首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constant and hypervariable regions in conotoxin propeptides.   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

2.
A new class of Conus peptides, the I-superfamily of conotoxins, has been characterized using biochemical, electrophysiological and molecular genetic methods. Peptides in this superfamily have a novel pattern of eight Cys residues. Five peptides that elicited excitatory symptomatology, r11a, r11b, r11c, r11d and r11e, were purified from Conus radiatus venom; four were tested on amphibian peripheral axons and shown to elicit repetitive action potentials, consistent with being members of the 'lightning-strike cabal' of toxins that effect instant immobilization of fish prey. A parallel analysis of Conus cDNA clones revealed a new class of conotoxin genes that was particularly enriched (with 18 identified paralogues) in a Conus radiatus venom duct library; several C. radiatus clones encoded the excitatory peptides directly characterized from venom. The remarkable diversity of related I-superfamily peptides within a single Conus species is unprecedented. When combined with the excitatory effects observed on peripheral circuitry, this unexpected diversity suggests a corresponding molecular complexity of the targeted signaling components in peripheral axons; the I-conotoxin superfamily should provide a rich lode of pharmacological tools for dissecting and understanding these. Thus, the I-superfamily conotoxins promise to provide a significant new technology platform for dissecting the molecular components of axons.  相似文献   

3.
The vasopressin-oxytocin family of peptides is of very ancient lineage, found in organisms as diverse as hydra and man. Although these peptides have been intensively studied in vertebrates, the presumably more extensive invertebrate series was defined primarily by immunological methods. In this report, we describe the purification and structures of two peptides of the vasopressin-oxytocin family from molluscs ("Conopressins"), which were found in the venom of fish-hunting marine snails of the genus Conus. The biological activity observed when the two snail peptides are injected intracerebrally into mice is very similar to that elicited by the vertebrate neurohypophyseal hormones and presumably reflects their actions upon a common receptor in the brain. The sequences of the purified peptides reveal unique features not found in the vertebrate peptide series, most notably an additional positive charge. These are the first members of the invertebrate series of the vasopressin-oxytocin family to be characterized biochemically. The sequences of these peptides are: from Conus geographus venom, Lys-conopressin-G, Cys-Phe-Ile-Arg-Asn-Cys-Pro-Lys-Gly-NH2; and from Conus striatus venom, Arg-conopressin-S, Cys-Ile-Ile-Arg-Asn-Cys-Pro-Arg-Gly-NH2.  相似文献   

4.
The >10,000 living venomous marine snail species [superfamily Conoidea (Fleming, 1822)] include cone snails (Conus), the overwhelming focus of research. Hastula hectica (Linnaeus, 1758), a venomous snail in the family Terebridae (M?rch, 1852) was comprehensively investigated. The Terebridae comprise a major monophyletic group within Conoidea. H. hectica has a striking radular tooth to inject venom that looks like a perforated spear; in Conus, the tooth looks like a hypodermic needle. H. hectica venom contains a large complement of small disulfide-rich peptides, but with no apparent overlap with Conus in gene superfamilies expressed. Although Conus peptide toxins are densely post-translationally modified, no post-translationally modified amino acids were found in any Hastula venom peptide. The results suggest that different major lineages of venomous molluscs have strikingly divergent toxinological and venom-delivery strategies.  相似文献   

5.
The A-superfamily of conotoxins: structural and functional divergence   总被引:7,自引:0,他引:7  
The generation of functional novelty in proteins encoded by a gene superfamily is seldom well documented. In this report, we define the A-conotoxin superfamily, which is widely expressed in venoms of the predatory cone snails (Conus), and show how gene products that diverge considerably in structure and function have arisen within the same superfamily. A cDNA clone encoding alpha-conotoxin GI, the first conotoxin characterized, provided initial data that identified the A-superfamily. Conotoxin precursors in the A-superfamily were identified from six Conus species: most (11/16) encoded alpha-conotoxins, but some (5/16) belong to a family of excitatory peptides, the kappaA-conotoxins that target voltage-gated ion channels. alpha-Conotoxins are two-disulfide-bridged nicotinic antagonists, 13-19 amino acids in length; kappaA-conotoxins are larger (31-36 amino acids) with three disulfide bridges. Purification and biochemical characterization of one peptide, kappaA-conotoxin MIVA is reported; five of the other predicted conotoxins were previously venom-purified. A comparative analysis of conotoxins purified from venom, and their precursors reveal novel post-translational processing, as well as mutational events leading to polymorphism. Patterns of sequence divergence and Cys codon usage define the major superfamily branches and suggest how these separate branches arose.  相似文献   

6.
Conotoxins are multiple disulfide-bonded peptides isolated from marine cone snail venom. These toxins have been classified into several families based on their disulfide pattern and biological properties. Here, we report a new family of Conus peptides, which have a novel cysteine motif. Three peptides of this family (CMrVIA, CMrVIB, and CMrX) have been purified from Conus marmoreus venom, and their structures have been determined. Their amino acid sequences are VCCGYK-LCHOC (CMrVIA), NGVCCGYKLCHOC (CMrVIB), and GICCGVSFCYOC (CMrX), where O represents 4-trans-hydroxyproline. Two of these peptides (CMrVIA and CMrX) have been chemically synthesized. Using a selective protection and deprotection strategy during disulfide bond formation, peptides with both feasible cysteine-pairing combinations were generated. The disulfide pattern (C(1)-C(4), C(2)-C(3)) in native toxins was identified by their co-elution with the synthetic disulfide-isomeric peptides on reverse-phase high pressure liquid chromatography. Although cysteine residues were found in comparable positions with those of alpha-conotoxins, these toxins exhibited a distinctly different disulfide bonding pattern; we have named this new family "lambda -conotoxins." CMrVIA and CMrX induced different biological effects when injected intra-cerebroventricularly in mice; CMrVIA induces seizures, whereas CMrX induces flaccid paralysis. The synthetic peptide with lambda-conotoxin folding is about 1150-fold more potent in inducing seizures than the mispaired isomer with alpha-conotoxin folding. Thus it appears that the unique disulfide pattern, and hence the "ribbon" conformation, in lambda-conotoxins is important for their biological activity.  相似文献   

7.
Peng C  Wu X  Han Y  Yuan D  Chi C  Wang C 《Peptides》2007,28(11):2116-2124
Cone snails are a group of ancient marine gastropods with highly sophisticated defense and prey strategies using conotoxins in their venom. Conotoxins are a diverse array of small peptides, mostly with multiple disulfide bridges. Using a 3' RACE approach, we identified six novel peptides from the venom ducts of a worm-hunting cone snail Conus pulicarius. These peptides are named Pu5.1-Pu5.6 as their primary structures show the typical pattern of T-1 conotoxin family, a large and diverse group of peptides widely distributed in venom ducts of all major feeding types of Conus. Except for the conserved signal peptide sequences in the precursors and unique arrangement of Cys residues (CC-CC) in mature domains, the six novel T-1 conotoxins show remarkable sequence diversity in their pro and mature regions and are, thus, likely to be functionally diversified. Here, we present a simple and fast strategy of gaining novel disulfide-rich conotoxins via molecular cloning and our detailed sequence analysis will pave the way for the future functional characterization of toxin-receptor interaction.  相似文献   

8.
Direct cDNA cloning of novel conopeptide precursors of the O-superfamily   总被引:2,自引:0,他引:2  
Kauferstein S  Melaun C  Mebs D 《Peptides》2005,26(3):361-367
Conotoxins from the venom of marine cone snails (genus Conus) represent large families of proteins exhibiting a similar precursor organization, but highly diverse pharmacological activities. A directed PCR-based approach using primers according to the conserved signal sequence was applied to investigate the diversity of conotoxins from the O-superfamily. Using 3' RACE, cDNA sequences encoding precursor peptides were identified in five Conus species (Conus capitaneus, Conus imperialis, Conusstriatus, Conus vexillum and Conus virgo). In all cases, the sequence of the signal region exhibited high conservancy, whereas the sequence of the mature peptides was either almost identical or highly divergent among the five species. These findings demonstrate that beside a common genetic pattern divergent evolution of toxins occurred in a highly mutating peptide family.  相似文献   

9.
ConoServer, a database for conopeptide sequences and structures   总被引:1,自引:0,他引:1  
SUMMARY: ConoServer is a new database dedicated to conopeptides, a large family of peptides found in the venom of marine snails of the genus Conus. These peptides have an exceptional diversity of sequences and chemical modifications and their ability to block ion channels makes them important as drug leads and tools for physiological studies. ConoServer uses standardized names and a genetic and structural classification scheme to present data retrieved from SwissProt, GenBank, the Protein DataBank and the literature. The ConoServer web site incorporates specialized features like the graphic display of post-translational modifications that are extensively present in conopeptides. Currently, ConoServer manages 1214 nucleic sequences (from 54 Conus species), 2258 proteic sequences (from 66 Conus species) and 99 3D structures. AVAILABILITY: http://research1t.imb.uq.edu.au/conoserver/.  相似文献   

10.
An impressive biodiversity (>10,000 species) of marine snails (suborder Toxoglossa or superfamily Conoidea) have complex venoms, each containing approximately 100 biologically active, disulfide-rich peptides. In the genus Conus, the most intensively investigated toxoglossan lineage (~500 species), a small set of venom gene superfamilies undergo rapid sequence hyperdiversification within their mature toxin regions. Each major lineage of Toxoglossa has its own distinct set of venom gene superfamilies. Two recently identified venom gene superfamilies are expressed in the large Turridae clade, but not in Conus. Thus, as major venomous molluscan clades expand, a small set of lineage-specific venom gene superfamilies undergo accelerated evolution. The juxtaposition of extremely conserved signal sequences with hypervariable mature peptide regions is unprecedented and raises the possibility that in these gene superfamilies, the signal sequences are conserved as a result of an essential role they play in enabling rapid sequence evolution of the region of the gene that encodes the active toxin.  相似文献   

11.
Carboxypeptidase Y (CPY) is a yeast vacuolar protease with useful applications including C-terminal sequencing of peptides and terminal modification of target proteins. To overexpress CPY with the pro-sequence (proCPY) encoded by the Saccharomyces cerevisiae PRC1 gene in recombinant S. cerevisiae, the proCPY gene was combined with the gene coding for a signal sequence of S. cerevisiae mating factor α (MFα), invertase (SUC2), or Kluyveromyces marxianus inulinase (INU1). Among the three constructs, the MFα signal sequence gave the best specific activity of extracellular CPY. To enhance the CPY expression level, folding accessory proteins of Kar2p, Pdi1p and Ero1p located in the S. cerevisiae endoplasmic reticulum were expressed individually and combinatorially. A single expression of Kar2p led to a 28 % enhancement in extracellular CPY activity, relative to the control strain of S. cerevisiae CEN.PK2-1D/p426Gal1-MFαCPY. Coexpression of Kar2p, Pdi1p and Ero1p gave a synergistic effect on CPY expression, of which activity was 1.7 times higher than that of the control strain. This work showed that engineering of signal sequences and protein-folding proteins would be helpful to overexpress yeast proteins of interest.  相似文献   

12.
Conopeptides display prominent features of hypervariability and high selectivity of large gene families that mediate interactions between organisms. Remarkable sequence diversity of O-superfamily conotoxins was found in a worm-hunting cone snail Conus miles. Five novel cDNA sequences encoding O-superfamily precursor peptides were identified in C. miles native to Hainan by RT-PCR and 3'-RACE. They share the common cysteine pattern of the O-superfamily conotoxin (C-C-CC-C-C, with three disulfide bridges). The predicted peptides consist of 27-33 amino acids. We then performed a phylogenetic analysis of the new and published homologue sequences from C. miles and the other Conus species. Sequence divergence (%) and residue substitutions to view evolutionary relationships of the precursors' signal, propeptide, and mature toxin regions were analyzed. Percentage divergence of the amino acid sequences of the prepro region exhibited high conservation, whereas the sequences of the mature peptides ranged from almost identical with to highly divergent from inter- and intra-species. Despite the O-superfamily being a large and diverse group of peptides, widely distributed in the venom ducts of all major feeding types of Conus and discovered in several Conus species, it was for the first time that the newly found five O-superfamily peptides in this research came from the vermivorous C. miles. So far, conotoxins of the O-superfamily whose properties have been characterized are from piscivorous and molluscivorous Conus species, and their amino acid sequences and mode of action have been discussed in detail. The elucidated cDNAs of the five toxins are new and of importance and should attract the interest of researchers in the field, which would pave the way for a better understanding of the relationship of their structure and function.  相似文献   

13.
A Conus peptide family (the contryphans) is noteworthy because of the presence of a post-translationally modified D-amino acid in all members of the family. A new contryphan peptide, Leu-contryphan-P, was isolated from the venom of Conus purpurascens; the sequence of this peptide is: Gly-Cys-Val-D-Leu-Leu-Pro-Trp-Cys-OH. This is the first known occurrence of D-leucine in a Conus peptide. The discovery of Leu-contryphan-P suggests that there may be branches of the contryphan peptide family that diverge much more in sequence than previously anticipated. Several natural contryphans provide dramatic examples of interconversion between multiple conformational states in small constrained peptides. The contryphans that have 4-trans-hydroxyproline and D-tryptophan in positions 3 and 4, respectively, exhibit two peaks under reverse-phase HPLC conditions, indicating interconversion between two discrete conformations. However, [L-Trp4]contryphan-Sm (with L-Trp substituted for D-Trp) exhibits a single, broad peak that elutes later than the natural peptide, suggesting that D-Trp stabilizes a conformation in which hydrophobic residues are buried. Leucontryphan-P which has valine and D-leucine instead of 4-trans-hydroxyproline and D-tryptophan shows only a single peak that elutes much later than the other contryphans.  相似文献   

14.
Cone snail venom is a rich source of bioactives, in particular small disulfide rich peptides that disrupt synaptic transmission. Here, we report the discovery of conomap-Vt (Conp-Vt), an unusual linear tetradecapeptide isolated from Conus vitulinus venom. The sequence displays no homology to known conopeptides, but displays significant homology to peptides of the MATP (myoactive tetradecapeptide) family, which are important endogenous neuromodulators in molluscs, annelids and insects. Conp-Vt showed potent excitatory activity in several snail isolated tissue preparations. Similar to ACh, repeated doses of Conp-Vt were tachyphylactic. Since nicotinic and muscarinic antagonists failed to block its effect and Conp-Vt desensitised tissue remained responsive to ACh, it appears that Conp-Vt contractions were non-cholinergic in origin. Finally, biochemical studies revealed that Conp-Vt is the first member of the MATP family with a d-amino acid. Interestingly, the isomerization of L-Phe to D-Phe enhanced biological activity, suggesting that this post-translational modified conopeptide may have evolved for prey capture.  相似文献   

15.
Summary Carboxypeptidase Y (CPY) is a glycosylated yeast vacuolar protease used commercially for synthesis of peptides. To increase the production of CPY in Saccharomyces cerevisiae we have placed its coding region (PRC1) under control of the strongly regulated yeast GAL1 promoter on multicopy plasmids and introduced the constructs into vpl1 mutant strains. Such mutants are known to secrete CPY. High levels of CPY production were obtained by induction of the GAL1 promoter when the cells had left the exponential phase, resulting in a growth-phase-dependent CPY production similar to that cells with PRC1 under the control of its own promoter. Introduction of a high copy number 2-URA3-EU2d plasmid with GAL1p-PRC1 fusion in a vpl1 strain resulted in a 200-fold increase of secreted CPY (about 40 mg/l) as compared to a vpl1 mutant carrying a single copy of the wild-type PRC1 gene. The overproduced, secreted CPY was active and had the normal N-terminal sequence. Sodium dodecyl sulphate polyacrylamide gel electrophoresis revealed two forms of active CPY, probably due to different levels of glycosylation. Offprint requests to: T. L. Nielsen  相似文献   

16.
Venomous predatory animals, such as snakes, spiders, scorpions, sea anemones, and cone snails, produce a variety of highly stable cystine-constrained peptide scaffolds as part of their neurochemical strategy for capturing prey. Here we report a new family of four-cystine, three-loop conotoxins (designated framework 14). Three peptides of this family (flf14a-c) were isolated from the venom of Conus floridanus floridensis, and one (vil14a) was isolated from the venom of Conus villepinii, two worm-hunting Western Atlantic cone snail species. The primary structure for these peptides was determined using Edman degradation sequencing, and their cystine pairing was assessed by limited hydrolysis with a combination of CNBr and chymotrypsin under nonreducing, nonalkylating conditions in combination with MALDI-TOF MS analysis of the resulting peptidic fragments. CD spectra and nanoNMR spectroscopy of these conotoxins directly isolated from the cone snails revealed a highly helical secondary structure for the four conotoxins. Sequence-specific nanoNMR analysis at room temperature revealed a well-defined helix-loop-helix tertiary structure that resembles that of the Cs alpha/alpha scorpion toxins kappa-hefutoxin, kappa-KTx1.3, and Om-toxins, which adopt a stable three-dimensional fold where the two alpha-helices are linked by the two disulfide bridges. One of these conotoxins (vil14a) has a Lys/Tyr dyad, separated by approximately 6A, which is a conserved structural feature in K(+) channel blockers. The presence of this framework in scorpions and in cone snails indicates a common molecular imprint in the venom of apparently unrelated predatory animals and suggests a common ancestral genetic origin.  相似文献   

17.
Using assay-directed fractionation of the venom from the vermivorous cone snail Conus planorbis, we isolated a new conotoxin, designated pl14a, with potent activity at both nicotinic acetylcholine receptors and a voltage-gated potassium channel subtype. pl14a contains 25 amino acid residues with an amidated C-terminus, an elongated N-terminal tail (six residues), and two disulfide bonds (1-3, 2-4 connectivity) in a novel framework distinct from other conotoxins. The peptide was chemically synthesized, and its three-dimensional structure was demonstrated to be well-defined, with an alpha-helix and two 3(10)-helices present. Analysis of a cDNA clone encoding the prepropeptide precursor of pl14a revealed a novel signal sequence, indicating that pl14a belongs to a new gene superfamily, the J-conotoxin superfamily. Five additional peptides in the J-superfamily were identified. Intracranial injection of pl14a in mice elicited excitatory symptoms that included shaking, rapid circling, barrel rolling, and seizures. Using the oocyte heterologous expression system, pl14a was shown to inhibit both a K+ channel subtype (Kv1.6, IC50 = 1.59 microM) and neuronal (IC50 = 8.7 microM for alpha3beta4) and neuromuscular (IC50 = 0.54 microM for alpha1beta1 epsilondelta) subtypes of the nicotinic acetylcholine receptor (nAChR). Similarities in sequence and structure are apparent between the middle loop of pl14a and the second loop of a number of alpha-conotoxins. This is the first conotoxin shown to affect the activity of both voltage-gated and ligand-gated ion channels.  相似文献   

18.
19.
Conotoxins, venom peptides from marine cone snails, diversify rapidly as speciation occurs. It has been suggested that each species can synthesize between 1000 and 1900 different toxins with little to no interspecies overlap. Conotoxins exhibit an unprecedented degree of post-translational modifications, the most common one being the formation of disulfide bonds. Despite the great diversity of structurally complex peptides, little is known about the glandular proteins responsible for their biosynthesis and maturation. Here, proteomic interrogations on the Conus venom gland led to the identification of novel glandular proteins of potential importance for toxin synthesis and secretion. A total of 161 and 157 proteins and protein isoforms were identified in the venom glands of Conus novaehollandiae and Conus victoriae, respectively. Interspecies differences in the venom gland proteomes were apparent. A large proportion of the proteins identified function in protein/peptide translation, folding, and protection events. Most intriguingly, however, we demonstrate the presence of a multitude of isoforms of protein disulfide isomerase (PDI), the enzyme catalyzing the formation and isomerization of the native disulfide bond. Investigating whether different PDI isoforms interact with distinct toxin families will greatly advance our knowledge on the generation of cone snail toxins and disulfide-rich peptides in general.  相似文献   

20.
The T-superfamily of conotoxins.   总被引:12,自引:0,他引:12  
We report the discovery and initial characterization of the T-superfamily of conotoxins. Eight different T-superfamily peptides from five Conus species were identified; they share a consensus signal sequence, and a conserved arrangement of cysteine residues (- -CC- -CC-). T-superfamily peptides were found expressed in venom ducts of all major feeding types of Conus; the results suggest that the T-superfamily will be a large and diverse group of peptides, widely distributed in the 500 different Conus species. These peptides are likely to be functionally diverse; although the peptides are small (11-17 amino acids), their sequences are strikingly divergent, with different peptides of the superfamily exhibiting varying extents of post-translational modification. Of the three peptides tested for in vivo biological activity, only one was active on mice but all three had effects on fish. The peptides that have been extensively characterized are as follows: p5a, GCCPKQMRCCTL*; tx5a, gammaCCgammaDGW(+)CCT( section sign)AAO; and au5a, FCCPFIRYCCW (where gamma = gamma-carboxyglutamate, W(+) = bromotryptophan, O = hydroxyproline, T( section sign) = glycosylated threonine, and * = COOH-terminal amidation). We also demonstrate that the precursor of tx5a contains a functional gamma-carboxylation recognition signal in the -1 to -20 propeptide region, consistent with the presence of gamma-carboxyglutamate residues in this peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号