共查询到20条相似文献,搜索用时 15 毫秒
1.
增强UV-B辐射会对植物生长和生理生化过程产生有害效应。克隆植物中,相连的克隆分株对经常共享资源和激素,然而鲜有关于异质性UV-B辐射下UV-B辐射方向对克隆整合的影响及克隆植物形态结构变化的报道。模拟同质(克隆分株片段均处于自然背景辐射)和异质(克隆分株一端处于自然背景辐射,另一端处于补加的UV-B辐射)UV-B辐射,以克隆植物白三叶为材料,进行连接和隔断处理,研究UV-B辐射方向对克隆整合强度变化、叶片形态结构特化及生理可塑性的影响。结果表明:异质性UV-B辐射下,15N同位素标记端保留的15N百分比高于同质UV-B辐射处理,转移到无标记相连端的15N含量则降低,紫外辐射处理和同位素标记是否处于同一分株端对结果无显著性影响,说明克隆植物白三叶生理整合存在但整合强度降低,辐射方向与克隆整合强度无关;隔断处理组气孔长度增加,栅栏组织增厚,但连接处理组却无此变化,表明生理整合在白三叶叶片形态结构特化中发挥作用。UV-B辐射下,最小荧光、电子传递速率及光化学淬灭系数降低但非光化学淬灭系数升高,而生理整合却使结果相反;叶绿素和紫外吸收物可在异质性UV-B辐射相连的两端运输分享。以上均表明异质UV-B辐射环境中,UV-B辐射胁迫端克隆分株通过生理整合从非胁迫端获益,并以此提高胁迫环境中克隆植物对资源的利用效率。 相似文献
2.
芥子酸酯(sinapate esters)是拟南芥和其他十字花科植物中大量存在的一类具有紫外吸收作用的羟基肉桂酸衍生物,有研究表明其紫外吸收能力甚至强于类黄酮。以模式植物拟南芥(Arabidopsis thaliana)为实验材料,通过施加低强度(40 μW/cm2)、相对长时间(7 d)的UV-B辐射,考察了拟南芥幼苗和成苗芥子酸酯组分(芥子酰葡萄糖、芥子酰苹果酸)和含量及合成途径关键酶编码基因表达水平对UV-B辐射的响应。经过7 d的UV-B辐射处理,拟南芥幼苗和成苗的芥子酰葡萄糖、芥子酰苹果酸含量均高于对照植株,芥子酸酯表现为响应UV-B辐射而积累。无论是幼苗还是成苗,叶片中芥子酰苹果酸的含量都要比芥子酰葡萄糖高出一个数量级,而且在UV-B处理过程中观察到芥子酰葡萄糖含量减少而芥子酰苹果酸含量增加,催化芥子酰葡萄糖生成芥子酰苹果酸的芥子酰葡萄糖苹果酸转移酶编码基因的表达水平也显著提高,说明芥子酰苹果酸在拟南芥叶片响应UV-B辐射过程中起重要作用并优先合成。另外,拟南芥幼苗中两种芥子酸酯的含量是成苗中的数十倍之多,芥子酸酯合成途径关键酶编码基因fah1和sng1的相对表达量也显著高于成苗。同时,在响应UV-B辐射的过程中,幼苗中芥子酰葡萄糖、芥子酰苹果酸含量的变化幅度(分别是7.01%、6.05%)远远低于成苗叶片中芥子酰葡萄糖、芥子酰苹果酸含量的变化幅度(分别是21.88%、70.63%),这可能意味着拟南芥叶片中芥子酸酯对于UV-B辐射的防护作用,幼苗属于组成型防御(constitutive defense),而到成苗则转变为诱导型防御(inducible defense)。 相似文献
3.
4.
Yan Xiao 《Aquatic Botany》2010,92(1):9-13
Recently, considerable attention has been paid to the invasion of the clonal plant Spartina alterniflora into coastal wetlands at lower elevations. In this experiment, we tested whether clonal integration improved flood tolerance in S. alterniflora daughter ramets. Daughter ramets at two growth stages (young and old ramets) were flooded to water levels of 0, 9 and 18 cm above the soil surface, and the rhizomes between mother and daughter ramets were either severed or left intact. Biomasses of connected ramets grown in controls or in shallow and deep water treatments were 119%, 108% and 149% higher in the old ramet group than those of severed ramets, respectively, whereas they were 3.0, 3.3 and 11.2 times higher in the young ramet group, respectively. At the end of the experimental period, the shoot height, connected with young ramets, in shallow and deep water treatments increased by 19% and 26%, respectively, over that in the control treatments, whereas the old ramets increased by 11% and 39%, respectively. In contrast, the shoot height of the severed young ramets was 27% and 26% lower in shallow and deep water treatments than in the control treatment, respectively. However, the shoot height of the severed old ramets remained constant with increasing water depth. We conclude that clonal integration enhances the flood tolerance of S. alterniflora daughter ramets, and the trait of clonal integration plays more important roles in severe flooding stress conditions and at early growth stages. 相似文献
5.
Enhanced ultraviolet-B (UVB) radiation and water deficit affect plant growth and development. We determined the effects of UVB and drought stress on growth parameters and chemical attributes of two ecotypes (alpine and prairie) of Stellaria longipes under controlled-environment conditions. Clonal ramets of these ecotypes were grown under three UVB levels (0, 5, and 10 kJ m−2 d−1) and exposed to two watering regimes (well watered and drought stressed) for 21 days. Compared to the alpine, the prairie ecotype was taller, had higher number of nodes, and greater leaf area and specific leaf weight (leaf dry weight: leaf area), which resulted in increased dry matter in this ecotype. Overall, ‘prairie’ was higher in total chlorophyll (Chl), but lower in Chla:b ratio, flavonoids, and ethylene, than ‘alpine’. In both ecotypes, UVB and drought stress reduced growth and dry matter, whereas UVB increased carotenoids and flavonoids. Drought stress decreased ethylene evolution. These characteristics were also determined in plants growing in the field. In the field-growing plants, ‘prairie’ had higher growth and dry matter, but lower Chla:b ratio and flavonoids, than ‘alpine’. The two ecotypes responded differentially to UVB and watering regime, as ‘prairie’ appeared to be more sensitive to UVB and drought stress than ‘alpine’. 相似文献
6.
Summary Translocation of 14C-labelled carbohydrates between the parent stolon and branches, and among branches, of Trifolium repens plants was investigated in two glasshouse experiments to determine patterns of physiological organisation in this clonal species. Differential defoliation treatments were applied to the parent stolon and/or branches to test the sensitivity of translocation to the short-term carbon needs of defoliated sinks. Strong reciprocal exchange of carbohydrate between the parent stolon and branches was observed, with 18 41% of the 14C exported from leaves on the parent stolon moving to branches, while branches simulta-neously exported 25% (for old source branches) to 54% (for young source branches) of the 14C they assimilated to the parent plant, including translocation to other branches. Branch-to-branch translocation occurred both acropetally and basipetally. Parent-to-branch, branch-to-parent and branch-to-branch carbon fluxes all increased in response to defoliation of the sink, at the expense of carbon supply to stolon tissue or roots of the source module. Reduced export to stolon tissue of the parent axis played a major role in facilitating C reallocation from leaves on the parent stolon to defoliated branches. The observed patterns of C allocation and translocation could be adequately explained by accepted source-sink theory, and are consistent with a high degree of intra-plant physiological integration in resource supply and utilisation. This information provides mechanistic explanations for aspects of the growth dynamics and ecological interactions of T. repens in the patchy environment of a grazed pasture. 相似文献
7.
Clonal integration may be adaptive and enhance the genet performance of clonal plants. Degree of clonal integration may differ between different environments . Here, a container experiment was used to determine how clonal integration affected the performance of the stoloniferous herb Duchesnea indica at two sites with different altitude along the transitional zone between the Qinghai-Tibet plateau and the Sichuan basin of Southwest China. In the experiment, the stolon between partially shaded two ramets experienced severing and intact treatments.We predicted that clonal integration would increase performance of whole clonal fragments and their shaded clonal parts at both sites. In both arctic and alpine environments, clonal plants may form highly integrated plant units (group of ramets).We predicted again that the reduction due to stolon severing in performance of whole clonal fragments and their shaded clonal parts would be greater at the site with high altitude than one with low altitude. The results indicated that the benefit for the shaded clonal parts and whole clonal fragments due to clonal integration was only observed at the site with high altitude. The results suggest that the performance of Duchesnea indica tends to be more responsive to the stolon severing at the site with high altitude than one with low altitude and support the second prediction. In addition, the effects of conditions of the sites and clonal integration on local morphological traits of ramets may be adaptive, five morphological traits of ramet-level (length of petiole, mean stolon internode length, specific petiole weight, specific stolon internode weight and specific leaf area) were investigated. Altogether, the results suggest that clonal integration might help D. indica plants to successfully inhabit the high-altitude habitat of the Qinghai-Tibet plateau of Southwest China, providing new evidences for the notion that clonal integration is an adaptive trait in stressful environments. 相似文献
8.
Summary The costs and benefits, measured in terms of dry weight, of physiological integration between clonal ramets, were analysed in two experiments conducted on the clonal herb Glechoma hederacea. Firstly, integration between consecutively-produced ramets was examined in an experiment in which stolons grew from one set of growing conditions (either unshaded or shaded and either nutrient-rich or nutrient-poor) into conditions in which light or nutrient level was altered. Comparisons were made between the dry weight of the parts of the clones produced before and after growing conditions were changed, and the dry weights of the corresponding part of control clones subjected to constant growing conditions. In a second experiment, integration between two distinct parts of G. hederacea clones was investigated. In this experiment clones were grown from two connected parent ramets and the parts of the clone produced by each parent ramet were subjected independently to either nutrient-rich or nutrient-poor conditions. Ramets in resource-rich conditions provided considerable physiological support to those in resource-poor conditions. This was measured as a dry weight gain compared with the weight of the corresponding part of the control clones growing in resource-poor conditions. However, when stolons grew from resource-poor conditions into resource-rich conditions, there was no similar evidence of the resourcepoor ramtes receiving support from resource-rich ramets. Physiological integration did not result in dry weight gains when this would have necessitated basipetal translocation of resources.Because of the predominantly acropedal direction of movement of translocates in G. hederacea, the structure of the clone was important in determining the effectiveness of integration between ramets. Where physiological integration was effective, the cost to the supporting ramets in terms of dry weight was insignificant. Physiological integration allows clones to maintain a presence in less favourable sites with insignificant cost to ramets in favourable sites, thereby reducing the probability of invasion by other plants, and providing the potential for rapid clonal growth if conditions improve. Integrated support of ramets in unfavourable conditions also enables the clone to grow through unfavourable sites, thus increasing the probability of encountering more favourable conditions by wider foraging. 相似文献
9.
Tania Tapia Fernando PerichFernando Pardo Graciela PalmaAndrés Quiroz 《Biochemical Systematics and Ecology》2007
Root extracts from 1.5 and 2.5-year-old red clover (Trifolium pratense) were obtained using supercritical fluid extraction (SFE). GC–MS analysis and Kovats indices allowed identification of the volatile compounds as butyl acetate, E-2-hexenal, α-pinene, benzaldehyde, 6-methyl-5-hepten-2-one, limonene, acetophenone, methyl benzoate, nonanal, octanoic acid and decanal. 相似文献
10.
Stephen Waite 《Ecological Research》1994,9(3):311-316
Stolon internode lengths were measured on plants of the clonal herbRanunculus repens growing in a hay meadow which was subject to disturbance by mole (Talpa europaea) activity. Within the site three habitat types were recognized: closed grassland, the open ground of fresh molehills and
the grass-molehill boundary. The lengths of stolon internodes ofR. repens differed significantly in each of the three habitats. The shortest internodes occurred on stolons on the open molchills.
The longest occurred in the closed grassland habitat. The type of habitat in which parent ramets were rooted did not significantly
influence the length of internodes on their daughter stolons. The length of a stolon internode was determined by its immediate
surrounding habitat type. Consecutive internode lengths on a given stolon showed considerable plasticity, shortening significantly
as stolons spread onto molehills from surrounding habitats, and increasing significantly as stolons advanced from a molehill
into the surrounding closed grassland habitat. These results are consistent with the proposition that under favorable conditions
(on the molehills, where resources are expected to be more abundant, and competition absent) internode lengths shorten and
the plant forages intensively, whereas under conditions of low resource availability (in the closed grassland, where competition
occurs) internode lengths increase, allowingR. repens to forage extensively. Such morphological plasticity may promote more efficient exploitation of resource-rich sites and more
rapid vacation of resource-poor sites. 相似文献
11.
土壤动物是土壤生态系统中十分活跃的生物类群之一,也是城市草坪生态系统的重要组成部分。由于外来植物白三叶入侵,草坪土壤动物可能受到直接或间接的影响,进而改变城市草坪生态系统功能及过程。研究白三叶入侵对城市草坪生态系统土壤动物的影响,可为进一步了解外来植物入侵机制及城市草坪的建植养护提供理论依据。采用野外调查的试验方法对4种不同入侵程度下城市草坪的土壤动物群落特征和土壤理化性质进行了研究。结果如下:4种不同入侵程度的草坪样地共捕获土壤动物30099只,隶属于19目43科,其中小杆科、线蚓科和跳虫科为优势类群;土壤动物个体数量和类群数量整体表现为中度入侵 > 轻度入侵 > 对照 > 重度入侵,符合中度干扰假说;土壤动物个体数量和类群数量的季节动态主要表现为夏秋较高,冬春较低。CCA分析显示,土壤理化因子中铵态N对土壤动物影响相对较小,可能与白三叶改善了草坪土壤的供N水平并使其不成为土壤动物分布的限制因子有关;同时,土壤理化因子对土壤动物优势类群影响较小,而主要影响常见和稀有类群。总体而言,一定程度的白三叶入侵增加了土壤动物群落的多样性,但当达到重度入侵时,白三叶形成单优群落,减少了植物多样性,进而使土壤动物可获得的生活资源减少,土壤动物群落多样性呈下降趋势;白三叶入侵后通过改变土壤理化性质,影响到土壤动物常见和稀有类群,并最终改变草坪土壤动物的群落结构。 相似文献
12.
Herbaceous species possess several mechanisms to compensate for tissue loss. For clonal herbaceous species, clonal integration may be an additional mechanism. This may especially hold true when tissue loss is very high, because other compensatory mechanisms may be insufficient. On inland dunes in northern China, we subjected Bromus ircutensis and Psammochloa villosa ramets within 0.5 m×0.5 m plots to three clipping treatments, i.e., no clipping, moderate (50% shoot removal) and heavy clipping (90% shoot removal), and kept rhizomes at the plot edges connected or disconnected. Moderate clipping did not reduce ramet, leaf or biomass density of either species. Under moderate clipping, rhizome connection significantly improved the performance of Psammochloa, but not that of Bromus. Heavy clipping reduced ramet, leaf and biomass density in the disconnected plots of both species, but such negative effects were negated or greatly ameliorated when the rhizomes were connected. Therefore, clonal integration contributed greatly to the compensatory growth of both species. The results suggest that clonal integration is an additional compensatory mechanism for clonal plants and may be important for their long-term persistence in the heavily grazed regions in northern China. 相似文献
13.
Caryopteris mongolica is a dwarf shrub mainly found in grassland and desert areas of north-west China, and which can survive severe environmental stress. This study aimed to assess the responses of the flavonoid pathway to UV-B radiation treatments and its correlation to the lipid peroxide and antioxidant systems in C. mongolica. In UV-B radiation experiments, plants were exposed to UV-B radiation treatments with a intensity of 30 J/s for 1, 4 and 24 h, respectively. A control group without UV-B radiation treatment was also used. The chlorophyll fluorescence parameters, contents of chlorophyll and carotenoid, levels of lipid peroxidation, activities of antioxidant system enzymes, accumulations of total flavonoids and anthocyanins, and activities of phenylalanine ammonialyase (PAL) and chalcone isomerase (CHI) under different UV-B radiation treatments were investigated. The correlations between products and key enzymes in the flavonoid pathway and the lipid peroxide and antioxidant systems were also analyzed. The results showed that chlorophyll fluorescence parameters decreased within 24 h of treatment. The chlorophyll contents decreased within 4 h and remained stable after 24 h. Carotenoid content significantly increased. The level of MDA, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD) and the contents of total flavonoids and anthocyanidins increased, while catalase (CAT) activity decreased under UV-B stress. The activities of PAL and CHI also increased with the increased content of total flavonoids. The flavonoid products anthocyanidins had a significant positive correlation with MDA level, as well as the activities of antioxidant enzyme SOD. In conclusion, UV-B radiation induced the degradation of photosynthetic pigments and decreased photochemical efficiency of Photosystem II; increased the contents of MDA, total flavonoids and anthocyanidins; and also enhanced activities of antioxidant enzymes (SOD, APX and POD) and key enzymes (PAL and CHI) in the flavonoid pathway in C. mongolica. Thus, we speculate that the flavonoid pathway were involved in the regulation of stress resistance in C. mongolica. 相似文献
14.
Aziza Amin 《Experimental parasitology》2010,124(2):202-208
A rapid and simple procedure was established to obtain clonal axenic cultures of Tetratrichomonas gallinarum and Trichomonas gallinae and to optimize their in vitro growth conditions. Medium 199 was used for axenization of two genetically different clones of T. gallinarum and T. gallinae. Six different media were used to optimize the growth behaviour of axenically grown parasites: Medium 199, TYM, TYI-S-33, Hollander fluid (HF), Trichomonas vaginalis (TV) and modified TV media. The highest cell yields for both axenic clones of T. gallinarum were obtained in modified TV medium without antibiotics. The maximum numbers of trophozoites of T. gallinae were obtained in an optimized HF medium. This study demonstrated that axenic cultures for T. gallinarum and T. gallinae could be obtained avoiding the migration technique through a V-tube. Following axenization and optimization, both clones of T. gallinarum and T. gallinae could be propagated both aerobically and anaerobically. 相似文献
15.
Kristian R. Albert Teis N. MikkelsenHelge Ro-Poulsen Marie F. ArndalAnders Michelsen 《Environmental and Experimental Botany》2011,72(3):439-447
Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination with leaf angle control. Two sites with natural leaf positions had ground angles of 0° (‘level site’) and 45° (‘sloping site’), while at a third site the leaves were fixed in an angle of 45° to homogenize the irradiance dose (‘fixed leaf angle site’). The photosynthetic performance of the leaves was characterized by simultaneous gas exchange and chlorophyll fluorescence measurements and the PSII performance through the growing season was investigated with fluorescence measurements. Leaf harvest towards the end of the growing season was done to determine the specific leaf area and the content of carbon, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate of electron transport (Jmax) and the maximum carboxylation rate of Rubisco (Vcmax), and the PSII performance showed a decreased quantum yield and increased energy dissipation. A parallel response pattern and reduced PSII performance at all three sites indicate that these responses take place in all leaves across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland. 相似文献
16.
Fernandes EK Rangel DE Moraes AM Bittencourt VR Roberts DW 《Journal of invertebrate pathology》2007,96(3):237-243
Solar radiation, particularly the UV-B component, negatively affects survival of entomopathogenic fungi in the field. In an effort to identify Beauveria spp. isolates with promise for use in biological control settings with high insolation, we examined 53 Beauveria bassiana isolates, 7 isolates of 4 other Beauveria spp. and Engyodontium albus (=Beauveria alba). The origins of these fungi varied widely as to host/substrate and country, but approximately 30% of these isolates were B. bassiana from ticks in Brazil. A preliminary trial with three B. bassiana isolates (Bb 19, CG 310 and CG 481) at several UV-B dosages indicated that 2h of weighted UV-B irradiance at 978mWm(-2) (providing a total dose of 7.04kJm(-2)) allowed separation of isolates into low, medium or high UV-B tolerance. This dose, therefore, was selected as a single dose to compare UV-B tolerances of all 60 Beauveria spp. isolates. There was high variability in tolerance to UV-B radiation among the B. bassiana isolates, ranging from virtually zero tolerance (e.g., Bb 03) to almost 80% tolerance (e.g., CG 228). In addition, surviving B. bassiana conidia demonstrated delayed germination; and this is likely to reduce virulence. Conidia of the other species were markedly more sensitive to UV-B, with E. albus (UFPE 3138) being the least UV-B tolerant. Among B. bassiana isolates originating from 0 degrees to 22 degrees latitudes, those from lower latitudes demonstrated statistically significant greater UV-B tolerances than those isolates from higher latitudes. Isolates from above 22 degrees , however, were unaffected by latitude of origin. A similar analysis based on host type did not indicate a correlation between original host and UV-B tolerance. The identification in this study of several B. bassiana isolates with relatively high UV-B tolerance will guide the selection of isolates for future arthropod microbial control experiments. 相似文献
17.
A series of laboratory and field studies were done to evaluate a range of leguminous plant species for their feeding potential
by adult weevils of the genusSitona Germar. (Coleoptera: Curculionidae). Three species ofSitona, S. lineatus L.,S. flavescens Marsh. andS. hispidulus F. all of which are found commonly on white clover (Trifolium repens L.) in the UK were offered a range of 11 legume species,T. repens (white clover, cv. Olwen),T. pratense L. (red clover, cv. Marcom),T. fragiferum L. (strawberry clover, cv. Palestine),T. hybridum L. (hybrid clover, cv. Tetra),T. incarnatum L (crimson clover),T. dubium Sibth. (lesser yellow trefoil),Lotus corniculatus L. (birdsfoot-trefoil, cv. Leo),L. uliginosus Schkuhr. (large birdsfoot-trefoil),Melilotus alba Desr. (white melilot),Medicago sativa L. (lucerne, cv. Europe) andM. lupulina L. (black medick) in two laboratory experiments. The weevils were offered a choice of these legumes in one experiment whilst
in the other they did not have a choice of food material. These legumes were also sown in the field and a number of measurements
of damage, together with counts ofSitona spp., were made. In the laboratoryS. lineatus andS. hispidulus favoured some of the legumes to a greater or lesser extent than white clover.S. flavescens was more restricted in its feeding than the other two weevil species. In the field studyS. lineatus invaded the experimental area quickly and tended to favourMedicago spp. andMelilotus spp. Later in the yearS. flavescens dominated the sitona fauna on the experiment, with the exception of aggregations ofS. lineatus onM. sativa andM. alba. In a separate screen of 5 varieties of white clover (cvs Donna, Menna, Kersey, Olwen and Grasslands Huia), cv. Olwen appeared
to be the most susceptible to sitona attack. 相似文献
18.
采用人工接蜂、桉树组织石蜡切片和生化组分测定等方法研究了桉树受桉树枝瘿姬小蜂诱导后的生理生化响应机制.结果表明:DH201-2叶柄角质层厚度和油囊数量均较GL-UG9的厚、多,且差异均达到极显著水平(P角质层厚度=0.00001 <0.01,P油囊数量=0.00209<0.01),但是GL-UG9叶柄表皮细胞厚度和维管束数量均较DH201-2厚、多,差异分别达到显著水平(P=0.015215<0.05)和极显著水平(P=0.002375<0.01),DH201-2茎皮层薄壁细胞厚度、油囊直径、维管束数量较GL-UG9厚、多,差异分别为显著(P皮层薄壁细胞厚度=0.04071 <0.05)、极显著(P油囊直径=000016<0.05)、极显著(P维管束数量=0.00000<0.01).而GLUG9茎角质层和表皮细胞厚度均较DH201-2厚,差异达到了极显著水平(P角质层厚度=0.00167,P表皮细胞厚度=0.00000<0.01);桉树枝瘿姬小蜂虫瘿为组织瘿,由内到外可以分为:营养组织层、薄/厚壁组织层、维管束层、皮层、表皮等结构;接种桉树枝瘿姬小蜂成虫后,桉树叶片可溶性总糖、游离氨基酸、叶绿素含量均升高,差异达到了极显著水平(P<0.01),但是蛋白质、pH值、类黄酮、总酚的变化没有达到显著水平(P>0.05);吲哚乙酸氧化酶、过氧化物、过氧化氢酶活力均有不同程度的升高.研究显示桉树枝瘿姬小蜂入侵诱导了桉树一系列的生理生化变化,实验结果为抗桉树枝瘿姬小蜂桉树无性系的选育技术体系构建提供了理论基础. 相似文献
19.
Predicting exotic invaders and reducing their impacts on the biodiversity and function of native ecosystems require understanding
of the mechanisms that facilitate their success during key stages of invasion. We determined whether clonal growth, characteristic
of the majority of successful invaders of natural areas, facilitates the proliferation of Bromus inermis (smooth brome), an exotic grass invading prairie ecosystems across the Great Plains. By manipulating the below-ground connections
of proliferating rhizomes as well as the levels of soil nitrogen along the margins of clones invading northern fescue prairies
in Manitoba, Canada, we hypothesized that physiological integration would most benefit ramets invading low resource environments.
Severing clonal connections reduced the mass of smooth brome shoots invading native prairies and was exacerbated by the immobilization
of soil nutrients with glucose. Clonal connections were equally important in the maintenance of smooth brome density and the
horizontal proliferation of ramets. Our results demonstrate the role of physiological integration in the proliferation of
a clonal exotic invader and may help explain the success of clonal invaders in other regions. Although integration among invading
ramets suggests several possibilities for successful management, future research must continue to elucidate differences in
the invasiveness of native versus exotic species as well as the persistence of clonal connections among exotic invaders. 相似文献
20.
Potential and limitations of current concepts regarding the response of clonal plants to environmental heterogeneity 总被引:1,自引:0,他引:1
Josef F. Stuefer 《Plant Ecology》1996,127(1):55-70
Plant ecologists have spent considerable effort investigating the physiological mechanisms and ecological consequences of clonal growth in plants. One line of research is concerned with the response of clonal plants to environmental heterogeneity. Several concepts and hypotheses have been formulated so far, suggesting that intra-clonal resource translocation, morphological plasticity on different organizational levels (e.g. leaves, ramets, fragments), and other features of clonal plants may represent potentially adaptive traits enabling stoloniferous and rhizomatous species to cope better with habitat patchiness. Although each of these concepts contributes substantially to our understanding of the ecology of clonal species, it is difficult to combine them into a consistent theoretical framework. This apparent lack of conceptual coherence seems partly be caused by an uncritical use of the term habitat heterogeneity. Researchers have not always acknowledged the fact that heterogeneity may refer to a number of fundamentally different aspects of environmental variability (i.e. scale, contrast, predictability, temporal vs. spatial heterogeneity), and that each of these aspects may, on one hand, allow for the evolution of specific plant responses to heterogeneity and, on the other, severely constrain the viability of potentially adaptive traits. Since adaptive responses are operational only in a narrow range of conditions (delimited by external environmental conditions and constraints internal to plants) it seems imperative to clearly define the context and the limits within which concepts regarding clonal plants' responses to heterogeneity are valid. In this paper an attempt is made to review a number of these concepts and to try and identify the necessary conditions for them to be operational. Special attention is paid (1) to different aspects of environmental heterogeneity and how they may affect clonal plants, and (2) to possible constraints (e.g. sectoriality, perception of environmental signals, morphological plasticity) on plant responses to patchiness. 相似文献