首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co-production of two or more desirable compounds from low-cost substrates by a single microbial catalyst could greatly improve the economic competitiveness of many biotechnological processes. However, reports demonstrating the adoption of such co-production strategy are still scarce. In this study, the ability of genome-edited strain Pseudomonas putida EM42 to simultaneously valorize d -xylose and d -cellobiose – two important lignocellulosic carbohydrates – by converting them into the platform chemical d -xylonate and medium-chain-length polyhydroxyalkanoates, respectively, was investigated. Biotransformation experiments performed with P. putida resting cells showed that promiscuous periplasmic glucose oxidation route can efficiently generate extracellular xylonate with a high yield. Xylose oxidation was subsequently coupled to the growth of P. putida with cytoplasmic β-glucosidase BglC from Thermobifida fusca on d -cellobiose. This disaccharide turned out to be a better co-substrate for xylose-to-xylonate biotransformation than monomeric glucose. This was because unlike glucose, cellobiose did not block oxidation of the pentose by periplasmic glucose dehydrogenase Gcd, but, similarly to glucose, it was a suitable substrate for polyhydroxyalkanoate formation in P. putida. Co-production of extracellular xylose-born xylonate and intracellular cellobiose-born medium-chain-length polyhydroxyalkanoates was established in proof-of-concept experiments with P. putida grown on the disaccharide. This study highlights the potential of P. putida EM42 as a microbial platform for the production of xylonate, identifies cellobiose as a new substrate for mcl-PHA production, and proposes a fresh strategy for the simultaneous valorization of xylose and cellobiose.  相似文献   

2.
World Journal of Microbiology and Biotechnology - The present work aims to identify the microbial diversity associated with six Indian Drosophila species using next generation sequencing (NGS)...  相似文献   

3.
d-Xylonate was produced from d-xylose using Kluyveromyces lactis strains which expressed the gene for NADP(+)-dependent d-xylose dehydrogenase from Trichoderma reesei (xyd1). Up to 19 ± 2g d-xylonatel(-1) was produced when K. lactis expressing xyd1 was grown on 10.5 gd-galactosel(-1) and 40 g d-xylosel(-1). Intracellular accumulation of d-xylonate (up to ~70 mg [gbiomass](-1)) was observed. d-Xylose was metabolised to d-xylonate, xylitol and biomass. Oxygen could be reduced to 6mmolO(2)l(-1)h(-1) without loss in titre or production rate, but metabolism of d-xylose and xylitol were more efficient when 12 mmolO(2)l(-1)h(-1) were provided. d-Xylose uptake was not affected by deletion of either the d-xylose reductase (XYL1) or a putative xylitol dehydrogenase encoding gene (XYL2) in xyd1 expressing strains. K. lactis xyd1ΔXYL1 did not produce extracellular xylitol and produced more d-xylonate than the xyd1 strain containing the endogenous XYL1. K. lactis xyd1ΔXYL2 produced high concentrations of xylitol and significantly less d-xylonate than the xyd1 strain with the endogenous XYL2.  相似文献   

4.
Microbial production of dihydroxyacetone   总被引:3,自引:0,他引:3  
Dihydroxyacetone is extensively used in cosmetic industry as an artificial suntan besides having clinical and biological applications. Thus, it is important to meet the commercial demand of dihydroxyacetone at an economical and qualitative level. Microbial route of production is found to be more favorable for dihydroxyacetone as compared to chemical methods. This review gives detailed information about the microbial route of dihydroxyacetone production. Till date the microorganism which is most utilized for dihydroxyacetone production is Gluconobacter oxydans. Some limitations associated with dihydroxyacetone production by G. oxydans like substrate inhibition, product inhibition and oxygen limitation are discussed here. Various fermentation modes and culture conditions have been tried for their ability to overcome these limitations. It has been found that fed-batch mode of fermentation provides a better yield as compared to batch mode for dihydroxyacetone production. Two-stage repeated fed-batch mode of fermentation has been found to be the most optimized mode. Immobilization has also been recognized as a much better alternative for fermentation since it avoids the problem of substrate and product inhibition to a greater extent. Although these methods have increased the dihydroxyacetone production to a prominent level yet the production has not reached the level required to meet the commercial demand. One looks for future prospects of developing recombinant microbial method for dihydoxyacetone production.  相似文献   

5.
Microbial hyaluronic acid production   总被引:18,自引:0,他引:18  
Hyaluronic acid (HA) is a commercially valuable medical biopolymer increasingly produced through microbial fermentation. Viscosity limits product yield and the focus of research and development has been on improving the key quality parameters, purity and molecular weight. Traditional strain and process optimisation has yielded significant improvements, but appears to have reached a limit. Metabolic engineering is providing new opportunities and HA produced in a heterologous host is about to enter the market. In order to realise the full potential of metabolic engineering, however, greater understanding of the mechanisms underlying chain termination is required.  相似文献   

6.
  1. Download : Download high-res image (163KB)
  2. Download : Download full-size image
  相似文献   

7.
Due to our increasing concerns on environmental problems and limited fossil resources, biobased production of chemicals and materials through biorefinery has been attracting much attention. Optimization of the metabolic performance of microorganisms, the key biocatalysts for the efficient production of the desired target bioproducts, has been achieved by metabolic engineering. Metabolic engineering allowed more efficient production of polyhydroxyalkanoates, a family of microbial polyesters. More recently, non-natural polyesters containing lactate as a monomer have also been produced by one-step fermentation of engineered bacteria. Systems metabolic engineering integrating traditional metabolic engineering with systems biology, synthetic biology, protein/enzyme engineering through directed evolution and structural design, and evolutionary engineering, enabled microorganisms to efficiently produce natural and non-natural products. Here, we review the strategies for the metabolic engineering of microorganisms for the in vivo biosynthesis of lactate-containing polyesters and for the optimization of whole cell metabolism to efficiently produce lactate-containing polyesters. Also, major problems to be solved to further enhance the production of lactate-containing polyesters are discussed.  相似文献   

8.
9.
Microbial production of sensory-active miraculin   总被引:3,自引:0,他引:3  
Miraculin (MCL), a tropical fruit protein, is unique in that it has taste-modifying activity to convert sourness to sweetness, though flat in taste at neutral pH. To obtain a sufficient amount of MCL to examine the mechanism involved in this sensory event at the molecular level, we transformed Aspergillus oryzae by introducing the MCL gene. Transformants were expressed and secreted a sensory-active form of MCL yielding 2 mg/L. Recombinant MCL resembled native MCL in the secondary structure and the taste-modifying activity to generate sweetness at acidic pH. Since the observed pH-sweetness relation seemed to reflect the imidazole titration curve, suggesting that histidine residues might be involved in the taste-modifying activity. H30A and H30,60A mutants were generated using the A. oryzae-mediated expression system. Both mutants found to have lost the taste-modifying activity. The result suggests that the histidine-30 residue is important for the taste-modifying activity of MCL.  相似文献   

10.
The enzyme O-acetylserine sulphydrylase (EC 4.2.99.8) which occurs in the cells of Bacillus sphaericus l-118 can catalyse a β-replacement reaction of 3-chloro-L-alanine in the presence of a high concentration of sodium hydrosulphide to form L-cysteine. By using resting cells, the reaction conditions for L-cysteine production were optimized. Under optimal conditions, 80–85% of the added 3-chloro-L-alanine could be converted to L-cysteine and the highest yield, 70 mg L-cysteine per 1.0 ml reaction mixture, could be achieved.  相似文献   

11.
Microbial production of 1,3-propanediol   总被引:77,自引:2,他引:77  
1,3-Propanediol (1,3-PD) production by fermentation of glycerol was described in 1881 but little attention was paid to this microbial route for over a century. Glycerol conversion to 1,3-PD can be carried out by Clostridia as well as Enterobacteriaceae. The main intermediate of the oxidative pathway is pyruvate, the further utilization of which produces CO2, H2, acetate, butyrate, ethanol, butanol and 2,3-butanediol. In addition, lactate and succinate are generated. The yield of 1,3-PD per glycerol is determined by the availability of NADH2, which is mainly affected by the product distribution (of the oxidative pathway) and depends first of all on the microorganism used but also on the process conditions (type of fermentation, substrate excess, various inhibitions). In the past decade, research to produce 1,3-PD microbially was considerably expanded as the diol can be used for various polycondensates. In particular, polyesters with useful properties can be manufactured. A prerequisite for making a “green” polyester is a more cost-effective production of 1,3-PD, which, in practical terms, can only be achieved by using an alternative substrate, such as glucose instead of glycerol. Therefore, great efforts are now being made to combine the pathway from glucose to glycerol successfully with the bacterial route from glycerol to 1,3-PD. Thus, 1,3-PD may become the first bulk chemical produced by a genetically engineered microorganism. Received: 12 January 1999 / Received revision: 9 March 1999 / Accepted: 14 March 1999  相似文献   

12.
Fatty alcohols have numerous commercial applications, including their use as lubricants, surfactants, solvents, emulsifiers, plasticizers, emollients, thickeners, and even fuels. Fatty alcohols are currently produced by catalytic hydrogenation of fatty acids from plant oils or animal fats. Microbial production of fatty alcohols may be a more direct and environmentally-friendly strategy since production is carried out by heterologous enzymes, called fatty acyl-CoA reductases, able to reduce different acyl-CoA molecules to their corresponding primary alcohols. Successful examples of metabolic engineering have been reported in Saccharomyces cerevisiae and Escherichia coli in which the production of fatty alcohols ranged from 1.2 to 1.9 g/L, respectively. Due to their metabolic advantages, oleaginous yeasts are considered the best hosts for production of fatty acid-derived chemicals. Some of these species can naturally produce, under specific growth conditions, lipids at high titers (>50 g/L) and therefore provide large amounts of fatty acyl-CoAs or fatty acids as precursors. Very recently, taking advantage of such features, over 8 g/L of C16–C18 fatty alcohols have been produced in Rhodosporidium toruloides. In this review we summarize the different metabolic engineering strategies, hosts and cultivation conditions used to date. We also point out some future trends and challenges for the microbial production of fatty alcohols.  相似文献   

13.
14.
Microbial production of vitamin B12   总被引:12,自引:0,他引:12  
One of the most alluring and fascinating molecules in the world of science and medicine is vitamin B12 (cobalamin), which was originally discovered as the anti pernicious anemia factor and whose enigmatic complex structure is matched only by the beguiling chemistry that it mediates. The biosynthesis of this essential nutrient is intricate, involved and, remarkably, confined to certain members of the prokaryotic world, seemingly never have to have made the eukaryotic transition. In humans, the vitamin is required in trace amounts (approximately 1 microg/day) to assist the actions of only two enzymes, methionine synthase and (R)-methylmalonyl-CoA mutase; yet commercially more than 10 t of B12 are produced each year from a number of bacterial species. The rich scientific history of vitamin B12 research, its biological functions and the pathways employed by bacteria for its de novo synthesis are described. Current strategies for the improvement of vitamin B12 production using modern biotechnological techniques are outlined.  相似文献   

15.
Food safety and shelf-life are both important microbial concerns in relation to broiler meat production. Focus is mainly placed on the absence or control of potentially pathogenic microbes such as Salmonella spp. and Campylobacter spp. but, from the commercial point of view, other spoilage bacteria also play a role as potential threats. Regarding food safety, the primary target should be the production of pathogen-free live animals, thus allowing slaughter plants to keep the processing line free of those microorganisms.Consumers believe that quality of foods from organic production is superior to foods from conventional production. The aim of the present study was to evaluate and compare the bacterial quality of chicken meat from organic and conventional production on the basis of traditional meat quality criteria. Fresh free grazing broiler carcasses were purchased directly from rural households (n = 80) and fresh retail chicken parts from conventional broiler carcasses from the local supermarkets in the region of Epirus (Poultry Producers Association. Arta) (n = 200).The samples were microbiologically tested for the presence of bacteria such as: Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, Enterobacteriaceae, Escherichia coli, Campylobacter spp., and C. perfringens. Total count of aerobic mesophilic bacteria was also determined. Bacteriological tests were performed by means of standard methods of isolation and identification of individual species of bacteria according to ISO requirements. API-tests (bioMerieux) and Vitek 2 Identification System (bioMerieux) were used for biochemical determination. High levels of microbial contamination and occurrence of pathogenic bacteria at then fresh free grazing broiler carcasses reflect the poor hygienic quality of the slaughter conditions in the rural households.  相似文献   

16.
Raspberry ketone is an important compound for the flavour industry. It is frequently used in products such as soft drinks, sweets, puddings and ice creams. The compound can be produced by organic synthesis. Demand for "natural" raspberry ketone is growing considerably. However, this product is extremely expensive. Consequently, there is a remaining desire to better understand how raspberry ketone is synthesized in vivo, and which genes and enzymes are involved. With this information we will then be in a better position to design alternative production strategies such as microbial fermentation. This article focuses on the identification and application of genes potentially linked to raspberry ketone synthesis. We have isolated candidate genes from both raspberry and other plants, and these have been introduced into bacterial and yeast expression systems. Conditions have been determined that result in significant levels of raspberry ketone, up to 5 mg/L. These results therefore lay a strong foundation for a potentially renewable source of "natural" flavour compounds making use of plant genes.  相似文献   

17.
l-Carnitine (vitamin BT) plays a vital role in the transportation of long-chain fatty acids into mitochondrial matrix in mammals. l-Carnitine has a wide range of applications in pharmaceuticals, food products, and feed additives. Due to the increasing demand for l-carnitine in food and pharmaceutical applications, production of this compound has become prominent. However, very little has been reported on the production of l-carnitine. This review discusses the microbial and the enzymatic production of l-carnitine from different starting materials (substrates).  相似文献   

18.
Odd-chain fatty acids (OcFAs) and their derivatives have attracted much attention due to their beneficial physiological effects and their potential to be alternatives to advanced fuels. However, cells naturally produce even-chain fatty acids (EcFAs) with negligible OcFAs. In the process of biosynthesis of fatty acids (FAs), the acetyl-CoA serves as the starter unit for EcFAs, and propionyl-CoA works as the starter unit for OcFAs. The lack of sufficient propionyl-CoA, the precursor, is usually regarded as the main restriction for large-scale bioproduction of OcFAs. In recent years, synthetic biology strategies have been used to modify several microorganisms to produce more propionyl-CoA that would enable an efficient biosynthesis of OcFAs. This review discusses several reported and potential metabolic pathways for propionyl-CoA biosynthesis, followed by advances in engineering several cell factories for OcFAs production. Finally, trends and challenges of synthetic biology driven OcFAs production are discussed.  相似文献   

19.
A purified microbial isolate, identified as a strain of Rhodococcus sp., metabolized indene primarily to iso quinoline and lesser amounts of indandiol and indanone. Isoquinoline production was dependent on the presence of microbial culture, indene, and ammonium ions as the source of nitrogen in the molecule. The ability to produce isoquinoline was induced by growth on benzene or naphthalene and by the presence of indene itself. The culture produced compounds tentatively identified as 3-methylisoquinoline and 3-ethylisoquinoline from 2-methylindene and from 2-ethylindene, respectively. Deuterated indene was converted to deuterated isoquinoline, deuterated indanone, and deuterated indandiol. Experiments with [15N]ammonium nitrate and ammonium [15N]nitrate confirmed ammonium as the source of nitrogen in the isoquinoline products.  相似文献   

20.
Microbial biomass production on solid hydrocarbons   总被引:1,自引:0,他引:1  
Solid hydrocarbon utilizing bacterial isolates were screened and the strains were examined for biomass production, growth on different solid hydrocarbons, protein contents, and amino acid composition. Conversion rate of solid hydrocarbon to biomass was 40–100 per cent depending on the substrate used. Linear growth curves were obtained in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号