle yellowing in stands at higher elevations of the Bavarian Forest is at least partially mediated by fine root disorders. Also, strong evidence is presented that fine root damage on trees in the affected stands is caused by soilborne micro-organisms, most likely fungi. Their exact identity, however, still remains to be unravelled.  相似文献   

19.
The applicability of a heuristic model for estimating mean fine-root biomass of Norway spruce stands based on the coordinates and the diameters at breast height (diameter at a height of 1.3 m, dbh) of their trees was tested. The model was developed based on the following assumptions which were derived from the literature: (1) the maximum distance the roots of a tree can be found depends on the dimension of the tree and exceeds the edges of the crown; (2) fine-root biomass decreases with increasing distance from the tree trunk; (3) fine-root biomass increases with the dbh; (4) maximum fine-root biomass of a tree is not allocated directly around the trees trunk but at some distance from the stem. On the basis of these assumptions the model calculates a relative fine-root biomass at a given point within a stand. Four different versions of the model were compared, with each version differing with respect to the assumed decrease in fine roots with decreasing dbh and the approaches used to calculate the contribution of a subject tree to the fine-root biomass at a given point within a stand (additive versus consumptive). Using regression analysis we parameterised each model type with the data of 70 soil cores from a 75-year-old Norway spruce stand in southern Germany (Bavaria). The relative fine-root biomass calculated by the four different model types accounted for 62–72% of the variation of the measured fine-root biomass. The parameterised models were used to predict the fine-root biomass of 60 given points of a second Norway spruce stand based on its dbhs and stem coordinates. The comparison of measured and predicted mean fine-root biomasses of the second stand revealed no significant differences between the measured mean and the means estimated by three of the four model types. Whereas with two of the model types we achieved means and medians, respectively, nearly identical to the measured average, none of the model types was able to predict values as high as the measured maximum. Constraints of the models and points that need to be considered regarding the minimum number of soil cores needed for a reliable parameterisation of the model are discussed.  相似文献   

20.
海拔变化是多环境因子的梯度效应,细根作为植物吸收水分与养分的重要器官,其性状特征在指示植物的生长和分布等方面意义重大.该研究以弓杠岭2500~3300 m海拔地的云杉(Picea asperata)细根为研究对象,采用根序分级法对云杉1~5级根序的生物量及细根形态(平均直径、比根长、根长密度、比表面积)进行测定,以明确...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号