首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Y Chi  T K Kumar  H M Wang  M C Ho  I M Chiu  C Yu 《Biochemistry》2001,40(25):7746-7753
The thermodynamic parameters characterizing the conformational stability of the human acidic fibroblast growth factor (hFGF-1) have been determined by isothermal urea denaturation and thermal denaturation at fixed concentrations of urea using fluorescence and far-UV CD circular dichroism (CD) spectroscopy. The equilibrium unfolding transitions at pH 7.0 are adequately described by a two-state (native <--> unfolded state) mechanism. The stability of the protein is pH-dependent, and the protein unfolds completely below pH 3.0 (at 25 degrees C). hFGF-1 is shown to undergo a two-state transition only in a narrow pH range (pH 7.0-8.0). Under acidic (pH <6.0) and basic (pH >8.0) conditions, hFGF-1 is found to unfold noncooperatively, involving the accumulation of intermediates. The average temperature of maximum stability is determined to be 295.2 K. The heat capacity change (DeltaC(p)()) for the unfolding of hFGF-1 is estimated to be 2.1 +/- 0.5 kcal.mol(-1).K(-1). Temperature denaturation experiments in the absence and presence of urea show that hFGF-1 has a tendency to undergo cold denaturation. Two-dimensional (1)H-(15)N HSQC spectra of hFGF-1 acquired at subzero temperatures clearly show that hFGF-1 unfolds under low-temperature conditions. The significance of the noncooperative unfolding under acidic conditions and the cold denaturation process observed in hFGF-1 are discussed in detail.  相似文献   

2.
UBA domains are a commonly occurring sequence motif of approximately 45 amino acid residues that are found in diverse proteins involved in the ubiquitin/proteasome pathway, DNA excision-repair, and cell signaling via protein kinases. The human homologue of yeast Rad23A (HHR23A) is one example of a nucleotide excision-repair protein that contains both an internal and a C-terminal UBA domain. The solution structure of HHR23A UBA(2) showed that the domain forms a compact three-helix bundle. We report the structure of the internal UBA(1) domain of HHR23A. Comparison of the structures of UBA(1) and UBA(2) reveals that both form very similar folds and have a conserved large hydrophobic surface patch. The structural similarity between UBA(1) and UBA(2), in spite of their low level of sequence conservation, leads us to conclude that the structural variability of UBA domains in general is likely to be rather small. On the basis of the structural similarities as well as analysis of sequence conservation, we predict that this hydrophobic surface patch is a common protein-interacting surface present in diverse UBA domains. Furthermore, accumulating evidence that ubiquitin binds to UBA domains leads us to the prediction that the hydrophobic surface patch of UBA domains interacts with the hydrophobic surface on the five-stranded beta-sheet of ubiquitin. Detailed comparison of the structures of the two UBA domains, combined with previous mutagenesis studies, indicates that the binding site of HIV-1 Vpr on UBA(2) does not completely overlap the ubiquitin binding site.  相似文献   

3.
The conformational stability of the histidine-containing phosphocarrier protein (HPr) from Bacillus subtilis has been determined using a combination of thermal unfolding and solvent denaturation experiments. The urea-induced denaturation of HPr was monitored spectroscopically at fixed temperatures and thermal unfolding was performed in the presence of fixed concentrations of urea. These data were analyzed in several different ways to afford a measure of the cardinal parameters (delta Hg, Tg, delta Sg, and delta Cp) that describe the thermodynamics of folding for HPr. The method of Pace and Laurents (Pace CN, Laurents DV, 1989, Biochemistry 28:2520-2525) was used to estimate delta Cp as was a global analysis of the thermal- and urea-induced unfolding data. Each method used to analyze the data gives a similar value for delta Cp (1,170 +/- 50 cal mol-1K-1). Despite the high melting temperature for HPr (Tg = 73.5 degrees C), the maximum stability of the protein, which occurs at 26 degrees C, is quite modest (delta Gs = 4.2 kcal mol-1). In the presence of moderate concentrations of urea, HPr exhibits cold denaturation, and thus a complete stability curve for HPr, including a measure of delta Cp, can be achieved using the method of Chen and Schellman (Chen B, Schellman JA, 1989, Biochemistry 28:685-691). A comparison of the different methods for the analysis of solvent denaturation curves is provided and the effects of urea on the thermal stability of this small globular protein are discussed. The methods presented will be of general utility in the characterization of the stability curve for many small proteins.  相似文献   

4.
We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea‐induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two‐state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m‐value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea‐denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ~40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions.  相似文献   

5.
Pedroso I  Irún MP  Machicado C  Sancho J 《Biochemistry》2002,41(31):9873-9884
The conformational stability of a single-chain Fv antibody fragment against a hepatitis B surface antigen (anti-HBsAg scFv) has been studied by urea and temperature denaturation followed by fluorescence and circular dichroism. At neutral pH and low protein concentration, it is a well-folded monomer, and its urea and thermal denaturations are reversible. The noncoincidence of the fluorescence and circular dichroism transitions indicates the accumulation in the urea denaturation of an intermediate (I(1)) not previously described in scFv molecules. In addition, at higher urea concentrations, a red-shift in the fluorescence emission maximum reveals an additional intermediate (I(2)), already reported in the denaturation of other scFvs. The urea equilibrium unfolding of the anti-HBsAg scFv is thus four-state. A similar four-state behavior is observed in the thermal unfolding although the intermediates involved are not identical to those found in the urea denaturation. Global analysis of the thermal unfolding data suggests that the first intermediate displays substantial secondary structure and some well-defined tertiary interactions while the second one lacks well-defined tertiary interactions but is compact and unfolds at higher temperature in a noncooperative fashion. Global analysis of the urea unfolding data (together with the modeled structure of the scFv) provides insights into the conformation of the chemical denaturation intermediates and allows calculation of the N-I(1), I(1)-I(2), and I(2)-D free energy differences. Interestingly, although the N-D free energy difference is very large, the N-I(1) one, representing the "relevant" conformational stability of the scFv, is small.  相似文献   

6.
Felitsky DJ  Record MT 《Biochemistry》2004,43(28):9276-9288
Two thermodynamic models have been developed to interpret the preferential accumulation or exclusion of solutes in the vicinity of biopolymer surface and the effects of these solutes on protein processes. The local-bulk partitioning model treats solute (and water) as partitioning between the region at/or near the protein surface (the local domain) and the bulk solution. The solvent exchange model analyzes a 1:1 competition between water and solute molecules for independent surface sites. Here we apply each of these models to interpret thermodynamic data for the interactions of urea and the osmoprotectant glycine betaine (N,N,N-trimethylglycine; GB) with the surface exposed in unfolding the marginally stable lacI HTH DNA binding domain. The partition coefficient K(P) quantifying accumulation of urea at this protein surface (K(P) approximately equal 1.1) is only weakly dependent on urea concentration up to 6 M urea. However, K(P) quantifying exclusion of GB from the vicinity of this protein surface increases from 0.83 (extrapolated to 0 M GB) to 1.0 (indicating that local and bulk GB concentrations are equal) at 4 M GB (activity > 40 M). We interpret the significant concentration dependence of K(P) for GB, predicted to be general for excluded, nonideal solutes such as GB, as a modest (8%) attenuation of the GB concentration dependence of solute nonideality in the local domain relative to that in the bulk solution. Above 4 M, K(P) for the interaction of GB with the surface exposed in protein unfolding is predicted to exceed unity, which explains the maximum in thermal stability observed for RNase and lysozyme at 4 M GB (Santoro, M. M., Liu, Y. F., Khan, S. M. A., Hou, L. X., and Bolen, D. W. (1992) Biochemistry 31, 5278-5283). Both thermodynamic models provide good two-parameter fits to GB and urea data for lacI HTH unfolding over a wide concentration range. The solute partitioning model allows for a full spectrum of attenuation effects in the local domain, encompasses the cases treated by the competitive binding model, and provides a somewhat better two-parameter fit of effects of high GB concentration on lacI HTH stability. Parameters of this fit should be applicable to isothermal and thermal unfolding data for all proteins with similar compositions of surface exposed in unfolding.  相似文献   

7.
The unfolding of ribonuclease by urea and guanidine hydrochloride has been studied by 1H nuclear magnetic resonance spectroscopy, under conditions where the unfolding is fully reversible and concentration-independent. Both urea and guanidine produce marked changes in the chemical shift of the histidine C(2)H resonances, together with small changes in other regions of the spectrum, at concentrations (0.1 to 1.0 m) far below those which are required for gross unfolding of the protein. The changes in area of the histidine C(2)H resonances through the major unfolding transition produced by these denaturants give evidence for the existence of at least two intermediates in the unfolding process. The “order of unfolding” of the histidine residues is closely similar for both urea and guanidine hydrochloride unfolding, and also similar to that found for thermal unfolding at low pH (see Benz &; Roberts, 1975) accompanying paper.  相似文献   

8.
The DNA repair protein HHR23A is a highly conserved protein that functions in nucleotide excision repair. HHR23A contains two ubiquitin associated domains (UBA) that are conserved in a number of proteins with diverse functions involved in ubiquitination, UV excision repair, and signaling pathways via protein kinases. The cellular binding partners of UBA domains remain unclear; however, we previously found that the HHR23A UBA(2) domain interacts specifically with the HIV-1 Vpr protein. Analysis of the low resolution solution structure of HHR23A UBA(2) revealed a hydrophobic loop region of the UBA(2) domain that we predicted was the interface for protein/protein interactions. Here we present results of in vitro binding studies that demonstrate the requirement of this hydrophobic loop region for interaction with human immunodeficiency virus (HIV-1) Vpr. A single point mutation of the Pro at residue 333 to a Glu totally abolishes the binding of HIV-1 Vpr to UBA(2). High resolution NMR structures of the binding deficient UBA(2) mutant P333E as well as of the wild-type UBA(2) domain were determined to compare the effect of this mutation on the structure. Small but significant differences are observed only locally at the site of the mutation. The biochemical and structural analysis confirms the function of the HHR23A UBA(2) GFP-loop as the protein/protein interacting domain.  相似文献   

9.
Domain II (residues 189-338, M(r) = 16 222) of glutamate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima was used as a model system to study reversible unfolding thermodynamics of this hyperthermostable enzyme. The protein was produced in large quantities in E.COLI: using a T7 expression system. It was shown that the recombinant domain is monomeric in solution and that it comprises secondary structural elements similar to those observed in the crystal structure of the hexameric enzyme.The recombinant domain is thermostable and undergoes reversible and cooperative thermal unfolding in the pH range 5.90-8.00 with melting temperatures between 75.1 and 68.0 degrees C. Thermal unfolding of the protein was studied using differential scanning calorimetry and circular dichroism spectroscopy. Both methods yielded comparable values. The analysis revealed an unfolding enthalpy at 70 degrees C of 70.2 +/- 4.0 kcal/mol and a DeltaC(p) value of 1.4 +/- 0.3 kcal/mol K. Chemical unfolding of the recombinant domain resulted in m values of 3.36 +/- 0.10 kcal/mol M for unfolding in guanidinium chloride and 1.46 +/- 0.04 kcal/mol M in urea. The thermodynamic parameters for thermal and chemical unfolding equilibria indicate that domain II from T.MARITIMA: glutamate dehydrogenase is a thermostable protein with a DeltaG(max) of 3.70 kcal/mol. However, the thermal and chemical stabilities of the domain are lower than those of the hexameric protein, indicating that interdomain interactions must play a significant role in the stabilization of T. MARITIMA: domain II glutamate dehydrogenase.  相似文献   

10.
The cold-active alpha-amylase from the Antarctic bacterium Pseudoalteromonas haloplanktis (AHA) is the largest known multidomain enzyme that displays reversible thermal unfolding (around 30 degrees C) according to a two-state mechanism. Transverse urea gradient gel electrophoresis (TUG-GE) from 0 to 6.64 M was performed under various conditions of temperature (3 degrees C to 70 degrees C) and pH (7.5 to 10.4) in the absence or presence of Ca2+ and/or Tris (competitive inhibitor) to identify possible low-stability domains. Contrary to previous observations by strict thermal unfolding, two transitions were found at low temperature (12 degrees C). Within the duration of the TUG-GE, the structures undergoing the first transition showed slow interconversions between different conformations. By comparing the properties of the native enzyme and the N12R mutant, the active site was shown to be part of the least stable structure in the enzyme. The stability data supported a model of cooperative unfolding of structures forming the active site and independent unfolding of the other more stable protein domains. In light of these findings for AHA, it will be valuable to determine if active-site instability is a general feature of heat-labile enzymes from psychrophiles. Interestingly, the enzyme was also found to refold and rapidly regain activity after being heated at 70 degrees C for 1 h in 6.5 M urea. The study has identified fundamental new properties of AHA and extended our understanding of structure/stability relationships of cold-adapted enzymes.  相似文献   

11.
The study of guanidine-HCl or thermal denaturation of diferric ovotransferrin (Fe2Tf) has revealed a simultaneous unfolding of the two domains of the protein (Ikeda et al. (1985) FEBS Lett. 182, 305-309). In urea denaturation of Fe2Tf, however, two distinct steps of unfolding were observed in the urea concentration range from 4.5 to 9 M at pH 8.0 and 37 degrees C by measuring the residual iron-bound protein (absorbance at 465 nm) and the remaining folded structures (circular dichroism at 222 nm). From a study of urea denaturation of partially iron-saturated Tf whose iron preferentially occupied the N-domain, it was found that the first and the second steps of denaturation corresponded to those of the N-terminal (4.5-6 M urea) and C-terminal domains (over 7 M urea), respectively. The N-domain of Fe2Tf was selectively unfolded in 7 M urea and digested with trypsin to provide an iron-bound C-terminal fragment (42 kDa) in good yield (about 80% of theoretical). The kinetic analysis of the decrease in A465 of Fe2Tf in 9 M urea showed that the N-domain unfolded 3 x 10(2) times faster than the C-domain. With partially iron-saturated Tf, the decrease of A465 in 9 M urea also proceeded in a biphasic manner and the ratio, the decrement in A465 of the rapid phase/the decrement in A465 of the slow phase, gave the value of iron distribution as Fe at the N-site/Fe at the C-site.  相似文献   

12.
13.
Herberhold H  Royer CA  Winter R 《Biochemistry》2004,43(12):3336-3345
FT-IR spectroscopy was used to study the effects of various chaotropic and kosmotropic cosolvents (glycerol, sucrose, sorbitol, K(2)SO(4), CaCl(2), and urea) on the secondary structure and thermodynamic properties upon unfolding and denaturation of staphylococcal nuclease (Snase). The data show that the different cosolvents have a profound effect on the denaturation pressure and the Gibbs free energy (DeltaG(o)) and volume (DeltaV(o) change of unfolding. Moreover, by analysis of the amide I' infrared bands, conformational changes of the protein upon unfolding in the different cosolvents have been determined. An increase, a reduction, or an independence of the volume change of unfolding is observed, depending on the type of cosolvent, which can at least in part be attributed to the formation of a different unfolded state structure of the protein. The data are compared with the corresponding thermodynamic values of DeltaV(o) for the temperature-induced unfolding process of Snase as obtained by pressure perturbation calorimetry, and significant differences are observed and discussed.  相似文献   

14.
The non-structural protein 3 (NS3) of Hepatitis C virus (HCV) is a bifunctional enzyme with RNA-dependent NTPase/RNA helicase and serine protease activities, and thus represents a promising target for anti-HCV therapy. These functions are performed by two distinct moieties; the N-terminal protease domain and the C-terminal helicase domain that further folds into three structural subdomains. To obtain lower molecular mass proteins suitable for nuclear magnetic resonance studies of helicase-inhibitor complexes, helicase domains 1, 2, and 1+2 devoid of a hydrophobic beta-loop were overexpressed and purified. Circular dichroism studies were carried out to confirm the secondary structure content and to determine thermodynamic parameters describing the stability of the proteins. Both thermal and GuHCl-induced unfolding experiments confirmed the multidomain organization of the helicase. The unfolding transition observed for domain 1+2 was in agreement with the model of two well-resolved successive steps corresponding to the independent unfolding of domains 1 and 2, respectively. In the case of the full-length helicase, the presence of domain 3 remarkably changed the transition profile, leading to fast and irreversible transformation of partially unfolded protein.  相似文献   

15.
Structural changes in T7 RNA polymerase (T7RNAP) induced by temperature and urea have been studied over a wide range of conditions to obtain information about the structural organization and the stability of the enzyme. T7RNAP is a large monomeric enzyme (99 kD). Calorimetric studies of the thermal transitions in T7RNAP show that the enzyme consists of three cooperative units that may be regarded as structural domains. Interactions between these structural domains and their stability strongly depend on solvent conditions. The unfolding of T7RNAP under different solvent conditions induces a highly stable intermediate state that lacks specific tertiary interactions, contains a significant amount of residual secondary structure, and undergoes further cooperative unfolding at high urea concentrations. Circular dichroism (CD) studies show that thermal unfolding leads to an intermediate state that has increased beta-sheet and reduced alpha-helix content relative to the native state. Urea-induced unfolding at 25 degrees C reveals a two-step process. The first transition centered near 3 M urea leads to a plateau from 3.5 to 5.0 M urea, followed by a second transition centered near 6.5 M urea. The CD spectrum of the enzyme in the plateau region, which is similar to that of the enzyme thermally unfolded in the absence of urea, shows little temperature dependence from 15 degrees to 60 degrees C. The second transition leads to a mixture of poly(Pro)II and unordered conformations. As the temperature increases, the ellipticity at 222 nm becomes more negative because of conversion of poly(Pro)II to the unordered conformation. Near-ultraviolet CD spectra at 25 degrees C at varying concentrations of urea are consistent with this picture. Both thermal and urea denaturation are irreversible, presumably because of processes that follow unfolding.  相似文献   

16.
Ubiquitin-associated (UBA) domains are small protein domains that occur in the context of larger proteins and are likely to function as inter- and intramolecular communication elements in ubiquitin/polyubiquitin signaling. Although monoubiquitin/UBA complexes are well characterized, much less is known about UBA/polyubiquitin complexes, even though polyubiquitin chains are believed to be biologically relevant ligands of many UBA domain proteins. Here, we report the results of a quantitative study of the interaction of K48-linked polyubiquitin chains with UBA domains of the DNA repair/proteolysis protein HHR23A, using surface plasmon resonance and other approaches. We present evidence that the UBL domain of HHR23A negatively regulates polyubiquitin/UBA interactions and identify leucine 8 of ubiquitin as an important determinant of chain recognition. A striking relationship between binding affinity and chain length suggests that maximum affinity is associated with a conformational feature that is fully formed in chains of n = 4-6 and can be recognized by a single UBA domain of HHR23A. Our findings provide new insights into polyubiquitin chain recognition and set the stage for future structural investigations of UBA/polyubiquitin complexes.  相似文献   

17.
Although unfolding of protein in the liquid state is relatively well studied, its mechanisms in the solid state, are much less understood. We evaluated the reversibility of thermal unfolding of lysozyme with respect to the water content using a combination of thermodynamic and structural techniques such as differential scanning calorimetry, synchrotron small and wide-angle X-ray scattering (SWAXS) and Raman spectroscopy. Analysis of the endothermic thermal transition obtained by DSC scans showed three distinct unfolding behaviors at different water contents. Using SWAXS and Raman spectroscopy, we investigated reversibility of the unfolding for each hydration regime for various structural levels including overall molecular shape, secondary structure, hydrophobic and hydrogen bonding interactions. In the substantially dehydrated state below 37 wt% of water the unfolding is an irreversible process and can be described by a kinetic approach; above 60 wt% the process is reversible, and the thermodynamic equilibrium approach is applied. In the intermediate range of water contents between 37 wt% and 60 wt%, the system is phase separated and the thermal denaturation involves two processes: melting of protein crystals and unfolding of protein molecules. A phase diagram of thermal unfolding/denaturation in lysozyme - water system was constructed based on the experimental data.  相似文献   

18.
Thermal unfolding of dodecameric manganese glutamine synthetase (622,000 M(r)) at pH 7 and approximately 0.02 ionic strength occurs in two observable steps: a small reversible transition (Tm approximately 42 degrees C; delta H approximately equal to 0.9 J/g) followed by a large irreversible transition (Tm approximately 81 degrees C; delta H approximately equal to 23.4 J/g) in which secondary structure is lost and soluble aggregates form. Secondary structure, hydrophobicity, and oligomeric structure of the equilibrium intermediate are the same as for the native protein, whereas some aromatic residues are more exposed. Urea (3 M) destabilizes the dodecamer (with a tertiary structure similar to that without urea at 55 degrees C) and inhibits aggregation accompanying unfolding at < or = 0.2 mg protein/mL. With increasing temperature (30-70 degrees C) or incubation times at 25 degrees C (5-35 h) in 3 M urea, only dodecamer and unfolded monomer are detected. In addition, the loss in enzyme secondary structure is pseudo-first-order (t1/2 = 1,030 s at 20.0 degrees C in 4.5 M urea). Differential scanning calorimetry of the enzyme in 3 M urea shows one endotherm (Tmax approximately 64 degrees C; delta H = 17 +/- 2 J/g). The enthalpy change for dissociation and unfolding agrees with that determined by urea titrations by isothermal calorimetry (delta H = 57 +/- 15 J/g; Zolkiewski M, Nosworthy NJ, Ginsburg A, 1995, Protein Sci 4: 1544-1552), after correcting for the binding of urea to protein sites exposed during unfolding (-42 J/g). Refolding and assembly to active enzyme occurs upon dilution of urea after thermal unfolding.  相似文献   

19.
Differential scanning calorimetry has been used to investigate the thermal stability of three different ceruloplasmins (from sheep, chicken, and turtle) in their native state and after limited proteolysis. The three undegraded proteins showed a similar structural organization in three calorimetric domains, although their temperature of unfolding varied from 57.8 degrees C (turtle) to 71.2 degrees C (sheep) to 82.1 degrees C (chicken). The spectroscopic and the catalytic properties were totally lost at temperatures corresponding to the unfolding of the less thermostable domain in the case of sheep and chicken ceruloplasmins and to the unfolding of the most thermostable domain in the turtle protein. Trypsin, but not plasmin, digestion caused a significant decrease of the thermal stability of sheep and chicken ceruloplasmins. Turtle ceruloplasmin was insensitive to both proteases. Comparing the thermodynamic parameters of the sheep protein in its undegraded and cleaved states revealed a mismatch between the three calorimetric domains and the 3-fold internal replication of the primary structure, which is evident in the highly homologous, fully sequenced human protein. Copper removal caused the rearrangement of the molecule in only two calorimetric domains, suggesting a role of the metal atoms in organizing a new calorimetric domain, which was tentatively assigned to the less thermostable cooperative unit of the native protein.  相似文献   

20.
Thermodynamic parameters describing the conformational stability of the histidine-containing phosphocarrier protein from Streptomyces coelicolor, scHPr, have been determined by steady-state fluorescence measurements of isothermal urea-denaturations, differential scanning calorimetry at different guanidinium hydrochloride concentrations and, independently, by far-UV circular dichroism measurements of isothermal urea-denaturations, and thermal denaturations at fixed urea concentrations. The equilibrium unfolding transitions are described adequately by the two-state model and they validate the linear free-energy extrapolation model, over the large temperature range explored, and the urea concentrations used. At moderate urea concentrations (from 2 to 3 m), scHPr undergoes both high- and low-temperature unfolding. The free-energy stability curves have been obtained for the whole temperature range and values of the thermodynamic parameters governing the heat- and cold-denaturation processes have been obtained. Cold-denaturation of the protein is the result of the combination of an unusually high heat capacity change (1.4 +/- 0.3 kcal.mol(-1).K(-1), at 0 m urea, being the average of the fluorescence, circular dichroism and differential scanning calorimetry measurements) and a fairly low enthalpy change upon unfolding at the midpoint temperature of heat-denaturation (59 +/- 4 kcal.mol(-1), the average of the fluorescence, circular dichroism and differential scanning calorimetry measurements). The changes in enthalpy (m(DeltaH(i) )), entropy (m(DeltaS(i) )) and heat capacity (m(DeltaC(pi) )), which occur upon preferential urea binding to the unfolded state vs. the folded state of the protein, have also been determined. The m(DeltaH(i) ) and the m(DeltaS(i) ) are negative at low temperatures, but as the temperature is increased, m(DeltaH(i) ) makes a less favourable contribution than m(DeltaS(i) ) to the change in free energy upon urea binding. The m(DeltaC(pi) ) is larger than those observed for other proteins; however, its contribution to the global heat capacity change upon unfolding is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号