首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of extrafloral nectaries (EFNs) in Meliaceae has been reported for some genera, but little anatomical data are available. Therefore, to determine the distribution and structural aspects of EFNs, Cedrela fissilis Vell. leaves in different stages of development were collected, fixed, and processed for light and scanning electron microscopy. On the petiole, rachis and petiolule, EFNs were found to be arranged predominantly towards the abaxial surface, while their occurrence in leaflet blades was restricted to the abaxial surface of the major veins, noticeably on the midrib. Basal leaflets displayed few EFNs; however, we observed an increase towards the leaf's apex. The leaf can contain more than 300 inconspicuous EFNs, which show secretory activity throughout the leaf's life. Two EFN morphotypes were visible: flattened or elevated, both circular or slightly elliptical and similar in origin and tissue composition. The secretory tissue is embedded in the rachis cortex or in the major veins of the leaf blade and EFNs are not vascularized. The EFN secretory pole shows a uniseriate epidermis with compactly arranged cells and a thin cuticle; stomata and trichomes are absent. The observation of ant visits at these structures reinforces the assumption that EFNs mediate ant–plant interactions and play a protective role against herbivores throughout the life of a leaf.  相似文献   

2.
Premise of the study: While mahogany (Swietenia macrophylla) is one of the most important forest species in the Amazon region, little is known about its reproductive biology. Knowledge about the nectary structure and dynamics of nectar production of this species represent a key step toward understanding its relationship with pollinators. • Methods: Mahogany tree floral buds and flowers in anthesis were collected, fixed, and processed for study by light and transmission and scanning electron microscopy. The chemical composition of nectar and the nectary pigments was also studied. • Key results: Both staminate and pistillate flowers have nectaries, which contain a papillose epidermis and stomata. The nectariferous tissue is parenchymatous, with the cell cytoplasm primarily containing mitochondria and plastids. Secretory activity initiates at the beginning of anthesis, which occurs at nightfall. Flowers undergoing anthesis become structurally modified, with starch grains in the plastids disappearing. The number of plastoglobuli in the plastids also increases when nectaries change color from pale yellow to intense red. Pistillate and staminate flowers produce meager nectar rewards. • Conclusions: Changes in plastoglobuli number seem to be related to an increase in carotenes and color changes during anthesis. Carotenes can be linked to the protection of the plant against oxidative stress, which results from secretory activities. Nectary color has a limited role as a pollinator attractant. Floral rewards comprise small nectar droplets in both flower types, in addition to a few pollen grains in staminate flowers. These meager rewards are probably adapted to attract small generalist insects.  相似文献   

3.
Nectaries in leaves of Gentianaceae have been poorly studied. The present study aims to describe the distribution, anatomy, and ecological aspects of extrafloral nectaries (EFNs) of three Calolisianthus species and in particular the ultrastructure of EFNs in Calolisianthus speciosus during leaf development, discussing its unusual structure. Leaves of Calolisianthus species were fixed and processed by the usual methods for studies using light, scanning microscopy and transmission electron microscopy (TEM). Ion chromatography was used to analyze the nectar exudates of C. speciosus. The distribution patterns of nectar secretion units were analysed by ANOVA and t-tests. Two EFNs that can be seen macroscopically were observed at the bases of C. speciosus and C. pendulus leaves. Such large nectaries are absent there in C. amplissimus. Another similarly large EFN is observed at the apex of each leaf in all species. The EFNs at the base of the young leaves in C. speciosus are visited by ants during the rainy season. EFNs are formed by several nectar secretory units (nectarioles) that are present throughout the leaves. Each nectariole is formed by rosette cells with a central channel from which the nectar is released. Channels of old C. speciosus and C. pendulus EFNs were obstructed by fungi. TEM of EFNs in young leaves showed cytoplasms with secretion, small vacuoles, mitochondria, cell wall ingrowth, and plasmodesmata. TEM of EFNs in old leaves demonstrated dictyosomes, plastids, mitochondria, segments of endoplasmatic reticulum, and lipid droplets. The nectar contains sucrose, glucose and fructose.  相似文献   

4.
Floral and extrafloral nectaries in plants favor pollination and defense against herbivory. Despite their wide distribution in plants and differences in position, structure, and topography, their biological and systematic significance has been underutilized. This study investigated the macro- and micromorphology of floral and extrafloral nectaries in the epiphytic cactus Rhipsalis teres and reports unusual bristle-like structures (bracteoles) functioning as extrafloral nectaries in the cactus family. The floral nectary is disc-shaped embedded in the hypanthial floral cup with anomocytic stomata as secreting structures present on the epidermal nectarial tissue. Small multicellular bristle-like extrafloral nectar-secreting structures, homologues to bracts, were observed on the plants’ stems and function as bracteolar nectaries having a relatively long and continuous secretory activity throughout several stages of the reproductive structures. Both the floral and bracteolar nectaries are functional. It is possible that in the latter nectar discharge occurs though epidermal cells, which build up pressure inside as nectar accumulates, thereby ending with rupture of the cuticle to release the liquid. The nectar in both secreting structures is scentless and colorless, and the concentration from floral nectaries is slightly lower than that of the bracteolar nectaries, 70.6% and 76.4%, respectively. The relatively higher concentration in the latter might be correlated with exposure, relative humidity and water evaporation, leading to crystallization of sugars on the stem surface in a short period of time.  相似文献   

5.
BACKGROUND AND AIMS: Considering that few studies on nectary anatomy and ultrastructure are available for chiropterophilous flowers and the importance of Hymenaea stigonocarpa in natural 'cerrado' communities, the present study sought to analyse the structure and cellular modifications that take place within its nectaries during the different stages of floral development, with special emphasis on plastid dynamics. METHODS: For the structural and ultrastructural studies the nectary was processed as per usual techniques and studied under light, scanning and transmission electron microscopy. Histochemical tests were employed to identify the main metabolites on nectary tissue and secretion samples. KEY RESULTS: The floral nectary consists of the inner epidermis of the hypanthium and vascularized parenchyma. Some evidence indicates that the nectar release occurs via the stomata. The high populations of mitochondria, and their juxtaposition with amyloplasts, seem to be related to energy needs for starch hydrolysis. Among the alterations observed during the secretory phase, the reduction in the plastid stromatic density and starch grain size are highlighted. When the secretory stage begins, the plastid envelope disappears and a new membrane is formed, enclosing this region and giving rise to new vacuoles. After the secretory stage, cellular structures named 'extrastomatic bodies' were observed and seem to be related to the nectar resorption. CONCLUSIONS: Starch hydrolysis contributes to nectar formation, in addition to the photosynthates derived directly from the phloem. In these nectaries, the secretion is an energy-requiring process. During the secretion stage, some plastids show starch grain hydrolysis and membrane rupture, and it was observed that the region previously occupied by this organelle continued to be reasonably well defined, and gave rise to new vacuoles. The extrastomatic bodies appear to be related to the resorption of uncollected nectar.  相似文献   

6.
The flowers of Boswellia sacra Flueck. (Burseraceae) present a showy nectariferous ring which changes color from yellow to brilliant red in a few days. In this paper, the structure and development of this peculiar nectary were studied using light microscopy as well as scanning and transmission electron microscopy. The nectary presents a double way of secretion, since it releases nectar through both glandular trichomes and nectarostomata. A direct vascular supply is lacking; however, a large quantity of starch was stored in glandular parenchyma cells at the early secretory stage, while it disappeared at the senescent stage. The nectary, besides showing the typical secretory parenchyma cells, is characterized by the occurrence of highly osmiophilic cell rows. Experimental evidence shows that these cells are involved in nectarostoma secretion. The different secreting structures are described and their role is discussed.  相似文献   

7.
Floral nectary structure and nectar sugar composition were investigated in relation to other floral traits and flower visitors in contrasting species of Nyctaginaceae from southern South America, representing four tribes (Bougainvilleeae, Colignonieae, Nyctagineae, Pisoneae). Our comparative data will aid in the understanding of plant–pollinator interactions and in the development of hypotheses on the origin of floral and reproductive characters in this family. The nectaries are located on the inner side of the staminal tube. The nectariferous tissue is composed of an epidermis and three to ten layers of secretory parenchymal cells, supplied indirectly by the filament vascular bundles. Stomata appear to be associated with nectar secretion. For the first time in Nyctaginaceae, nectary ultrastructure is described in Boerhavia diffusa var. leiocarpa. Nectary parenchyma cells are densely cytoplasmic and contain numerous starch grains. Plasmodesmata connect the nectariferous cells. Flowers of Nyctaginaceae secrete a small volume of nectar of variable concentration (10–47%). Nectar is dominated by hexoses, but Mirabilis jalapa showed a balanced proportion of sucrose and hexoses. Hymenoptera are the most common visitors for most species; nocturnal Lepidoptera are the most common visitors for M. jalapa and Bougainvillea stipitata. We found relatively low variation in the nectary characteristics of Nyctaginaceae compared with broad variation in flower structure, shape, colour and nectar traits. © 2013 The Linnean Society of London  相似文献   

8.
In this paper the ontogenesis and histochemistry of the petiolar glands found on the petiole/rachis of the eight Chamaecrista species of the section Absus, subsection Baseophyllum (Leguminosae, Caesalpinioideae) are studied by using light microscopy techniques, aiming to characterise these structures and to provide taxonomic characters which may be useful in phylogenetic approaches. Strips for glucose identification reacted positively with the exudates of the glands, confirming the presence of nectar in the secretion, characterising these glands as extrafloral nectaries (EFN). Histochemical tests also detected the presence of neutral and acid muco-polysaccharides, pectins, mucilages, total proteins, and phenolic compounds in the EFNs. The EFNs arise from a group of meristem cells (protodermis, ground meristem and procambium) in the petiole/rachis. All EFNs of the investigated taxa share some morpho-anatomical characters, so that their peculiarities are too weak to be used alone in the identification of particular species. Rather their similarities may be used to include these species into a single group, supporting the hypothesis of monophyly of the subsection Baseophyllum.  相似文献   

9.
10.
Among several native species of the Brazilian cerrado, a shrub, Tontelea micrantha, is exploited by traditional communities for the valuable oil extracted from its seeds, which has anti‐inflammatory properties. There have been no studies on the anatomy of its flower, and so the aim of this study is to describe the anatomy and ultrastructure of its floral nectary. Flower buds and flowers in anthesis were collected, fixed and processed for light and electron microscopy. The discoid floral nectary is composed of epidermis and a secretory parenchyma. Secretory cells are rich in plastids with starch grains and mitochondria. The nectar, sucrose dominant, is just sufficient to form a thin film on the nectary. The secretory cells show starch and oil droplets; however, during nectar production there is no evidence of hydrolysis of starch and some lipid reserves remain unchanged. Our results suggest a reduction in the amount of oil in the secretory cells during the secretory phase but this does not appear to imply a release of oil as a nectar component. In addition to maintaining part of the reserves, the lower frequency of organelles involved in nectar synthesis reinforces the hypothesis that phloem sap is the origin of nectar sugars. The tiny nectar film, released through modified stomata, is attractive to small insects such as flies. Considering the importance and intensity of use of T. micrantha in the Brazilian cerrado, we think that these data about its floral nectary can help to better explain its reproductive biology with positive impacts on its management and conservation.  相似文献   

11.
Leaf glands of Diplopterys pubipetala were studied with light and electron microscopy. Aspects of their secretion, visitors and phenology were also recorded. Glands occur along the margin, at the apex and at the base of the leaf blade. All the glands begin secretion when the leaf is still very young, and secretion continues during leaf expansion. The highest proportion of young leaves coincides with the beginning of flowering. The glucose‐rich secretion is collected by Camponotus ants, which patrol the newly formed vegetative and reproductive branches. All the glands are sessile, partially set into the mesophyll, and present uniseriate epidermis subtended by nonvascularised parenchyma. The glands at the apex and base are larger and also consist of vascularised subjacent parenchyma. The cytoplasm of epidermal and parenchyma cells has abundant mitochondria, polymorphic plastids filled with oil droplets and a few starch grains. Golgi bodies and endoplasmic reticulum are more abundant in the epidermal cells. The parenchyma cells of the subjacent region contain chloroplasts and large vacuoles. Plasmodesmata connect all the nectary cells. The zinc iodide–osmium tetroxide (ZIO) method revealed differences in the population of organelles between epidermal cells, as well as between epidermal cells and parenchyma cells. Ultrastructural results indicate that leaf glands of Dpubipetala can be classified as mixed secretory glands. However, the secretion released by these glands is basically hydrophilic and composed primarily of sugars, hence these glands function as nectaries.  相似文献   

12.
13.
The stem of Cabralea canjerana (Vell.) Mart. yielded three new dammarane triterpenes 20S,24S-epoxy-7β,25-dihydroxy-3,4-secodammar-4(28)-en-3-oic acid, 20S,24S-epoxy-7β,15α,25-trihydroxy-3,4-secodammar-4(28)-en-3-oic acid and 20S,24R-epoxy-7β,22ξ,25-trihydroxy-3,4-secodammar-4(28)-en-3-oic acid, which were identified on the basis of spectroscopic methods. The known dammarane triterpenes ocotillone, eichlerianic acid, shoreic acid and the sterols sitosterol, campesterol, stigmasterol, sitostenone and stigmast-5-en-3-one were also isolated and identified. The branches yielded the above three known dammaranes and eichlerialactone. The dammaranes in C. canjerana display strong similarities with Trichilieae tribe, which contains several dammaranes. The data reported herein thus provide firm support for placing Cabralea within the subfamily Melioideae, Trichilieae tribe.  相似文献   

14.
Extrafloral nectaries (EFNs) are involved in animal–plant interactions that lead to protection against herbivory. The presence of EFNs in Araceae is rare, besides Philodendron, there is report for only two other genera. With the aim to investigate the occurrence of EFNs in Philodendron and to describe the distribution patterns and structural organization of these glands, 75 Philodendron spp. were examined, 16 of which were selected for study by light microscopy. Three Homalomena spp. were also examined for EFNs, but these were not found. Philodendron martianum was employed as a model for additional study using scanning and transmission electron microscopy. The studied EFNs showed a high degree of structural similarity. They were present in the prophyll, leaf and spathe, becoming functional in young organs. In surface view, EFNs consisted of small areas and showed one or more stomata through which secretions were released. The secretory cells formed a globular region surrounded by ground parenchyma. In P. martianum, nectariferous parenchyma cells exhibited typical features of cells with high metabolism related to nectar secretion. These results allow us to infer that EFNs have a widespread occurrence in Philodendron, and they remain an exclusive character for this group. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 229–240.  相似文献   

15.
The colleter secretion can be useful to protect plants of Cerrado (Brazilian savanna) biome during the long and pronounced dry season. This study describes the presence of colleters in Tontelea micrantha and represents the first record of these structures in Celastraceae. To investigate colleter structure and their secretory processes, young leaves were collected, fixed, and processed according to conventional techniques for light, and electron microscopy. Colleters were observed at the marginal teeth on the leaf. They produce mucilaginous secretions that spread over the leaf surface. After secretory phase, colleters abscise. The secretory epithelium is uniseriate and composed of elongated cells whose dense cytoplasm is rich in organelles. The ultrastructure of the secretory cells is compatible with the pectin-rich secretion. Observations of the young leaves surface revealed the presence of superficial hydrophilic secretion films that appeared to have the function of maintaining the water status of those organs.  相似文献   

16.
Five khayanolides (1-O-acetylkhayanolide B 1, khayanolide B 2, khayanolide E 3, 1-O-deacetylkhayanolide E 4, 6-dehydroxylkhayanolide E 5) were isolated from the stem bark of African mahogany Khaya senegalensis (Meliaceae). Their structures and absolute configurations were determined through extensive spectroscopic analyses including MS, NMR, and single-crystal X-ray diffraction experiments. The results established that two previously reported khayanolides, 1α-acetoxy-2β,3α,6,8α,14β-pentahydroxy-[4.2.110,30.11,4]-tricyclomeliac-7-oate 6 and 1α,2β,3α,6,8α,14β-hexahydroxy-[4.2.110,30.11,4]-tricyclomeliac-7-oate 7, were, in fact, 1-O-acetylkhayanolide B 1 and khayanolide B 2, and that the two reported phragmalin derivatives, methyl 1α-acetoxy-6,8α,14β,30β-tetrahydroxy-3-oxo-[3.3.110,2.11,4]-tricyclomeliac-7-oate 8 and methyl 1α,6,8α,14β,30β-pentahydroxy-3-oxo-[3.3.110,2.11,4]-tricyclomeliac-7-oate 9, were, in fact, khayanolide E 3 and 1-O-deacetylkhayanolide E 4, respectively. Based on the results from this study and consideration of the biogenetic pathway, the methyl 6-hydroxyangolensate in African mahogany K. senegalensis should have a C-6 S configuration while methyl 6-hydroxyangolensate in genuine mahogany Swietenia species should have a C-6 R configuration.  相似文献   

17.
A long-standing interest in cactus taxonomy has existed since the Linnaean generation, but an appreciation of the reproductive biology of cacti started early in the 1900s. Numerous studies indicate that plant reproductive traits provide valuable systematic information. Despite the extensive reproductive versatility and specializations in breeding systems coupled with the striking floral shapes, the reproductive biology of the Cactaceae has been investigated in approximately 10% of its species. Hence, the systematic value of architectural design and organization of internal floral parts has remained virtually unexplored in the family. This study represents the most extensive survey of flower and nectary morphology in the Cactaceae focusing on tribes Hylocereeae and Rhipsalideae (subfamily Cactoideae). Our objectives were (1) to conduct comparative morphological analyses of flowers and floral nectaries and (2) to compare nectar solute concentration in these two tribes consisting of holo- and semi-epiphytic species. Flower morphology, nectary types, and sugar concentration of nectar have strong taxonomic implications at the tribal, generic and specific levels. Foremost, three types of nectaries were found, namely chamber nectary (with the open and diffuse subtypes), furrow nectary (including the holder nectary subtype), and annular nectary. All Hylocereeae species possess chamber nectaries, in which the nectarial tissue has both trichomes and stomata. The Rhipsalideae are distinguished by two kinds of floral nectaries: furrow and annular, both nectary types with stomata only. The annular nectary type characterizes the genus Rhipsalis. Nectar concentration is another significant taxonomic indicator separating the Hylocereeae and Rhipsalideae and establishing trends linked to nectar sugar concentration and amount of nectar production in relation to flower size. There is an inverse relationship between flower size and amount of nectar production in the smaller Rhipsalideae flowers, in which nectar concentration is more than two-fold higher despite the smaller volume of nectar produced when compared to the large Hylocereeae flowers. Variability of nectary morphology and nectar concentration was also evaluated as potential synapomorphic characters in recent phylogenies of these tribes. In conclusion, our data provide strong evidence of the systematic value of floral nectaries and nectar sugar concentration in the Cactaceae, particularly at different taxonomic levels in the Hylocereeae and Rhipsalideae.  相似文献   

18.
Nectaries occur widely in Convolvulaceae. These structures remain little studied despite their possible importance in plant–animal interactions. In this paper, we sought to describe the structure and ultrastructure of the receptacular nectaries (RNs) of Ipomoea cairica, together with the dynamics of nectar secretion. Samples of floral buds, flowers at anthesis and immature fruits were collected, fixed and processed using routine methods for light, scanning and transmission electron microscopy. Circadian starch dynamics were determined through starch measurements on nectary sections. The secretion samples were subjected to thin layer chromatography. RNs of I. cairica were cryptic, having patches of nectar‐secreting trichomes, subglandular parenchyma cells and thick‐walled cells delimiting the nectary aperture. The glandular trichomes were peltate type and had typical ultrastructural features related to nectar secretion. The nectar is composed of sucrose, fructose and glucose. Nectar secretion was observed in young floral buds and continued as the flower developed, lasting until the fruit matured. The starch content of the subglandular tissue showed circadian variation, increasing during the day and decreasing at night. The plastids were distinct in different portions of the nectary. The continuous day–night secretory pattern of the RNs of I. cairica is associated with pre‐nectar source circadian changes in which the starch acts as a buffer, ensuring uninterrupted nectar secretion. This circadian variation may be present in other extrafloral nectaries and be responsible for full daytime secretion. We conclude that sampling time is relevant in ultrastructural studies of dynamic extranuptial nectaries that undergo various changes throughout the day.  相似文献   

19.
20.
荇菜成熟花蜜腺的形态及其泌蜜过程的超微结构研究   总被引:3,自引:2,他引:1  
荇菜花蜜腺共五枚,黄色,肾形,着生子房基部。它们由分泌表皮和泌蜜组织组成,属结构蜜腺。成熟蜜腺的分泌表皮具明显的角质层和气孔,还具少量短期生活的分泌毛,分泌毛不具明显的角质层。泌蜜组织具较小的胞间隙,胞间连丝发达。成熟蜜腺细胞中不人有丰富的线粒体,内质网,还有大量的质体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号