首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu J  Xu D  Lu X  Wang C  Guo H  Dunaway-Mariano D 《Biochemistry》2006,45(1):102-112
It is well established that electrostatic interactions play a vital role in enzyme catalysis. In this work, we report theory-guided mutation experiments that identified strong electrostatic contributions of a remote residue, namely, Glu232 located on the adjacent subunit, to 4-chlorobenzoyl-CoA dehalogenase catalysis. The Glu232Asp mutant was found to bind the substrate analogue 4-methylbenzoyl-CoA more tightly than does the wild-type dehalogenase. In contrast, the kcat for 4-chlorobenzoyl-CoA conversion to product was reduced 10000-fold in the mutant. UV difference spectra measured for the respective enzyme-ligand complexes revealed an approximately 3-fold shift in the equilibrium of the two active site conformers away from that inducing strong pi-electron polarization in the ligand benzoyl ring. Increased substrate binding, decreased ring polarization, and decreased catalytic efficiency indicated that the repositioning of the point charge in the Glu232Asp mutant might affect the orientation of the Asp145 carboxylate with respect to the substrate aromatic ring. The time course for formation and reaction of the arylated enzyme intermediate during a single turnover was measured for wild-type and Glu232Asp mutant dehalogenases. The accumulation of arylated enzyme in the wild-type dehalogenase was not observed in the mutant. This indicates that the reduced turnover rate in the mutant is the result of a slow arylation of Asp145, owing to decreased efficiency in substrate nucleophilic attack by Asp145. To rationalize the experimental observations, a theoretical model is proposed, which computes the potential of mean force for the nucleophilic aromatic substitution step using a hybrid quantum mechanical/molecular mechanical method. To this end, the removal or reorientation of the side chain charge of residue 232, modeled respectively by the Glu232Gln and Glu232Asp mutants, is shown to increase the rate-limiting energy barrier. The calculated 23.1 kcal/mol free energy barrier for formation of the Meisenheimer intermediate in the Glu232Asp mutant represents an increase of 6 kcal/mol relative to that of the wild-type enzyme, consistent with the 5.6 kcal/mol increase calculated from the difference in experimentally determined rate constants. On the basis of the combination of the experimental and theoretical evidence, we hypothesize that the Glu232(B) residue contributes to catalysis by providing an electrostatic force that acts on the Asp145 nucleophile.  相似文献   

2.
The 4-hydroxybenzoyl-CoA (4-HB-CoA) thioesterase from Pseudomonas sp. strain CBS3 catalyzes the final step of the 4-chlorobenzoate degradation pathway, which is the hydrolysis of 4-HB-CoA to coenzyme A (CoA) and 4-hydroxybenzoate (4-HB). In previous work, X-ray structural analysis of the substrate-bound thioesterase provided evidence of the role of an active site Asp17 in nucleophilic catalysis [Thoden, J. B., Holden, H. M., Zhuang, Z., and Dunaway-Mariano, D. (2002) X-ray crystallographic analyses of inhibitor and substrate complexes of wild-type and mutant 4-hydroxybenzoyl-CoA thioesterase. J. Biol. Chem. 277, 27468-27476]. In the study presented here, kinetic techniques were used to test the catalytic mechanism that was suggested by the X-ray structural data. The time course for the multiple-turnover reaction of 50 μM [(14)C]-4-HB-CoA catalyzed by 10 μM thioesterase supported a two-step pathway in which the second step is rate-limiting. Steady-state product inhibition studies revealed that binding of CoA (K(is) = 250 ± 70 μM; K(ii) = 900 ± 300 μM) and 4-HB (K(is) = 1.2 ± 0.2 mM) is weak, suggesting that product release is not rate-limiting. A substantial D(2)O solvent kinetic isotope effect (3.8) on the steady-state k(cat) value (18 s(-1)) provided evidence that a chemical step involving proton transfer is the rate-limiting step. Taken together, the kinetic results support a two-chemical pathway. The microscopic rate constants governing the formation and consumption of the putative aspartyl 17-(4-hydroxybenzoyl)anhydride intermediate were determined by simulation-based fitting of a kinetic model to time courses for the substrate binding reaction (5.0 μM 4-HB-CoA and 0.54 μM thioesterase), single-turnover reaction (5 μM [(14)C]-4-HB-CoA catalyzed by 50 μM thioesterase), steady-state reaction (5.2 μM 4-HB-CoA catalyzed by 0.003 μM thioesterase), and transient-state multiple-turnover reaction (50 μM [(14)C]-4-HB-CoA catalyzed by 10 μM thioesterase). Together with the results obtained from solvent (18)O labeling experiments, the findings are interpreted as evidence of the formation of an aspartyl 17-(4-hydroxybenzoyl)anhydride intermediate that undergoes rate-limiting hydrolytic cleavage at the hydroxybenzoyl carbonyl carbon atom.  相似文献   

3.
Potential domain-domain docking residues, identified from the x-ray structure of the Clostridium symbiosum apoPPDK, were replaced by site-directed mutagenesis. The steady-state and transient kinetic properties of the mutant enzymes were determined as a way of evaluating docking efficiency. PPDK mutants, in which one of two stringently conserved docking residues located on the N-terminal domain (Arg(219) and Glu(271)) was substituted, displayed largely unimpeded catalysis of the phosphoenolpyruvate partial reaction at the C-terminal domain, but significantly impaired catalysis (>10(4)) of the ATP pyrophosphorylation of His(455) at the N-terminal domain. In contrast, alanine mutants of two potential docking residues located on the N-terminal domain (Ser(262) and Lys(149)), which are not conserved among the PPDKs, exhibited essentially normal catalytic turnover. Arg(219) and Glu(271) were thus proposed to play an important role in guiding the central domain and, hence, the catalytic His(455) into position for catalysis. Substitution of central domain residues Glu(434)/Glu(437) and Thr(453), the respective docking partners of Arg(219) and Glu(271), resulted in mutants impaired in catalysis at the ATP active site. The x-ray crystal structure of the apo-T453A PPDK mutant was determined to test for possible misalignment of residues at the N-terminal domain-central domain interface that might result from loss of the Thr(453)-Glu(271) binding interaction. With the exception of the mutation site, the structure of T453A PPDK was found to be identical to that of the wild-type enzyme. It is hypothesized that the two Glu(271) interfacial binding sites that remain in the T453A PPDK mutant, Thr(453) backbone NH and Met(452) backbone NH, are sufficient to stabilize the native conformation as observed in the crystalline state but may be less effective in populating the reactive conformation in solution.  相似文献   

4.
R Raag  S A Martinis  S G Sligar  T L Poulos 《Biochemistry》1991,30(48):11420-11429
The crystal structure of a cytochrome P-450CAM site-directed mutant in which the active site Thr252 has been replaced with an Ala (Thr252Ala) has been refined to an R factor of 0.18 at 2.2 A. According to sequence alignments (Nelson & Strobel, 1989), Thr252 is highly conserved among P-450 enzymes. The crystallographic structure of ferrous camphor- and carbon monoxide-bound P-450CAM (Raag & Poulos, 1989b) suggests that Thr252 is a key active site residue, forming part of the dioxygen-binding site. Mutation of the active site threonine to alanine produces an enzyme in which substrate hydroxylation is uncoupled from electron transfer. Specifically, hydrogen peroxide and "excess" water are produced instead of the product, 5-exo-hydroxycamphor. The X-ray structure has revealed that a local distortion in the distal helix between Gly248 and Thr252 becomes even more severe in the Thr252Ala mutant. Furthermore, a solvent molecule not present in the native enzyme is positioned in the dioxygen-binding region of the mutant enzyme active site. In this location, the solvent molecule could sterically interfere with and destabilize dioxygen binding. In addition, the active site solvent molecule is connected, via a network of hydrogen bonds, with an internal solvent channel which links distal helix residues to a buried Glu side chain. Thus, solvent protons appear to be much more accessible to dioxygen in the mutant than in the wild-type enzyme, a factor which may promote hydrogen peroxide and/or water production instead of substrate hydroxylation. On the basis of crystallographic and mutagenesis data, a proton delivery pathway involving residues Lys178/Arg186, Asp251, and Thr252 is proposed for wild-type P-450CAM. Coordinates of structures discussed in this paper have been submitted to the Brookhaven Protein Data Bank (Bernstein et al., 1977).  相似文献   

5.
Lee JE  Luong W  Huang DJ  Cornell KA  Riscoe MK  Howell PL 《Biochemistry》2005,44(33):11049-11057
5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is important in a number of cellular functions such as polyamine biosynthesis, methionine salvaging, biological methylation, and quorum sensing. The nucleosidase is found in many microbes but not in mammalian systems, thus making MTAN a broad-spectrum antimicrobial drug target. Substrate binding and catalytic residues were identified from the crystal structure of MTAN complexed with 5'-methylthiotubercidin [Lee, J. E., Cornell, K. A., Riscoe, M. K. and Howell, P. L. (2003) J. Biol. Chem. 278 (10) 8761-8770]. The roles of active site residues Met9, Glu12, Ile50, Ser76, Val102, Phe105, Tyr107, Phe151, Met173, Glu174, Arg193, Ser196, Asp197, and Phe207 have been investigated by site-directed mutagenesis and steady-state kinetics. Mutagenesis of residues Glu12, Glu174, and Asp197 completely abolished activity. The location of Asp197 and Glu12 in the active site is consistent with their having a direct role in enzyme catalysis. Glu174 is suggested to be involved in catalysis by stabilizing the transition state positive charge at the O3', C2', and C3' atoms and by polarizing the 3'-hydroxyl to aid in the flow of electrons to the electron withdrawing purine base. This represents the first indication of the importance of the 3'-hydroxyl in the stabilization of the transition state. Furthermore, mutation of Arg193 to alanine shows that the nucleophilic water is able to direct its attack without assistance from the enzyme. This mutagenesis study has allowed a reevaluation of the catalytic mechanism.  相似文献   

6.
Most classical phosphotyrosyl phosphatases (PTPs), including the Src homology phosphotyrosyl phosphatase 2 (SHP2) possess a Thr or a Ser residue immediately C-terminal to the invariant Arg in the active site consensus motif (H/V-C-X5-R-S/T), also known as the "signature motif". SHP2 has a Thr (Thr466) at this position, but its importance in catalysis has not been investigated. By employing site-directed mutagenesis, phosphatase assays and substrate-trapping studies, we demonstrate that Thr466 is critical for the catalytic activity of SHP2. Its mutation to Ala abolishes phosphatase activity, but provides a new substrate-trapping mutant. We further show that the nucleophilic Cys459 is not involved in substrate trapping by Thr466Ala-SHP2 (T/A-SHP2). Mutation of Thr466 does not cause significant structural changes in the active site as revealed by the trapping of the epidermal growth factor receptor (EGFR), the physiological substrate of SHP2, and by orthovanadate competition experiments. Based on these results and previous other works, we propose that the role of Thr466 in the catalytic process of SHP2 could be stabilizing the sulfhydryl group of Cys459 in its reduced state, a state that enables nucleophilic attack on the phosphate moiety of the substrate. The T/A-SHP2 harbors a single mutation and specifically interacts with the EGFR. Since the nucleophilic Cys459 and the proton donor Asp425 are intact in the T/A-SAHP2, it offers an excellent starting material for solving the structure of SHP2 in complex with its physiological substrate.  相似文献   

7.
Catalytic activities toward benzphetamine and 7-ethoxycoumarin of 11 distal mutants, 9 proximal mutants, and 3 aromatic mutants of rat liver cytochrome P-450d were studied. A distal mutant Thr319Ala was not catalytically active toward benzphetamine, while this mutant retained activity toward 7-ethoxycoumarin. Distal mutants Gly316Glu, Thr319Ala, and Thr322Ala displayed higher activities (kcat/Km) toward 7-ethoxycoumarin that were 2.4-4.7-fold higher than that of the wild-type enzyme. Although kcat/Km values of four multiple distal mutants toward benzphetamine were less than half that of the wild type, activities of these mutants toward 7-ethoxycoumarin were almost the same as or higher than the wild-type activity toward this substrate. The distal double mutant Glu318Asp, Phe325Tyr showed 6-fold higher activity than the wild-type P-450d toward 7-ethoxycoumarin. Activities of the proximal mutants Lys453Glu and Arg455Gly toward both substrates were much lower (less than one-seventh) than the corresponding wild-type activities. Catalytic activities of three aromatic mutants, Phe425Leu, Pro427Leu, and Phe430Leu, toward benzphetamine were less than 7% of that of the wild type, while the activities of these aromatic mutants toward 7-ethoxycoumarin were more than 2.5 times higher than the wild-type activity toward this substrate. From these findings, in conjunction with a molecular model for P-450d, we suggest that (1) the relative importance to catalysis of various distal helix amino acids differs depending on the substrate and that these differences are associated with the size, shape, and flexibility of the substrate and (2) the proximal residue Lys453 appears to play a critical role in the catalytic activity of P-450d, perhaps by participating in forming an intermolecular electron-transfer complex.  相似文献   

8.
The recent availability of the SHV-1 beta-lactamase crystal structure provides a framework for the understanding of the functional role of amino acid residues in this enzyme. To that end, we have constructed by site-directed mutagenesis 18 variants of the SHV beta-lactamase: an extended spectrum group: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, Asp104Lys-Thr235Ser-Gly238Ser, Asp179Asn, Arg164His, and Arg164Ser; an inhibitor resistant group: Arg244Ser, Met69Ile, Met69Leu, and Ser130Gly; mutants that are synergistic with those that confer resistance to oxyimino-cephalosporins: Asp104Glu, Asp104Lys, Glu240Lys, and Glu240Gln; and structurally conserved mutants: Thr235Ser, Thr235Ala and Glu166Ala. Among the extended spectrum group the combination of high-level ampicillin and cephalosporin resistance was demonstrated in the Escherichia coli DH10B strains possessing the Gly238Ser mutation: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, and Asp104Lys-Thr235Ser-Gly238Ser. Of the inhibitor resistant group, the Ser130Gly mutant was the most resistant to ampicillin/clavulanate. Using a polyclonal anti-SHV antibody, we assayed steady state protein expression levels of the SHV beta-lactamase variants. Mutants with the Gly238Ser substitution were among the most highly expressed. The Gly238Ser substitution resulted in an improved relative k(cat)/K(m) value for cephaloridine and oxyimino-cephalosporins compared to SHV-1 and Met69Ile. In our comparative survey, the Gly238Ser and extended spectrum beta-lactamase variants containing this substitution exhibited the greatest substrate versatility against penicillins and cephalosporins and greatest protein expression. This defines a unique role of Gly238Ser in broad-spectrum beta-lactam resistance in this family of class A beta-lactamases.  相似文献   

9.
Hevamine is a chitinase from the rubber tree Hevea brasiliensis. Its active site contains Asp125, Glu127, and Tyr183, which interact with the -1 sugar residue of the substrate. To investigate their role in catalysis, we have successfully expressed wild-type enzyme and mutants of these residues as inclusion bodies in Escherichia coli. After refolding and purification they were characterized by both structural and enzyme kinetic studies. Mutation of Tyr183 to phenylalanine produced an enzyme with a lower k(cat) and a slightly higher K(m) than the wild-type enzyme. Mutating Asp125 and Glu127 to alanine gave mutants with approximately 2% residual activity. In contrast, the Asp125Asn mutant retained substantial activity, with an approximately twofold lower k(cat) and an approximately twofold higher K(m) than the wild-type enzyme. More interestingly, it showed activity to higher pH values than the other variants. The X-ray structure of the Asp125Ala/Glu127Ala double mutant soaked with chitotetraose shows that, compared with wild-type hevamine, the carbonyl oxygen atom of the N-acetyl group of the -1 sugar residue has rotated away from the C1 atom of that residue. The combined structural and kinetic data show that Asp125 and Tyr183 contribute to catalysis by positioning the carbonyl oxygen of the N-acetyl group near to the C1 atom. This allows the stabilization of a positively charged transient intermediate, in agreement with a previous proposal that the enzyme makes use of substrate-assisted catalysis.  相似文献   

10.
The catalytic mechanism of the MgATP-dependent carboxylation of biotin in the biotin carboxylase domain of pyruvate carboxylase from R. etli (RePC) is common to the biotin-dependent carboxylases. The current site-directed mutagenesis study has clarified the catalytic functions of several residues proposed to be pivotal in MgATP-binding and cleavage (Glu218 and Lys245), HCO(3)(-) deprotonation (Glu305 and Arg301), and biotin enolization (Arg353). The E218A mutant was inactive for any reaction involving the BC domain and the E218Q mutant exhibited a 75-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction. The E305A mutant also showed a 75- and 80-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction, respectively. While Glu305 appears to be the active site base which deprotonates HCO(3)(-), Lys245, Glu218, and Arg301 are proposed to contribute to catalysis through substrate binding interactions. The reactions of the biotin carboxylase and carboxyl transferase domains were uncoupled in the R353M-catalyzed reactions, indicating that Arg353 may not only facilitate the formation of the biotin enolate but also assist in coordinating catalysis between the two spatially distinct active sites. The 2.5- and 4-fold increase in k(cat) for the full reverse reaction with the R353K and R353M mutants, respectively, suggests that mutation of Arg353 allows carboxybiotin increased access to the biotin carboxylase domain active site. The proposed chemical mechanism is initiated by the deprotonation of HCO(3)(-) by Glu305 and concurrent nucleophilic attack on the γ-phosphate of MgATP. The trianionic carboxyphosphate intermediate formed reversibly decomposes in the active site to CO(2) and PO(4)(3-). PO(4)(3-) then acts as the base to deprotonate the tethered biotin at the N(1)-position. Stabilized by interactions between the ureido oxygen and Arg353, the biotin-enolate reacts with CO(2) to give carboxybiotin. The formation of a distinct salt bridge between Arg353 and Glu248 is proposed to aid in partially precluding carboxybiotin from reentering the biotin carboxylase active site, thus preventing its premature decarboxylation prior to the binding of a carboxyl acceptor in the carboxyl transferase domain.  相似文献   

11.
Allosteric behavior and substrate inhibition are unique characteristics of Lactococcus lactis prolidase. We hypothesized that charged residues (Asp36, His38, Glu39, and Arg40), present on one loop essential for catalysis, interact with residues in or near the active site to impart these unique characteristics. Asp36 has a predominant role in the allosteric behavior, as demonstrated through the non-allosteric behavior of the D36S mutant enzyme. In contrast, a double mutant (D36E/R293K) maintained the allostery, indicating that this aspartic acid residue interacts with Arg293, previously shown to be critical in the allostery. Substitution of His38 drastically reduced the substrate inhibition, and substrate specificity of the mutant at Asp36 or His38 showed the influence of these residues to the substrate specificity. These findings confirm the importance of the loop in the enzymatic reaction mechanism and suggest the existence of conformational changes of the loop structure between open and closed states. A variety of mutations at Glu39 and Arg40 showed that these residues influence roles of the loop in the enzyme reaction. On the basis of these results and combined with observations of molecular models of this prolidase, we concluded that Asp36 and His38 interact with the residues in the active site to generate an allosteric subsite and a pseudo-S(1)' site, which are responsible for the allosteric behavior and substrate inhibition.  相似文献   

12.
Stehle F  Brandt W  Milkowski C  Strack D 《FEBS letters》2006,580(27):6366-6374
Structures of the serine carboxypeptidase-like enzymes 1-O-sinapoyl-beta-glucose:L-malate sinapoyltransferase (SMT) and 1-O-sinapoyl-beta-glucose:choline sinapoyltransferase (SCT) were modeled to gain insight into determinants of specificity and substrate recognition. The structures reveal the alpha/beta-hydrolase fold as scaffold for the catalytic triad Ser-His-Asp. The recombinant mutants of SMT Ser173Ala and His411Ala were inactive, whereas Asp358Ala displayed residual activity of 20%. 1-O-sinapoyl-beta-glucose recognition is mediated by a network of hydrogen bonds. The glucose moiety is recognized by a hydrogen bond network including Trp71, Asn73, Glu87 and Asp172. The conserved Asp172 at the sequence position preceding the catalytic serine meets sterical requirements for the glucose moiety. The mutant Asn73Ala with a residual activity of 13% underscores the importance of the intact hydrogen bond network. Arg322 is of key importance by hydrogen bonding of 1-O-sinapoyl-beta-glucose and L-malate. By conformational change, Arg322 transfers L-malate to a position favoring its activation by His411. Accordingly, the mutant Arg322Glu showed 1% residual activity. Glu215 and Arg219 establish hydrogen bonds with the sinapoyl moiety. The backbone amide hydrogens of Gly75 and Tyr174 were shown to form the oxyanion hole, stabilizing the transition state. SCT reveals also the catalytic triad and a hydrogen bond network for 1-O-sinapoyl-beta-glucose recognition, but Glu274, Glu447, Thr445 and Cys281 are crucial for positioning of choline.  相似文献   

13.
You YO  van der Donk WA 《Biochemistry》2007,46(20):5991-6000
Lantibiotic synthetases catalyze the dehydration of Ser and Thr residues in their peptide substrates to dehydroalanine (Dha) and dehydrobutyrine (Dhb), respectively, followed by the conjugate addition of Cys residues to the Dha and Dhb residues to generate the thioether cross-links lanthionine and methyllanthionine, respectively. In this study ten conserved residues were mutated in the dehydratase domain of the best characterized family member, lacticin 481 synthetase (LctM). Mutation of His244 and Tyr408 did not affect dehydration activity with the LctA substrate whereas mutation of Asn247, Glu261, and Glu446 considerably slowed down dehydration and resulted in incomplete conversion. Mutation of Lys159 slowed down both steps of the net dehydration: phosphorylation of Ser/Thr residues and the subsequent phosphate elimination step to form the dehydro amino acids. Mutation of Arg399 to Met or Leu resulted in mutants that had phosphorylation activity but displayed greatly decreased phosphate elimination activity. The Arg399Lys mutant retained both activities, however. Similarly, the Thr405Ala mutant phosphorylated the LctA substrate but had compromised elimination activity. Finally, mutation of Asp242 or Asp259 to Asn led to mutant enzymes that lacked detectable dehydration activity. Whereas the Asp242Asn mutant retained phosphate elimination activity, the Asp259Asn mutant was not able to eliminate phosphate from a phosphorylated substrate peptide. A model is presented that accounts for the observed phenotypes of these mutant enzymes.  相似文献   

14.
Brosius JL  Colman RF 《Biochemistry》2002,41(7):2217-2226
Tetrameric adenylosuccinate lyase (ASL) of Bacillus subtilis catalyzes the cleavage of adenylosuccinate to form AMP and fumarate. We previously reported that two distinct subunits contribute residues to each active site, including the His68 and His89 from one and His141 from a second subunit [Brosius, J. L., and Colman, R. F. (2000) Biochemistry 39, 13336-13343]. Glu(275) is 2.8 A from His141 in the ASL crystal structure, and Lys268 is also in the active site region; Glu275 and Lys268 come from a third, distinct subunit. Using site-directed mutagenesis, we have replaced Lys268 by Arg, Gln, Glu, and Ala, with specific activities of the purified mutant enzymes being 0.055, 0.00069, 0.00028, and 0.0, respectively, compared to 1.56 units/mg for wild-type (WT) enzyme. Glu275 was substituted by Gln, Asp, Ala, and Arg; none of these homogeneous mutant enzymes has detectable activity. Circular dichroism and light scattering reveal that neither the secondary structure nor the oligomeric state of the Lys268 mutant enzymes has been perturbed. Native gel electrophoresis and circular dichroism indicate that the Glu275 mutant enzymes are tetramers, but their conformation is altered slightly. For K268R, the K(m)s for all substrates are similar to WT enzyme. Binding studies using [2-3H]-adenylosuccinate reveal that none of the Glu275 mutant enzymes, nor inactive K268A, can bind substrate. We propose that Lys268 participates in binding substrate and that Glu275 is essential for catalysis because of its interaction with His141. Incubation of H89Q with K268Q or E275Q leads to restoration of up to 16% WT activity, while incubation of H141Q with K268Q or E275Q results in 6% WT activity. These complementation studies provide the first functional evidence that a third subunit contributes residues to each intersubunit active site of ASL. Thus, adenylosuccinate lyase has four active sites per enzyme tetramer, each of which is formed from regions of three subunits.  相似文献   

15.
Phosphoenolpyruvate (PEP) carboxykinases harbor two divalent metal-binding sites. One cation interacts with the enzyme (metal binding site 1) to elicit activation, while a second cation (metal binding site 2) interacts with the nucleotide to serve as the metal nucleotide substrate. Mutants of Anaerobiospirillum succiniciproducens PEP carboxykinase have been constructed where Thr249 and Asp262, two residues of metal binding site 2 of the enzyme, were altered. Binding of the 3'(2')-O-(N-methylantraniloyl) derivative of ADP provides a test of the structural integrity of these mutants. The conservative mutation (Asp262Glu) retains a significant proportion of the wild type enzymatic activity. Meanwhile, removal of the OH group of Thr249 in the Thr249Ala mutant causes a decrease in V(max) by a factor of 1.1 x 10(4). Molecular modeling of wild type and mutant enzymes suggests that the lower catalytic efficiency of the Thr249Ala enzyme could be explained by a movement of the lateral chain of Lys248, a critical catalytic residue, away from the reaction center.  相似文献   

16.
Kinetic analysis of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase has implicated a glutamate or aspartate residue in (i) formation of mevaldate thiohemiacetal by proton transfer to the carbonyl oxygen of mevaldate and (ii) enhanced ionization of CoASH by the resulting enzyme carboxylate anion, facilitating attack by CoAS- on the carbonyl carbon of mevaldate (Veloso, D., Cleland, W. W., and Porter, J. W. (1981) Biochemistry 81, 887-894). Although neither the identity of this acidic residue nor its location is known, the catalytic domains of 11 sequenced HMG-CoA reductases contain only 3 conserved acidic residues. For HMG-CoA reductase of Pseudomonas mevalonii, these residues are Glu52, Glu83, and Asp183. To identify the acidic residue that functions in catalysis, we generated mutants having alterations in these residues. The mutant proteins were expressed, purified, and characterized. Mutational alteration of residues Glu52 or Asp183 of P. mevalonii HMG-CoA reductase yielded enzymes with significant, but in some cases reduced, activity (Vmax = 100% Asp183----Ala, 65% Asp183----Asn, and 15% Glu52----Gln of wild-type activity, respectively). Although the activity of mutant enzymes Glu52----Gln and Asp183----Ala was undetectable under standard assay conditions, their Km values for substrates were 4-300-fold higher than those for wild-type enzyme. Km values for wild-type enzyme and for mutant enzymes Glu52----Gln and Asp183----Ala were, respectively: 0.41, 73, and 120 mM [R,S)-mevalonate); 0.080, 4.4, and 2.0 mM (coenzyme A); and 0.26, 4.4, and 1.0 mM (NAD+). By these criteria, neither Glu52 nor Asp183 is the acidic catalytic residue although each may function in substrate recognition. During chromatography on coenzyme A agarose or HMG-CoA agarose, mutant enzymes Asp183----Asn and Glu83----Gln behaved like wild-type enzyme. By contrast, and in support of a role for these residues in substrate recognition, mutant enzymes Glu52----Gln and Asp183----Ala exhibited impaired ability to bind to either support. Despite displaying Km values for substrates and chromatographic behavior on substrate affinity supports comparable to wild-type enzyme, only mutant enzyme Glu83----Gln was essentially inactive under all conditions studied (Vmax = 0.2% that of wild-type enzyme). Glutamate residue 83 of P. mevalonii HMG-CoA reductase, and consequently the glutamate of the consensus Pro-Met-Ala-Thr-Thr-Glu-Gly-Cys-Leu-Val-Ala motif of the catalytic domains of eukaryotic HMG-CoA reductases, is judged to be the acidic residue functional in catalysis.  相似文献   

17.
The functional and structural significance of amino acid residues Met(39), Glu(56), Asp(58), Glu(60), and Gly(63) of Fibrobacter succinogenes 1,3-1,4-beta-d-glucanase was explored by the approach of site-directed mutagenesis, initial rate kinetics, fluorescence spectroscopy, and CD spectrometry. Glu(56), Asp(58), Glu(60), and Gly(63) residues are conserved among known primary sequences of the bacterial and fungal enzymes. Kinetic analyses revealed that 240-, 540-, 570-, and 880-fold decreases in k(cat) were observed for the E56D, E60D, D58N, and D58E mutant enzymes, respectively, with a similar substrate affinity relative to the wild type enzyme. In contrast, no detectable enzymatic activity was observed for the E56A, E56Q, D58A, E60A, and E60Q mutants. These results indicated that the carboxyl side chain at positions 56 and 60 is mandatory for enzyme catalysis. M39F, unlike the other mutants, exhibited a 5-fold increase in K(m) value. Lower thermostability was found with the G63A mutant when compared with wild type or other mutant forms of F. succinogenes 1,3-1,4-beta-d-glucanase. Denatured wild type and mutant enzymes were, however, recoverable as active enzymes when 8 m urea was employed as the denaturant. Structural modeling and kinetic studies suggest that Glu(56), Asp(58), and Glu(60) residues apparently play important role(s) in the catalysis of F. succinogenes 1,3-1,4-beta-d-glucanase.  相似文献   

18.
Su P  Scheiner-Bobis G 《Biochemistry》2004,43(16):4731-4740
P-type ATPases such as the sodium pump appear to be members of a superfamily of hydrolases structurally typified by the L-2-haloacid dehalogenases. In the dehalogenase L-DEX-ps, Lys151 serves to stabilize the excess negative charge in the substrate/reaction intermediates and Asp180 coordinates a water molecule that is directly involved in ester intermediate hydrolysis. To investigate the importance of the corresponding Lys691 and Asp714 of the sodium pump alpha subunit, sodium pump mutants were expressed in yeast and analyzed for their properties. Lys691Ala, Lys691Asp, Asp714Ala, and Asp714Arg mutants were inactive, not only with respect to ATPase activity but also to interaction with the highly sodium pump-specific inhibitors ouabain or palytoxin (PTX). In contrast, conservative mutants Lys691Arg and Asp714Glu retained some of the partial activities of the wild-type enzyme, although they completely failed to display any ATPase activity. Yeast cells expressing Lys691Arg and Asp714Glu mutants are sensitive to the sodium pump-specific inhibitor PTX and lose intracellular K+. Their sensitivity to PTX, with EC50 values of 118 +/- 24 and 76.5 +/- 3.6 nM, respectively, was clearly reduced by almost 7- or 4-fold below that of the native sodium pump (17.8 +/- 2.7 nM). Ouabain was recognized under these conditions with low affinity by the mutants and inhibited the PTX-induced K+ efflux from the yeast cells. The EC50 for the ouabain effect was 183 +/- 20 microM for Lys691Arg and 2.3 +/- 0.08 mM for the Asp714Glu mutant. The corresponding value obtained with cells expressing the native sodium pump was 69 +/- 18 microM. In the presence of Pi and Mg2+, none of the mutant sodium pumps were able to bind ouabain. When Mg2+ was omitted, however, both Lys691Asp and Asp714Glu mutants displayed ouabain binding that was reduced by Mg2+ with an EC50 of 0.76 +/- 0.11 and 2.3 +/- 0.2 mM, respectively. In the absence of Mg2+, ouabain binding was also reduced by K+. The EC50 values were 1.33 +/- 0.23 mM for the wild-type enzyme, 0.93 +/- 0.2 mM for the Lys691Arg mutant, and 1.02 +/- 0.24 mM for the Asp714Glu enzyme. None of the neutral or nonconservative mutants displayed any ouabain-sensitive ATPase activity. Ouabain-sensitive phosphatase activity, however, was present in membranes containing either the wild-type (1105 +/- 100 micromol of p-nitrophenol phosphate hydrolyzed min(-1) mg of protein(-1)) or the Asp714Glu mutant (575 +/- 75 micromol min(-1) mg(-1)) sodium pump. Some phosphatase activity was also associated with the Lys691Arg mutant (195 +/- 63 micromol min(-1) mg(-1)). The results are consistent with Lys691 and Asp714 being essential for the phosphorylation/dephosphorylation process that allows the sodium pump to accomplish the catalytic cycle.  相似文献   

19.
S A Berger  P R Evans 《Biochemistry》1992,31(38):9237-9242
Six active site mutants of Escherichia coli phosphofructokinase have been constructed and characterized using steady-state kinetics. All but one of the mutants (ES222) have significantly lower maximal activity, implicating these residues in the catalytic process. Replacement of Asp127, the key catalytic residue in the forward reaction with Glu, results in an enzyme with wild-type cooperative and allosteric behavior but severely decreased Fru6P binding. Replacement of the same residue with Tyr abolishes cooperativity while retaining sensitivity to allosteric inhibition and activation. Thus, this mutant has uncoupled homotropic from heterotropic allostery. Mutation of Asp103 to Ala results in an enzyme which retains wild-type Fru6P-binding characteristics with reduced activity. GDP, which allosterically activates the wild-type enzyme, acts as a mixed inhibitor for this mutant. Mutation of Thr125 to Ala and Asp129 to Ser produces mutants with impaired Fru6P binding and decreased cooperativity. In the presence of the activator GDP, both these mutants display apparent negative cooperativity. In addition, ATP binding is now allosterically altered by GDP. These results extend the number of active site residues known to participate in the catalytic process and help to define the mechanisms behind catalysis and homotropic and heterotropic allostery.  相似文献   

20.
R Schinzel  D Palm 《Biochemistry》1990,29(42):9956-9962
The role of Escherichia coli maltodextrin phosphorylase (EC 2.4.1.1) active site residues Glu637 and Tyr538 which line the sugar-phosphate contact region of the enzyme was investigated by site-directed mutagenesis. Substitution of Glu637 by an Asp or Gln residue reduced kcat to approximately 0.2% of wild-type activity, while the Km values were affected to a minor extent. This indicated participation of Glu637 in transition-state binding rather than in ground-state binding. 31P NMR analysis of the ionization state of enzyme-bound pyridoxal phosphate suggested that Glu637 is also involved in modulation of the protonation state of the coenzyme phosphate observed during catalysis. Despite loss of proposed hydrogen-bonded substrate contacts, the Tyr538Phe mutant enzyme retained more than 10% activity; the apparent affinity of all substrates was slightly decreased. Mutations at either site affected the error rate of the enzyme (ratio of hydrolysis/phosphorolysis). Besides a role in substrate binding, the hydrogen-bond network of Tyr538 supports the exclusion of water from the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号