共查询到20条相似文献,搜索用时 15 毫秒
1.
《Seminars in cell biology》1993,4(5):345-353
The human malaria parasite Plasmodium falciparum invades erythrocytes and develops within a parasitophorous vacuole. It has been proposed that constitutive protein export from the intracellular parasite is mediated by two types of secretory vesicles. One is targeted to the parasite plasma membrane and the other to a domain where the plasma and vacuolar membranes of the parasite are fused into a single bilayer. This differential targeting of vesicles may be regulated by the developmental stage of the parasite. Regulated secretion through the apical organelles at or immediately after the invasion of a new red cell may allow protein insertion at the erythrocyte surface and mediate formation of the joint membrane domain of constitutive secretion. 相似文献
2.
Transport of fluorescent phospholipid analogues from the erythrocyte membrane to the parasite in Plasmodium falciparum-infected cells 总被引:1,自引:2,他引:1 下载免费PDF全文
The asexual development of the human malaria parasite Plasmodium falciparum is largely intraerythrocytic. When 1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazole-4-yl)amino]caproyl] phosphatidylcholine (NBD-PC) was incorporated into infected and uninfected erythrocyte membranes at 0 degrees C, it remained at the cell surface. At 10 degrees C, the lipid was rapidly internalized in infected erythrocytes at all stages of parasite growth. Our results indicate that the internalization of NDB-PC was not because of endocytosis but rapid transbilayer lipid flip-flop at the infected erythrocyte membrane, followed by monomer diffusion to the parasite. Internalization of the lipid was inhibited by (a) depleting cellular ATP levels; (b) pretreating the cells with N-ethyl maleimide or diethylpyrocarbonate; and (c) 10 mM L-alpha-glycerophosphorylcholine. The evidence suggests protein-mediated and energy dependent transmembrane movement of the PC analogue. The conditions for the internalization of another phospholipid analogue N-4-nitrobenzo-2-oxa-1,3-diazoledipalmitoyl phosphatidylethanolamine (N-NBD-PE) were distinct from that of NBD-PC and suggest the presence of additional mechanism(s) of parasite-mediated lipid transport in the infected host membrane. In spite of the lack of bulk, constitutive endocytosis at the red cell membrane, the uptake of Lucifer yellow by mature infected cells suggests that microdomains of pinocytotic activity are induced by the intracellular parasite. The results indicate the presence of parasite-induced mechanisms of lipid transport in infected erythrocyte membranes that modify host membrane properties and may have important implications on phospholipid asymmetry in these membranes. 相似文献
3.
E F Roth 《The Journal of biological chemistry》1987,262(32):15678-15682
The metabolism of glucose in Plasmodium falciparum-infected human erythrocytes is increased 50- to 100-fold. This is accomplished in part by parasite-directed synthesis of a protozoan hexokinase with unique kinetic, electrophoretic, and heat stability properties. The total hexokinase activity is increased approximately 25-fold over that of control uninfected erythrocytes of the same age from the same donor. The parasite hexokinase has a lower affinity for glucose than the mammalian enzyme (Km = 431 microM +/- 21 S.D. for the parasite enzyme versus 98 microM +/- 10 for the erythrocyte enzyme), but the Km for ATP and the Vmax for both glucose and ATP are similar. The NADPH-dependent reduction of oxidized glutathione (GSSG) requires the formation of glucose 6-phosphate which in turn is metabolized by the pentose shunt pathway in which NADPH is generated. Using glucose as the substrate, lysates of P. falciparum-infected normal erythrocytes demonstrated enhanced ability to reduce GSSG. The rate of GSSG reduction was proportional both to the parasitemia and the hexokinase activity of the lysates. However, infected glucose-6-phosphate dehydrogenase-deficient red cell lysates displayed a severely restricted ability to reduce GSSG under the same conditions. In conclusion, P. falciparum-infected red cells contain a parasite-encoded hexokinase with unique properties which initiates the large increase in glucose consumption. In normal infected red cells, reduction of GSSG is also dependent upon hexokinase activity, but in infected glucose-6-phosphate dehydrogenase-deficient red cells, the absence of this pentose shunt enzyme remains the rate-limiting step in GSSG reduction. 相似文献
4.
In order to navigate its complex lifecycle, the malaria parasites must interactwith a range of host cells. Examples of this are the invasion of hepatocytes by sporozoites and erythrocyte invasion by merozoites. This requirement for cell recognition brings with it the need to display cognate ligands on the parasite surface, and therefore the capacity of the host to develop defences against the infection. Even at a stage where the intracellular nature of erythrocyte development would appear to offer an opportunity for the parasite to be immunologically "silent", parasite-derived proteins are found on the surface of the infected erythrocyte. This review will discuss the proteins found on or associated with the surface of the infected erythrocyte and the resulting phenotypes. 相似文献
5.
The malaria parasite undergoes a remarkable series of morphological transformations, which underpin its life in both human and mosquito hosts. The advent of molecular transfection technology coupled with the ability to introduce fluorescent reporter proteins that faithfully track and expose the activities of parasite proteins has revolutionized our view of parasite cell biology. The greatest insights have been realized in the erythrocyte stages of Plasmodium falciparum. P. falciparum invades and remodels the human erythrocyte: it feeds on haemoglobin, grows and divides, and subverts the physiology of its hapless host. Fluorescent proteins have been employed to track and dissect each of these processes and have revealed details and exposed new paradigms. 相似文献
6.
Erythrocyte modification by malaria proteins is linked to both disease severity and infection. In this issue of Trends in Parasitology, Templeton and Deitsch, and Horrocks and Muhia discuss recent work identifying a host-targeting (HT) signal on malaria proteins. This signal predicts a secretome of 300-400 effectors for the human malaria parasite Plasmodium falciparum, vastly expanding the number of potential vaccine and drug targets. The HT signal seems to be distinct from known cellular transport signals, which suggests that it might be a novel eukaryotic secretion signal. 相似文献
7.
Splenic filtration of infected red blood cells (RBCs) may contribute to innate immunity and variable outcomes of malaria infections. We show that filterability of individual RBCs is well predicted by the minimum cylindrical diameter (MCD) which is calculated from a RBC's surface area and volume. The MCD describes the smallest diameter tube or smallest pore that a cell may fit through without increasing its surface area. A microfluidic device was developed to measure the MCD from thousands of individual infected RBCs (IRBCs) and uninfected RBCs (URBCs). Average MCD changes during the blood-stage cycle of Plasmodium falciparum were tracked for the cytoadherent strain ITG and the knobless strain Dd2. The MCD values for IRBCs and URBCs raise several new intriguing insights into how the spleen may remove IRBCs: some early-stage ring-IRBCs, and not just late-stage schizont-IRBCs, may be highly susceptible to filtration. In addition, knobby parasites may limit surface area expansions and thus confer high MCDs on IRBCs. Finally, URBCs, in culture with IRBCs, show higher surface area loss which makes them more susceptible to filtration than naive URBCs. These findings raise important basic questions about the variable pathology of malaria infections and metabolic process that affect volume and surface area of IRBCs. 相似文献
8.
Plasmodium falciparum inhabits a niche within the most highly terminally differentiated cell in the human body--the mature red blood cell. Life inside this normally quiescent cell offers the parasite protection from the host's immune system, but provides little in the way of cellular infrastructure. To survive and replicate in the red blood cell, the parasite exports proteins that interact with and dramatically modify the properties of the host red blood cell. As part of this process, the parasite appears to establish a system within the red blood cell cytosol that allows the correct trafficking of parasite proteins to their final cellular destinations. In this review, we examine recent developments in our understanding of the pathways and components involved in the delivery of important parasite-encoded proteins to their final destination in the host red blood cell. These complex processes are not only fundamental to the survival of malaria parasites in vivo, but are also major determinants of the unique pathogenicity of this parasite. 相似文献
9.
Ultrastructural localization of erythrocyte cytoskeletal and integral membrane proteins in Plasmodium falciparum-infected erythrocytes 总被引:4,自引:0,他引:4
C T Atkinson M Aikawa G Perry T Fujino V Bennett E A Davidson R J Howard 《European journal of cell biology》1988,45(2):192-199
The distributions of ankyrin, spectrin, band 3, and glycophorin A were examined in Plasmodium falciparum-infected erythrocytes by immunoelectron microscopy to determine whether movement of parasite proteins and membrane vesicles between the parasitophorous vacuole membrane and erythrocyte surface membrane involves internalization of host membrane skeleton proteins. Monospecific rabbit antisera to spectrin, band 3 and ankyrin and a mouse monoclonal antibody to glycophorin A reacted with these erythrocyte proteins in infected and uninfected human erythrocytes by immunoblotting. Cross-reacting malarial proteins were not detected. The rabbit sera also failed to immunoprecipitate [3H]isoleucine labeled malarial proteins from Triton X-100 and sodium dodecyl sulfate (SDS) extracts of infected erythrocytes. These three antibodies as well as the monoclonal antibody to glycophorin A bound to the membrane skeleton of infected and uninfected erythrocytes. The parasitophorous vacuole membrane was devoid of bound antibody, a result indicating that this membrane contains little, if any, of these host membrane proteins. With ring-, trophozoite- and schizont-infected erythrocytes, spectrin, band 3 and glycophorin A were absent from intracellular membranes including Maurer's clefts and other vesicles in the erythrocyte cytoplasm. In contrast, Maurer's clefts were specifically labeled by anti-ankyrin antibody. There was a slight, corresponding decrease in labeling of the membrane skeleton of infected erythrocytes. A second, morphologically distinct population of circular, vesicle-like membranes in the erythrocyte cytoplasm was not labeled with anti-ankyrin antibody. We conclude that membrane movement between the host erythrocyte surface membrane and parasitophorous vacuole membrane involves preferential sorting of ankyrin into a subpopulation of cytoplasmic membranes. 相似文献
10.
Plasmodium falciparum-infected erythrocytes sequester from blood circulation by binding host endothelium. A large family of variant proteins mediates cytoadherence and their binding specificity determines parasite sequestration patterns and potential for disease. The aim of the present study was to understand how binding properties are encoded into family members and to develop sequence algorithms for predicting binding. To accomplish these goals computational approaches and a binding assay were used to characterize adhesion across Plasmodium falciparum erythrocyte membrane 1 (PfEMP1) proteins in the 3D7 parasite genome. We report that most family members encode the capacity to bind CD36 in the protein's semi-conserved head structure and describe the sequence characteristics of a group of PfEMP1 proteins that do not. Structural and functional grouping of PfEMP1 proteins based upon head structure and additional domain architectural properties provide new insights into the protein family. These can be used to investigate the role of proteins in malaria pathogenesis and potentially tailor vaccines to recognize particular binding variants. 相似文献
11.
Reconstitution of Ca(2+)-dependent K+ transport in erythrocyte membrane vesicles requires a cytoplasmic protein 总被引:1,自引:0,他引:1
R B Moore M V Mankad S K Shriver V N Mankad G A Plishker 《The Journal of biological chemistry》1991,266(28):18964-18968
We have demonstrated that calcium-dependent potassium transport in erythrocytes requires the participation of a cytoplasmic protein. Activation of calcium-dependent potassium transport causes an increase in the membrane-bound levels of this protein which is dependent on the calcium concentration and which is highly correlated (r = 0.791, p less than 0.0001) with the loss of potassium. Reconstitution of this transport pathway in sonicated erythrocyte membrane vesicles was achieved only in vesicles containing the cytoplasmic protein indicating a causal relationship in this transport system. The protein is found in high levels within the cytoplasm of erythrocytes (5.6 mg/ml red blood cells) and yet less than 1% of the protein located in the cytoplasm is required to bind to the membrane in order to initiate the potassium efflux. The analysis of rat organ homogenates demonstrated that this protein is located in most tissues with particular enrichment in adrenal glands, brain, lung, and blood. These results demonstrate that there is a cytoplasmic protein, herein named calpromotin, which is a necessary and sufficient cytoplasmic component of calcium-dependent potassium transport in erythrocytes and perhaps other tissues. 相似文献
12.
We have cloned and sequenced the gene encoding the circumsporozoite (CS) protein of Plasmodium reichenowi a Plasmodium falciparum-like malaria parasite of chimpanzees. Comparison of the two CS proteins reveals both similarities and differences in these two evolutionarily related parasites that have adapted to different hosts. The P. reichenowi CS protein has a new repeat sequence, NVNP, in addition to the P. falciparum-like NANP and NVDP repeats. In the immunodominant TH2R and TH3R regions of the CS protein, the amino acid sequences are similar in both parasite proteins. The differences in the two proteins exist in domains around the conserved regions, Region I and Region II, which are otherwise conserved in the CS proteins of P. falciparum analyzed to date. Studies of parasite protein genes of evolutionarily related malaria parasites, together with other immunologic and biologic characteristics, will help better understand the evolution and host parasite relationship of malaria parasites and may provide a tool for identifying protein determinants for malaria vaccine development. 相似文献
13.
K Nakamura T Hasler K Morehead R J Howard M Aikawa 《The journal of histochemistry and cytochemistry》1992,40(9):1419-1422
Adherence of Plasmodium falciparum-infected RBCs (PRBC) to endothelial cells causes PRBC sequestration in cerebral microvessels and is considered to be a major contributor to the pathogenesis of cerebral malaria. Both CD36 and thrombospondin (TSP) are glycoproteins that mediate PRBC adherence to endothelial cells in vitro. Because they are both expressed on the surface of endothelial cells, they probably contribute to PRBC sequestration and vascular occlusion in vivo. By applying affinity labeling of receptor binding sites with purified ligands, we showed for the first time that both CD36 and TSP can bind independently to the PRBC surface and that the PRBC receptor(s) for CD36 and TSP are localized specifically to the electron-dense knob protrusions of the PRBC surface. These findings may help in efforts to develop a malaria vaccine to prevent cerebral malaria. 相似文献
14.
Plasmodium falciparum (Pf) malaria parasites remodel host erythrocytes by placing membranous structures in the host cell cytoplasm and inserting proteins into the surrounding erythrocyte membranes. Dynamic imaging techniques with high spatial and temporal resolutions are required to study the trafficking pathways of proteins and the time courses of their delivery to the host erythrocyte membrane. METHODOLOGY AND FINDINGS: Using a tetracysteine (TC) motif tag and TC-binding biarsenical fluorophores (BAFs) including fluorescein arsenical hairpin (FlAsH) and resorufin arsenical hairpin (ReAsH), we detected knob-associated histidine-rich protein (KAHRP) constructs in Pf-parasitized erythrocytes and compared their fluorescence signals to those of GFP (green fluorescent protein)-tagged KAHRP. Rigorous treatment with BAL (2, 3 dimercaptopropanol; British anti-Lewisite) was required to reduce high background due to nonspecific BAF interactions with endogenous cysteine-rich proteins. After this background reduction, similar patterns of fluorescence were obtained from the TC- and GFP-tagged proteins. The fluorescence from FlAsH and ReAsH-labeled protein bleached at faster rates than the fluorescence from GFP-labeled protein. CONCLUSION: While TC/BAF labeling to Pf-infected erythrocytes is presently limited by high background signals, it may offer a useful complement or alternative to GFP labeling methods. Our observations are in agreement with the currently-accepted model of KAHRP movement through the cytoplasm, including transient association of KAHRP with Maurer's clefts before its incorporation into knobs in the host erythrocyte membrane. 相似文献
15.
16.
In this article Chris Newbold and Kevin Marsh describe the evidence for the co-existence of both modified host proteins and of parasite determinants at the infected erythrocyte surface. The stable characteristics of infected cells may in part stem from parasite-induced changes in band 3 molecules, thus explaining some of the cytoadherence properties of uninfected, but abnormal cells (as in sickle-cell disease and diabetes). However, Newbold and Marsh suggest that it is difficult to explain the astonishing diversity of antigens that have been observed at the surface of infected red cells unless such molecules have been synthesized by the parasite. 相似文献
17.
Emmanuel Amlabu Prince B Nyarko Grace Opoku Damata Ibrahim-Dey Philip Ilani Henrietta Mensah-Brown Grace A Akporh Ojo-Ajogu Akuh Evelyn A Ayugane David Amoh-Boateng Kwadwo A Kusi Gordon A Awandare 《Experimental biology and medicine (Maywood, N.J.)》2021,246(1):10
Nearly 60% of Plasmodium falciparum proteins are still uncharacterized and their functions are unknown. In this report, we carried out the functional characterization of a 45 kDa protein (PF3D7_1459400) and showed its potential as a target for blood stage malaria vaccine development. Analysis of protein subcellular localization, native protein expression profile, and erythrocyte invasion inhibition of both clinical and laboratory parasite strains by peptide antibodies suggest a functional role of PF3D7_1459400 protein during erythrocyte invasion. Also, immunoreactivity screens using synthetic peptides of the protein showed that adults resident in malaria endemic regions in Ghana have naturally acquired plasma antibodies against PF3D7_1459400 protein. Altogether, this study presents PF3D7_1459400 protein as a potential target for the development of peptide-based vaccine for blood-stage malaria.Impact statementPlasmodium falciparum malaria is a global health problem. Erythrocyte invasion by P. falciparum merozoites appears to be a promising target to curb malaria. We have identified and characterized a novel protein that is involved in erythrocyte invasion. Our data on protein subcellular localization, stage-specific protein expression pattern, and merozoite invasion inhibition by α-peptide antibodies suggest a role for PF3D7_1459400 protein during P. falciparum erythrocyte invasion. Even more, the human immunoepidemiology data present PF3D7_1459400 protein as an immunogenic antigen which could be further exploited for the development of new anti-infective therapy against malaria. 相似文献
18.
Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes 总被引:8,自引:0,他引:8
Artavanis-Tsakonas K Eleme K McQueen KL Cheng NW Parham P Davis DM Riley EM 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(10):5396-5405
Human NK cells are the earliest source of the protective cytokine IFN-gamma when PBMC from nonimmune donors are exposed to Plasmodium falciparum-infected RBC (iRBC) in vitro. In this study, we show that human NK cells form stable conjugates with iRBC but not with uninfected RBC and that induction of IFN-gamma synthesis is dependent on direct contact between the NK cell and the iRBC. NK cells respond to iRBC only in the presence of a source of IL-12/IL-18 and the subset of NK cells that preferentially respond to iRBC express high levels of the lectin-like receptor CD94/NKG2A. There is heterogeneity between donors in their ability to respond to iRBC. DNA analysis has revealed considerable heterogeneity of killer Ig-like receptor (KIR) genotype among the donor population and has identified 21 new KIR allelic variants in the donors of African and Asian descent. Importantly, we find evidence for significant associations between KIR genotype and NK responsiveness to iRBC. This emphasizes the need for large-scale population-based studies to address associations between KIR genotype and susceptibility to malaria. 相似文献
19.
Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes 总被引:5,自引:2,他引:5 下载免费PDF全文
R J Howard S Uni M Aikawa S B Aley J H Leech A M Lew T E Wellems J Rener D W Taylor 《The Journal of cell biology》1986,103(4):1269-1277
Plasmodium falciparum-infected erythrocytes (IRBCs) synthesize several histidine-rich proteins (HRPs) that accumulate high levels of [3H]histidine but very low levels of amino acids such as [3H]isoleucine or [35S]methionine. We prepared a monoclonal antibody which reacts specifically with one of these HRPs (Pf HRP II) and studied the location and synthesis of this protein during the parasite's intracellular growth. With the knob-positive Malayan Camp strain of P. falciparum, the monoclonal antibody identified a multiplet of protein bands with major species at Mr 72,000 and 69,000. Pf HRP II synthesis began with immature parasites (rings) and continued through the trophozoite stage. The Mr 72,000 band of Pf HRP II, but not the faster moving bands of the multiplet, was recovered as a water-soluble protein from the culture supernatant of intact IRBCs. Approximately 50% of the total [3H]histidine radioactivity incorporated into the Mr 72,000 band was extracellular between 2 and 24 h of culture. Immunofluorescence and cryothin-section immunoelectron microscopy localized Pf HRP II to several cell compartments including the parasite cytoplasm, as concentrated "packets" in the host erythrocyte cytoplasm and at the IRBC membrane. Our results provide evidence for an intracellular route of transport for a secreted malarial protein from the parasite through several membranes and the host cell cytoplasm. 相似文献
20.
Of the several proteins that bind along the cytoplasmic domain of erythrocyte membrane band 3, only the sites of interaction of proteins 4.1 and 4.2 remain to be at least partially localized. Using five independent techniques, we have undertaken to map and characterize the binding site of band 4.1 on band 3. First, transfer of a radioactive cross-linker (125I-2-(p-azido-salicylamido)ethyl-1-3-dithiopropionate) from purified band 4.1 to its binding sites on stripped inside-out erythrocyte membrane vesicles (stripped IOVs) revealed major labeling of band 3, glycophorin C, and glycophorin A. Proteolytic mapping of the stripped IOVs then demonstrated that the label on band 3 was confined largely to a fragment comprising residues 1-201. Second, competitive binding experiments with Fab fragments of monoclonal and peptide-specific polyclonal antibodies to numerous epitopes along the cytoplasmic domain of band 3 displayed stoichiometric competition only with Fabs to epitopes between residues 1 and 91 of band 3. Weak competition was also observed with Fabs to a sequence of the cytoplasmic domain directly adjacent to the membrane-spanning domain, but only at 50-100-fold excess of Fab. Third, band 4.1 protected band 3 from chymotryptic hydrolysis at tyrosine 46 and to a much lesser extent at a site within the junctional peptide connecting the membrane-spanning and cytoplasmic domains of band 3. Fourth, ankyrin, which has been previously shown to interact with band 3 both near a putative central hinge and at the N terminus competed with band 4.1 for band 3 in stripped IOVs. Since band 4.1 does not associate with band 3 near the flexible central hinge, the competition with ankyrin can be assumed to derive from a mutual association with the N terminus. Finally, a synthetic peptide corresponding to residues 1-15 of band 3 was found to mildly inhibit band 4.1 binding to stripped IOVs. Taken together, these data suggest that band 4.1 binds band 3 predominantly near the N terminus, with a possible secondary site near the junction of the cytoplasmic domain and the membrane. 相似文献