首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used thiophilic and hydrophobic interaction chromatography in an attempt to obtain enriched human immunoglobulin G (IgG) subclasses from a therapeutic immunoglobulin preparation. Proteins were adsorbed on a thiophilic gel and on Phenyl-, Butyl-, or Octyl-Sepharose in 1 M ammonium sulphate. Elution with a decreasing salt gradient produced no marked subclass selectivity, except with Octyl-Sepharose, which yielded a poorly adsorbed fraction somewhat enriched in IgG2, representing ca. 20% of the total initial protein. Neither thiophilic nor hydrophobic interaction chromatography appear suitable for an efficient enrichment in subclasses, which all show a broad heterogeneity in their affinity for these columns. The influence of the starting salt concentration was also studied. With thiophilic gels, in the absence of ammonium sulphate, ca. 30% of the initial load was not adsorbed, and was found to be enriched in IgG2. At 2.5 and 5% ammonium sulphate, practically no adsorption occurred. At 7.5% ammonium sulphate, the non-adsorbed fraction was enriched in IgG3. With Phenyl-Sepharose, adsorption increased smoothly with the salt concentration. It is concluded that different forces come into play for adsorption on thiophilic gels at low and high salt concentration.  相似文献   

2.
Supercoiled plasmid DNA was selectively purified from its open circular form by thiophilic interaction chromatography, performed in the presence of high concentrations of water-structuring salts. To identify optimal conditions for purification, various aromatic thioether ligands were coupled to a chromatographic support and screened for their ability to separate plasmid isoforms from each other and from other host cell contaminants, including RNA, genomic DNA, protein, and endotoxins. Selectivity of the chromatographic medium depended on the structure of the ligands, with characteristics of the substituents on the aromatic ring determining the resolution between the different plasmid DNA isoforms. Optimal resolution was obtained with ligands consisting of an thioaromate, substituted with highly electronegative groups. When 2-mercaptopyridine was used as a ligand, the difference in conductivity for eluting open circular and supercoiled plasmid DNA is only 6 mS/cm. However, with 4-nitrothiophol the resolution for plasmid DNA separation on the media increased, resulting in a 20 mS/cm difference. When used in combination with a prior group separation step, these aromatic thioether ligands facilitated the isolation of highly purified supercoiled plasmid DNA, suitable for use in gene therapy and DNA vaccine applications.  相似文献   

3.
Adeno-associated viruses (AAVs) are the vector of choice for delivering gene therapies that can cure inherited and acquired diseases. Clinical research on various AAV serotypes significantly increased in recent years alongside regulatory approvals of AAV-based therapies. The current AAV purification platform hinges on the capture step, for which several affinity resins are commercially available. These adsorbents rely on protein ligands—typically camelid antibodies—that provide high binding capacity and selectivity, but suffer from low biochemical stability and high cost, and impose harsh elution conditions (pH < 3) that can harm the transduction activity of recovered AAVs. Addressing these challenges, this study introduces peptide ligands that selectively capture AAVs and release them under mild conditions (pH = 6.0). The peptide sequences were identified by screening a focused library and modeled in silico against AAV serotypes 2 and 9 (AAV2 and AAV9) to select candidate ligands that target homologous sites at the interface of the VP1-VP2 and VP2-VP3 virion proteins with mild binding strength (KD ~ 10−5–106 M). Selected peptides were conjugated to Toyopearl resin and evaluated via binding studies against AAV2 and AAV9, demonstrating the ability to target both serotypes with values of dynamic binding capacity (DBC10% > 1013 vp/mL of resin) and product yields (~50%–80%) on par with commercial adsorbents. The peptide-based adsorbents were finally utilized to purify AAV2 from a HEK 293 cell lysate, affording high recovery (50%–80%), 80- to 400-fold reduction of host cell proteins (HCPs), and high transduction activity (up to 80%) of the purified viruses.  相似文献   

4.
Thioredoxin systems, composed of thioredoxin reductase (TrxR), thioredoxin (Trx) and NADPH, play important roles in maintaining cellular redox homeostasis and redox signaling. Recently the cytosolic Trx1 system has been shown to be a cellular target of arsenic containing compounds. To elucidate the relationship of the structure of arsenic compounds with their ability of inhibiting TrxR1 and Trx1, and cytotoxicity, we have investigated the reaction of Trx1 system with seven arsenic trithiolates: As(Cys)3, As(GS)3, As(Penicillamine)3, As(Mercaptoethanesulfonate)3, As(Mercaptopurine)3, As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3. The cytotoxicity of these arsenicals was consistent with their ability to inhibit TrxR1 in vitro and in cells. Unlike other arsenicals, As(Mercaptopurine)3 which did not show inhibitory effects on TrxR1 had very weak cytotoxicity, indicating that TrxR1 is a reliable drug target for arsenicals. Moreover, the two aromatic compounds As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3 showed stronger cytotoxicity than the others. As(2-mercaptopyridine)3 which selectively oxidized two structural cysteines (Cys62 and Cys69) in Trx1 showed mild improvement in cytotoxicity. As(2-mercaptopyridine N-oxide)3 oxidized all the Cys residues in Trx1, exhibiting the strongest cytotoxicity. Oxidation of Trx1 by As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3 affected electron transfer from NADPH and TrxR1 to peroxiredoxin 1 (Prx1), which could result in the reactive oxygen species elevation and trigger cell death process. These results suggest that oxidation of structural cysteine residues in Trx1 by aromatic group in TrxR1-targeting drugs may sensitize tumor cells to cell death, providing a novel approach to regulate cellular redox signaling and also a basis for rational design of new anticancer agents.  相似文献   

5.
The complex technology of molecular imprinting with a photocatalytic reaction introduces novel ways of treating industrial and living sewage. This paper deals with the effects of trace TiO2 on Ag+-imprinted or non-imprinted adsorbents. NanoTiO2 was added during the preparation of the adsorbents. The performance of these adsorbents was compared with other common adsorbents, such as activated carbon and chitosan. TiO2 loading improved the adsorption ability for Ag+ of adsorbents. Adsorption equilibrium could be rapidly achieved at an initial Ag+ concentration of 200 mg/L under different light conditions (UV, visible light, and dark). After TiO2 loading, the maximal adsorption capacity of Ag+-imprinted and non-imprinted adsorbents was 25.0% higher, at 155.0 and 134.3 mg/g, respectively, at the initial Ag+ concentration of 1,000 mg/L. In order to understand the binding state of Ag, Ti on the adsorbents surface, FTIR, XPS were measured. The FTIR analysis, before and after adding TiO2, indicated that TiO2 bound with adsorbents through hydrogen bonding. XPS analysis, before and after adsorption, indicated Ag+ was reduced to Ag0 on the adsorbent surface, leading to an increased adsorption of Ag+.  相似文献   

6.
Prostate-specific antigen (PSA) protein and complexes of PSA with α1-antichymotrypsin (PSA-ACT) or α2-macroglobulin (PSA-A2M) prepared in vitro, have strong affinity for different thiophilic gels (T-gel). Free PSA, and these PSA complexes can be isolated due to their affinity for T-gels. The average recovery of PSA from several of the T-gels, based upon ELISA measurements, was 84 to 94%. The data suggest that T-gel affinity can be explored for the purification of free and complexed PSA from various biologic fluids.  相似文献   

7.
The formation of a stable spatial arrangement of protein A ligands is a great challenge for the development of high‐capacity polymer‐grafted protein A adsorbents due to the complexity in interplay between coupled ligands and polymer chain. In this work, carboxymethyl dextrans (CMDs) with different molecular weight were introduced to provide stable spatial ligand arrangement in CMD‐grafted protein A gels to improve IgG adsorption. The result showed that coupling of protein A ligand in CMD‐grafted layer had no marked influence on pore size and dextran layers coupled with the ligands were stable in experimental range of salt concentrations. The result of IgG adsorption revealed that carboxymethyl dextran T10, a short CMD, was more suitable as a scaffold for the synthesis of high‐capacity protein A gels. Moreover, the maximal adsorption capacity for IgG was obtained to be 96.4 mg/g gel at ionic capacities of 300–350 mmol/L and a ligand density of 15.2 mg/g gel. Dynamic binding capacity for IgG exhibited a higher capacity utilization in CMD‐grafted protein A gels than non‐grafted protein A gel. The research presented a tactics to establish a stable dextran layer coupled with protein A ligands and demonstrated its importance to improve binding capacity for IgG.  相似文献   

8.
Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e), a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e) from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits) was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease.  相似文献   

9.
A comparative study was carried out to investigate the influence of different mouse antibody subclasses on the chromatographic behaviour on thiophilic supports. Cell-free supernatants from different mouse-mouse hybridoma cultures in a standard medium were purified on thiophilic agarose and Fractogel EMD TA. The adsorption capacities and purification factors were monitored under optimised adsorption conditions. The different isotypes did not differ significantly regarding capacity of the thiophilic matrix, but the purity of the eluted antibody fractions was significantly lower for the IgG2a subclass compared to all other murine antibodies. A significant copurification of proteins from cell culture supernatant with antibodies of the IgG2a subclass indicated a restriction in the universal nature of thiophilic interaction.  相似文献   

10.
A new set of ligands based on substituted pyridine and other N‐heterocyclic structures, possessing an aliphatic primary amino group tether and an exocyclic sulphur atom, has been prepared and immobilized onto epoxy‐activated matrices such as Sepharose 6 Fast Flow®. The derived adsorbents have been evaluated for their utility to capture and purify humanized monoclonal antibodies. Favourable binding properties were assessed from screening assays to determine optimal conditions for the capture and elution of the monoclonal antibodies. Static and dynamic binding experiments were employed to derive the equilibrium dissociation constants KD's and binding capacities Qmax's. Typically, the KD values were in the range of 2–5 μM and the Qmax values between 20 and 75 mg mAb/ml resin, depending on the stereo‐electronic properties of the substituent in the N‐heterocyclic ring structure. The effect of ligand structure on the selectivity of these adsorbents was also investigated, and criteria for their use in the purification of monoclonal antibodies from cell culture supernatants established. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
New thiophilic matrices and new procedures were used for the purification of immunoglobulins both from human serum and from hybridoma cell cultures containing fetal calf serum. A range of aromatic and heteroaromatic ligands containing hydroxyl or amino groups have been coupled to divinyl sulfone-activated agarose. The resulting affinity matrices have the general formula M-O-CH2-CH2-SO2-CH2-CH2-X-Y, where M is the agarose matrix, X is oxygen or nitrogen, and Y is an aromatic or heteroaromatic compound. Contrary to earlier expectations these matrices showed pronounced thiophilic binding patterns when tested for the selective binding of immunoglobulins from human serum. The binding is influenced by the structure of the aromatic part of the ligand, the ligand concentration, and the concentration and type of lyotropic salt. 2-Hydroxypyridine coupled to divinyl sulfone-activated agarose was used to purify murine monoclonal antibodies (IgG1 and IgM) from hybridoma cell cultures containing fetal calf serum. Compared to previous methods, significantly increased binding capacity (300-1500%) was obtained by using 1.0-1.2 M ammonium sulfate. Purity of the monoclonal antibody may be optimized for each individual clone by washing the column with either a low concentration of ammonium sulfate or polyethylene glycol before elution.  相似文献   

12.
High-sensitivity, high-throughput, and user-friendly lanthanide-based assays for receptor-ligand interactions provide an attractive alternative to the traditional radioligand displacement assays. In this study, three small-molecule pindolol ligand derivatives were synthesized and their binding properties were tested in a radioligand displacement assay. The ligand derivatives were further labeled with fluorescent europium(III) chelate for β2-adrenergic receptor-ligand binding assay. The europium-labeled pindolol ligands having no spacer (C0) or a 12-carbon spacer (C12) arm bound to the human β2-adrenergic receptors overexpressed in human embryonic kidney HEK293i cells. Europium ligand with a 6-carbon spacer arm (C6) showed no binding. Competitive binding assays were developed with the functional labeled ligands. The IC50 values for β2-adrenergic antagonist propranolol were 60 and 37 nM, the Z′ values were 0.51 and 0.77, and the signal-to-background ratios were 5.5 and 16.0 for C0 and C12, respectively. This study shows that functional time-resolved fluorescent assays can be constructed using fluorescent lanthanide chelates conjugated to small-molecule ligands.  相似文献   

13.
The effects of morin and nordihydroguaiaretic acid (NDGA), two plant secondary metabolites, on porcine pancreatic phospholipase A2 (PLA2) were investigated by isothermal titration calorimetry (ITC) and in silico docking analyses. The binding energies obtained for NDGA and morin from the ITC studies are ? 6.36 and ? 5.91 kcal mol? 1, respectively. Similarly, the glide scores obtained for NDGA and morin towards PLA2 were ? 7.32 and ? 7.23 kcal mol? 1, respectively. Further the docked complexes were subjected to MD simulation in the presence of explicit water molecules to check the binding stability of the ligands in the active site of PLA2. The bound ligands make hydrogen bonds with the active site residues of the enzyme and coordinate bonds with catalytically important Ca2+ ion. The binding of ligands at the active site of PLA2 may also contribute to the reported anti-inflammatory properties of NDGA and morin.  相似文献   

14.
G-protein-coupled receptors have extraordinary therapeutic potential as targets for a broad spectrum of diseases. Understanding their function at the molecular level is therefore essential. A variety of crystal structures have made the investigation of the inactive receptor state possible. Recently released X-ray structures of opsin and the β2-adrenergic receptor (β2AR) have provided insight into the active receptor state. In addition, we have contributed to the crystal structure of an irreversible agonist-β2 adrenoceptor complex. These extensive studies and biophysical investigations have revealed that agonist binding leads to a low-affinity conformation of the active state that is suggested to facilitate G-protein binding. The high-affinity receptor state, which promotes signal transduction, is only formed in the presence of both agonist and G-protein. Despite numerous crystal structures, it is not yet clear how ligands tune receptor dynamics and G-protein binding. We have now used molecular dynamics simulations to elucidate the distinct impact of agonist and inverse agonist on receptor conformation and G-protein binding by investigating the influence of the ligands on the structure and dynamics of a complex composed of β2AR and the C-terminal end of the Gαs subunit (GαCT). The simulations clearly showed that the agonist isoprenaline and the inverse agonist carazolol influence the ligand-binding site and the interaction between β2AR and GαCT differently. Isoprenaline induced an inward motion of helix 5, whereas carazolol blocked the rearrangement of the extracellular part of the receptor. Moreover, in the presence of isoprenaline, β2AR and GαCT form a stable interaction that is destabilized by carazolol.  相似文献   

15.
Reduced dimensionality forms of perovskites with alternating layers of organic ligands are a promising class of materials for achieving stable perovskite solar cells. Most work until now has focused on phases utilizing two ammonium terminated ligands per formula unit. However, phases utilizing a single diammonium ligand per formula unit are advantageous in that they can potentially have a thinner insulating organic layer between Pb‐halide layers, yet the structural effects on their optoelectronic properties are not yet well understood. In this study two organic ligands, butane 1,4‐diammonium (BDA) and N,N‐dimethylpropane diammonium (DMPD), are investigated as spacers in n = 1, 2D perovskites. Using ultraviolet and inverse photoelectron spectroscopies, BDAPbI4 is shown to have a larger transport gap by 350 meV and a larger exciton binding energy by 140 meV than DMPDPbI4. Through density functional theory calculations, the cause of this difference is traced to the out‐of‐plane tilting of the Pb‐halide octahedra provoked by the asymmetric ligand in DMPDPbI4. Parallel channels of nearly straight Pb? I? Pb bonds are formed in one direction, leading to enhanced electronic coupling and higher band dispersion in that direction. In BDAPbI4, no such channels exist, resulting in greater electronic confinement and a larger bandgap and exciton binding energy.  相似文献   

16.
Toll-like receptor 2 (TLR2), a member of the TLR innate immune receptor family, recognizes lipoproteins from bacteria and modulates the immune response by inducing the expression of various cytokines. TLR2 has a large hydrophobic pocket that recognizes long fatty acyl groups on TLR2 ligands. However, few studies have focused on the property of the hydrophobic TLR2 pocket. Based on the X-ray crystal structure of TLR2, small polar regions were found in the hydrophobic TLR2 pocket. Interactions between the polar residues and ligands were explored here by designing and synthesizing a Pam2CSK4 derivative of the TLR2 ligands, containing an amide group within the lipid moiety. We evaluated the binding affinities and immunomodulatory activities of these ligands. Results suggested that the amide groups in the lipid chain interacted with the polar residues in the hydrophobic lipid-binding pocket of TLR2.  相似文献   

17.
The Shc (Src homology collagen-like) adaptor protein plays a crucial role in linking stimulated receptors to mitogen-activated protein kinase activation through the formation of dynamic signalling complexes. Shc comprises an N-terminal phosphotyrosine binding (PTB) domain, a C-terminal Src homology 2 (SH2) domain and a central proline-rich collagen homology 1 domain. The latter domain contains three tyrosine residues that are known to become phosphorylated. We have expressed and purified the human p52Shc isoform and characterised its binding to different ligands. CD spectra revealed that some parts of the Shc protein are not fully folded, remaining largely unaffected by the binding of ligands. The PTB domain binds peptide and Ins-1,4,5-P3 (but not Ins-1,3,5-P3) independently, suggesting two distinct sites of interaction. In the unphosphorylated Shc, the SH2 domain is non-functional. Ligand binding to the PTB domain does not affect this. However, phosphorylation of the three tyrosine residues promotes binding to the SH2 domain. Thus, Shc has an intrinsic phosphorylation-dependent gating mechanism where the SH2 domain adopts an open conformation only when tyrosine phosphorylation has occurred.  相似文献   

18.
The effects of the solvents deuterated water (2H2O) and dimethyl sulfoxide (Me2SO) on [3H]ouabain binding to (Na+,K+)-ATPase under different ligand conditions were examined. These solvents inhibited the type I ouabain binding to the enzyme (i.e., in the presence of Mg2++ATP+Na+). In contrast, both solvents stimulated type II (i.e., Mg2++Pi-, or Mn2+-dependent) binding of the drug. The solvent effects were not due to pH changes in the reaction. However, pH did influence ouabain binding in a differential manner, depending on the ligands present. For example, changes in pH from 7.05 to 7.86 caused a drop in the rate of binding by about 15% in the presence of Mg2++Na++ATP, 75% in the Mg2++Pi system, and in the presence of Mn2+ an increase by 24% under similar conditions. Inhibitory or stimulatory effects of solvents were modified as various ligands, and their order of addition, were altered. Thus, 2H2O inhibition of type I ouabain binding was dependent on Na+ concentration in the reaction and was reduced as Na+ was elevated. Contact of the enzyme with Me2SO, prior to ligands for type I binding, resulted in a greater inhibition of ouabain binding than that when enzyme was exposed to Na++ATP first and then to Me2SO. Likewise, the stimulation of type II binding was greater when appropriate ligands acted on enzyme prior to addition of the solvent. Since Me2SO and 2H2O inhibit type I ouabain binding, it is proposed that this reaction is favored under conditions which promote loss of H2O, and E1 enzyme conformation; the stimulation of type II ouabain binding in the presence of the solvents suggests that this type of binding is favored under conditions which promote the presence of H2O at the active enzyme center and E2 enzyme conformation. This postulation of a role of H2O in modulating enzyme conformations and ouabain interaction with them is in concordance with previous observations.  相似文献   

19.
20.
This investigation has examined the origin of the molecular recognition associated with the interaction of monoclonal IgG2's with terpyridine‐based ligands immobilized onto agarose‐derived chromatographic adsorbents. Isothermal titration calorimetric (ITC) methods have been employed to acquire thermodynamic data associated with the IgG2‐ligand binding. These ITC investigations have documented that different enthalpic and entropic processes are involved depending on the nature of the chemical substituents in the core structure of the terpyridinyl moiety. In addition, molecular docking studies have been carried out with IgG2 structures with the objective to identify possible ligand binding sites and key interacting amino acid residues. These molecular docking experiments with the different terpyridine‐based ligands have shown that all of the examined ligands can potentially undergo favorable interactions with a site located within the Fab region of the IgG2. However, another favorable binding site was also identified from the docking poses to exist within the Fc region of the IgG2 for some, but not all, of the ligands studied. These investigations have provided a basis to elucidate the unique binding properties and chromatographic behaviors shown by several substituted terpyridine ligands in their interaction with IgGs of different isotype. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号