首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
In Dictyostelium discoideum, AprA and CfaD are secreted proteins that inhibit cell proliferation. We found that the proliferation of cells lacking CnrN, a phosphatase and tensin homolog (PTEN)-like phosphatase, is not inhibited by exogenous AprA and is increased by exogenous CfaD. The expression of CnrN in cnrN¯ cells partially rescues these altered sensitivities, suggesting that CnrN is necessary for the ability of AprA and CfaD to inhibit proliferation. Cells lacking CnrN accumulate normal levels of AprA and CfaD. Like cells lacking AprA and CfaD, cnrN¯ cells proliferate faster and reach a higher maximum cell density than wild type cells, tend to be multinucleate, accumulate normal levels of mass and protein per nucleus, and form less viable spores. When cnrN¯ cells expressing myc-tagged CnrN are stimulated with a mixture of rAprA and rCfaD, levels of membrane-associated myc-CnrN increase. AprA also causes chemorepulsion of Dictyostelium cells, and CnrN is required for this process. Combined, these results suggest that CnrN functions in a signal transduction pathway downstream of AprA and CfaD mediating some, but not all, of the effects of AprA and CfaD.  相似文献   

4.
In Dictyostelium discoideum, the secreted proteins AprA and CfaD function as reporters of cell density and regulate cell number by inhibiting proliferation at high cell densities. AprA also functions to disperse groups of cells at high density by acting as a chemorepellent. However, the signal transduction pathways associated with AprA and CfaD are not clear, and little is known about how AprA affects the cytoskeleton to regulate cell movement. We found that the p21-activated kinase (PAK) family member PakD is required for both the proliferation-inhibiting activity of AprA and CfaD and the chemorepellent activity of AprA. Similar to cells lacking AprA or CfaD, cells lacking PakD proliferate to a higher cell density than wild-type cells. Recombinant AprA and CfaD inhibit the proliferation of wild-type cells but not cells lacking PakD. Like AprA and CfaD, PakD affects proliferation but does not significantly affect growth (the accumulation of mass) on a per-nucleus basis. In contrast to wild-type cells, cells lacking PakD are not repelled from a source of AprA, and colonies of cells lacking PakD expand at a slower rate than wild-type cells, indicating that PakD is required for AprA-mediated chemorepulsion. A PakD-GFP fusion protein localizes to an intracellular punctum that is not the nucleus or centrosome, and PakD-GFP is also occasionally observed at the rear cortex of moving cells. Vegetative cells lacking PakD show excessive actin-based filopodia-like structures, suggesting that PakD affects actin dynamics, consistent with previously characterized roles of PAK proteins in actin regulation. Together, our results implicate PakD in AprA/CfaD signaling and show that a PAK protein is required for proper chemorepulsive cell movement in Dictyostelium.  相似文献   

5.

Background  

Several studies have shown that organ size, and the proliferation of tumor metastases, may be regulated by negative feedback loops in which autocrine secreted factors called chalones inhibit proliferation. However, very little is known about chalones, and how cells sense them. We previously identified two secreted proteins, AprA and CfaD, which act as chalones in Dictyostelium. Cells lacking AprA or CfaD proliferate faster than wild-type cells, and adding recombinant AprA or CfaD to cells slows their proliferation.  相似文献   

6.
Growing Dictyostelium cells secrete CfaD and AprA, two proteins that have been characterized as chalones. They exist within a high-molecular-weight complex that reversibly inhibits cell proliferation, but not growth, via cell surface receptors and a signaling pathway that includes G proteins. How the production of these two proteins is regulated is unknown. Dictyostelium cells possess three GCN2-type eukaryotic initiation factor 2 α subunit (eIF2α) kinases, proteins that phosphorylate the translational initiation factor eIF2α and possess a tRNA binding domain involved in their regulation. The Dictyostelium kinases have been shown to function during development in regulating several processes. We show here that expression of an unregulated, activated kinase domain greatly inhibits cell proliferation. The inhibitory effect on proliferation is not due to a general inhibition of translation. Instead, it is due to enhanced production of a secreted factor(s). Indeed, extracellular CfaD and AprA proteins, but not their mRNAs, are overproduced in cells expressing the activated kinase domain. The inhibition of proliferation is not seen when the activated kinase domain is expressed in cells lacking CfaD or AprA or in cells that contain a nonphosphorylatable eIF2α. We conclude that production of the chalones CfaD and AprA is translationally regulated by eIF2α phosphorylation. Both proteins are upregulated at the culmination of development, and this enhanced production is lacking in a strain that possesses a nonphosphorylatable eIF2α.  相似文献   

7.
Retinoblastoma-like proteins regulate cell differentiation and inhibit cell proliferation. The Dictyostelium discoideum retinoblastoma orthologue RblA affects the differentiation of cells during multicellular development, but it is unclear whether RblA has a significant effect on Dictyostelium cell proliferation, which is inhibited by the secreted proteins AprA and CfaD. We found that rblA cells in shaking culture proliferate to a higher density, die faster after reaching stationary density, and, after starvation, have a lower spore viability than wild-type cells, possibly because in shaking culture, rblA cells have both increased cytokinesis and lower extracellular accumulation of CfaD. However, rblA cells have abnormally slow proliferation on bacterial lawns. Recombinant AprA inhibits the proliferation of wild-type cells but not that of rblA cells, whereas CfaD inhibits the proliferation of both wild-type cells and rblA cells. Similar to aprA cells, rblA cells have a normal mass and protein accumulation rate on a per-nucleus basis, indicating that RblA affects cell proliferation but not cell growth. AprA also functions as a chemorepellent, and RblA is required for proper AprA chemorepellent activity despite the fact that RblA does not affect cell speed. Together, our data indicate that an autocrine proliferation-inhibiting factor acts through RblA to regulate cell density in Dictyostelium, suggesting that such factors may signal through retinoblastoma-like proteins to control the sizes of structures such as developing organs or tumors.  相似文献   

8.
Autocrine proliferation repressor protein A (AprA) is a protein secreted by Dictyostelium discoideum cells. Although there is very little sequence similarity between AprA and any human protein, AprA has a predicted structural similarity to the human protein dipeptidyl peptidase IV (DPPIV). AprA is a chemorepellent for Dictyostelium cells, and DPPIV is a chemorepellent for neutrophils. This led us to investigate if AprA and DPPIV have additional functional similarities. We find that like AprA, DPPIV is a chemorepellent for, and inhibits the proliferation of, D. discoideum cells, and that AprA binds some DPPIV binding partners such as fibronectin. Conversely, rAprA has DPPIV‐like protease activity. These results indicate a functional similarity between two eukaryotic chemorepellent proteins with very little sequence similarity, and emphasize the usefulness of using a predicted protein structure to search a protein structure database, in addition to searching for proteins with similar sequences.  相似文献   

9.
AprA and CfaD are secreted proteins that function as autocrine signals to inhibit cell proliferation in Dictyostelium discoideum. Cells lacking AprA or CfaD proliferate rapidly, and adding AprA or CfaD to cells slows proliferation. Cells lacking the ROCO kinase QkgA proliferate rapidly, with a doubling time 83% of that of the wild type, and overexpression of a QkgA-green fluorescent protein (GFP) fusion protein slows cell proliferation. We found that qkgA cells accumulate normal levels of extracellular AprA and CfaD. Exogenous AprA or CfaD does not slow the proliferation of cells lacking qkgA, and expression of QkgA-GFP in qkgA cells rescues this insensitivity. Like cells lacking AprA or CfaD, cells lacking QkgA tend to be multinucleate, accumulate nuclei rapidly, and show a mass and protein accumulation per nucleus like those of the wild type, suggesting that QkgA negatively regulates proliferation but not growth. Despite their rapid proliferation, cells lacking AprA, CfaD, or QkgA expand as a colony on bacteria less rapidly than the wild type. Unlike AprA and CfaD, QkgA does not affect spore viability following multicellular development. Together, these results indicate that QkgA is necessary for proliferation inhibition by AprA and CfaD, that QkgA mediates some but not all of the effects of AprA and CfaD, and that QkgA may function downstream of these proteins in a signal transduction pathway regulating proliferation.Physiological processes that define and maintain the sizes of tissues are poorly understood. Although a number of characterized gene products negatively regulate the sizes of tissues (21, 23), the mechanism by which the activities of such gene products are controlled is unclear. One potential mechanism for tissue size regulation consists of tissue-specific autocrine signals that inhibit proliferation in a concentration-dependent manner (18). Since the extracellular concentration of such factors increases as a function of cell density and/or cell number, the proliferation-inhibiting function of these factors can limit tissue size. Considerable evidence for such factors has been reported. For instance, full hepatectomy in one of two rats with conjoined circulatory systems stimulated proliferation in the intact liver of the conjoined rat, suggesting the existence of a systemic factor produced by the liver that inhibits the proliferation of hepatocytes (16). However, only a small number of factors with analogous functional roles, such as myostatin, which regulates skeletal muscle size (30), and Gdf11, which negatively regulates neurogenesis in the olfactory epithelium (38), have been identified. The mechanisms by which such signals inhibit proliferation are not well understood. As such autocrine signals may serve to limit tumor growth (14, 20), elucidation of the identities of such factors and their associated signal transduction pathways may yield novel cancer therapies.We have identified two such autocrine proliferation-repressing signals in the social amoeba Dictyostelium discoideum, a genetically and biochemically tractable model organism. The proteins AprA and CfaD are secreted by Dictyostelium and inhibit the proliferation of Dictyostelium cells in a concentration-dependent manner (4, 12). Cells in which the genes encoding either AprA or CfaD have been disrupted by homologous recombination proliferate rapidly, and cells overexpressing AprA or CfaD proliferate slowly (4, 11). Adding recombinant AprA (rAprA) or recombinant CfaD (rCfaD) to cells slows proliferation, demonstrating that these proteins function as extracellular signals (4, 12). In addition to exhibiting rapid proliferation, aprA and cfaD cells exhibit a multinucleate phenotype, strongly suggesting that AprA and CfaD are negative regulators of mitosis (4, 11). aprA cells are insensitive to the proliferation-inhibiting effects of CfaD (12), and cfaD cells are insensitive to AprA (4), indicating the necessity of both genes for proliferation inhibition and suggesting a common proliferation-inhibiting mechanism. The G protein complex subunits Gα8, Gα9, and Gβ are necessary for proliferation inhibition by AprA, and the addition of recombinant AprA to purified cell membranes increases binding of GTP to wild-type and gα9 cell membranes but not gα8 or gβ membranes, indicating that AprA activates a proliferation-inhibiting signal transduction pathway of which Gα8 and Gβ are components (5). The signal transduction pathway downstream of Gα8 and the associated mechanism of proliferation inhibition are unknown.Although the selective forces that have maintained functional autocrine proliferation inhibitors in proliferating Dictyostelium cells are unclear, AprA and CfaD may provide an advantage during the multicellular portion of the Dictyostelium life cycle. Upon starvation, Dictyostelium cells secrete pulses of the chemoattractant cyclic AMP, leading to cells streaming toward aggregation centers (15, 27). This process causes the formation of multicellular groups regulated in size by a secreted protein complex that stimulates stream breakup (9, 10). These groups develop into multicellular fruiting body structures composed of a mass of stress-resistant spores supported by an approximately 1-mm-high stalk (24). While the stalk cells inevitably die in an act of apparent altruism (31), the presence of nutrients stimulates spore germination and a continuation of proliferation (13). Following development, aprA and cfaD cells form fewer viable spores than the wild type (4, 11), suggesting that AprA and CfaD increase the fitness of Dictyostelium during development.Like aprA and cfaD cells, Dictyostelium cells lacking the ROCO family kinase QkgA have an abnormally rapid proliferation (1). The ROCO protein family is widely conserved and is defined by the presence of a Ras of complex protein (Roc) domain followed by a C terminus of Roc (Cor) domain, which mediates homodimerization (19). In eukaryotes, these domains are commonly followed C terminally by a kinase domain with similarity to the tyrosine kinase-like (TKL) group of kinases (3, 26, 29). In Dictyostelium, other ROCO proteins function in cyclic GMP signaling (8, 35) and cytokinesis (2), and a total of 11 predicted ROCO proteins are present in the genome, 10 of which, including QkgA, encode kinase domains predicted to be catalytically active (17). The human genome encodes two ROCO kinases, which are expressed in a wide range of tissues (25, 40). Little is known regarding the physiological functions of these proteins, although the ROCO protein LRRK2 is implicated in a dominantly inherited form of Parkinson''s disease (40) and negatively regulates neurite growth in rat cortical cultures (28).In this report, we show that, like aprA and cfaD cells, qkgA cells proliferate to a higher cell density than the wild type and tend to be multinucleate. Additionally, we show that qkgA cells are insensitive to exogenous AprA and CfaD, indicating that QkgA is required for AprA and CfaD signal transduction.  相似文献   

10.
The ability of cells to sense chemical gradients is essential during development, morphogenesis, and immune responses. Although much is known about chemoattraction, chemorepulsion remains poorly understood. Proliferating Dictyostelium cells secrete a chemorepellent protein called AprA. AprA prevents pseudopod formation at the region of the cell closest to the source of AprA, causing the random movement of cells to be biased away from the AprA. Activation of Ras proteins in a localized sector of a cell cortex helps to induce pseudopod formation, and Ras proteins are needed for AprA chemorepulsion. Here we show that AprA locally inhibits Ras cortical activation through the G protein–coupled receptor GrlH, the G protein subunits Gβ and Gα8, Ras protein RasG, protein kinase B, the p21-activated kinase PakD, and the extracellular signal–regulated kinase Erk1. Diffusion calculations and experiments indicate that in a colony of cells, high extracellular concentrations of AprA in the center can globally inhibit Ras activation, while a gradient of AprA that naturally forms at the edge of the colony allows cells to activate Ras at sectors of the cell other than the sector of the cell closest to the center of the colony, effectively inducing both repulsion from the colony and cell differentiation. Together, these results suggest that a pathway that inhibits local Ras activation can mediate chemorepulsion.  相似文献   

11.
Coronin is an actin-binding protein in Dictyostelium discoideum that is enriched at the leading edge of the cells and in projections of the cell surface called crowns. The polypeptide sequence of coronin is distinguished by its similarities to the beta-subunits of trimeric G proteins (E. L. de Hostos, B. Bradtke, F. Lottspeich, R. Guggenheim, and G. Gerisch, 1991. EMBO (Eur. Mol. Biol. Organ.) J. 10:4097-4104). To elucidate the in vivo function of coronin, null mutants have been generated by gene replacement. The mutant cells lacking coronin grow and migrate more slowly than wild-type cells. When these cor- cells grow in liquid medium they become multinucleate, indicating a role of coronin in cytokinesis. To explore this role, coronin has been localized in mitotic wild-type cells by immunofluorescence labeling. During separation of the daughter cells, coronin is strongly accumulated at their distal portions including the leading edges. This contrasts with the localization of myosin II in the cleavage furrow and suggests that coronin functions independently of the conventional myosin in facilitating cytokinesis.  相似文献   

12.
We found novel development rescuing factors (DRFs) secreted from developing Dictyostelium cells, by using a mutant (erkB-) which is missing MAP-kinase ERK2 as a test strain for bioassay. The mutant erkB- fails to undergo multicellular morphogenesis due to impaired cAMP signaling. However, such developmental defect can be restored by the presence of low-molecular weight DRFs that are secreted from developing wild-type cells. We previously showed that DIF-1 (Differentiation-Inducing Factor 1 for stalk cells) possesses this activity, indicating a newly discovered role of DIF-1. Surprisingly, however, the mutant dmtA-, which is incapable of DIF-1 synthesis still exerts a strong inducing activity of the multicellular morphogenesis of erkB-. After analysis of HPLC fractions of conditioned media prepared from both wild type Ax2 and dmtA- strains revealed that both strains secrete at least two novel DRF activities with DIF-like mobility. However, these activities were not derived from other DIFs such as DIF-2 and DIF-3. Identification of these DRFs found in this study would provide insight into the mechanism by which the development of the erkB- mutant is restored and how these factors act in the normal development of Dictyostelium.  相似文献   

13.
Reduced cAMP secretion in Dictyostelium discoideum mutant HB3   总被引:1,自引:0,他引:1  
Extracellular cAMP induces the intracellular synthesis and subsequent secretion of cAMP in Dictyostelium discoideum (relay). cAMP relay was strongly diminished in mutant HB3 which shows abnormal development by making very small fruiting bodies. Extracellular cAMP binds to receptors on the surface of mutant cells and induces the rapid activation of adenylate cyclase. Intracellular cAMP rises to a concentration as high as that in wild-type cells but only a very small amount of cAMP is secreted. cAMP secretion in wild-type cells starts immediately after cAMP production, and is proportional to the intracellular cAMP concentration. In the mutant cells cAMP secretion starts a few minutes after cAMP production; by that time most of the intracellular cAMP is already degraded by phosphodiesterase and little cAMP is available for secretion. We conclude that mutant HB3 has a defect in the mechanism by which Dictyostelium cells secrete cAMP.  相似文献   

14.
Shoji JY  Kikuma T  Arioka M  Kitamoto K 《PloS one》2010,5(12):e15650
Filamentous fungi consist of continuum of multinucleate cells called hyphae, and proliferate by means of hyphal tip growth. Accordingly, research interest has been focusing on hyphal tip cells, but little is known about basal cells in colony interior that do not directly contribute to proliferation. Here, we show that autophagy mediates degradation of basal cell components in the filamentous fungus Aspergillus oryzae. In basal cells, enhanced green fluorescent protein (EGFP)-labeled peroxisomes, mitochondria, and even nuclei were taken up into vacuoles in an autophagy-dependent manner. During this process, crescents of autophagosome precursors matured into ring-like autophagosomes to encircle apparently whole nuclei. The ring-like autophagosomes then disappeared, followed by dispersal of the nuclear material throughout the vacuoles, suggesting the autophagy-mediated degradation of whole nuclei. We also demonstrated that colony growth in a nutrient-depleted medium was significantly inhibited in the absence of functional autophagy. This is a first report describing autophagy-mediated degradation of whole nuclei, as well as suggesting a novel strategy of filamentous fungi to degrade components of existing hyphae for use as nutrients to support mycelial growth in order to counteract starvation.  相似文献   

15.
The growth rate of normal cells multiplied in vitro decreases as the cell density of the culture increases. Previous results suggested that this density-dependent inhibition of growth in nontransformed cells was due to the diffusion of growth inhibitory substances in the medium of dense cultures. In this paper, we demonstrate that dense cultures of 3T3 cells secrete inhibitory and stimulatory factors. Macromolecules of conditioned medium were fractionated on Biogel P150 and the different fractions were tested on quiescent cultures of 3T3 cells stimulated or not to proliferate by addition of alpha globulin. When target cells were not stimulated to proliferate by addition of exocrine growth factors, we observed the inhibitory activity of a large molecular weight inhibitor (IDF45) and the stimulatory activity of autocrine growth factors (fraction about 35 and 10 K molecular weight), on the incorporation of 14C inosine into nucleotide pool and RNA. However, DNA synthesis was significantly stimulated with fraction 10 K only. This discrepancy between the stimulation of RNA and DNA synthesis may be explained by the presence, simultaneously, of inhibitory and stimulatory factors in fraction 35 and 10 K molecular weight. The presence of inhibitory factor was demonstrated when the fractions were tested on target cells stimulated to proliferate by alpha globulin addition and labeled with 14C thymidine. In these conditions, the stimulatory activity of autocrine growth factors was not observable, and only the inhibitory activity on DNA synthesis of fractions 35 and 10 K appeared. It is tempting to assume that the regulation of in vitro cell proliferation is determined by the balance between these antagonist stimulatory and inhibitory autocrine growth factors.  相似文献   

16.
During Dictyostelium development, prespore cells secrete acyl-CoA binding protein (AcbA). Upon release, AcbA is processed to generate a peptide called spore differentiation factor-2 (SDF-2), which triggers terminal differentiation of spore cells. We have found that cells lacking Golgi reassembly stacking protein (GRASP), a protein attached peripherally to the cytoplasmic surface of Golgi membranes, fail to secrete AcbA and, thus, produce inviable spores. Surprisingly, AcbA lacks a signal sequence and is not secreted via the conventional secretory pathway (endoplasmic reticulum-Golgi-cell surface). GRASP is not required for conventional protein secretion, growth, and the viability of vegetative cells. Our findings reveal a physiological role of GRASP and provide a means to understand unconventional secretion and its role in development.  相似文献   

17.
The ability of myosin II to form filaments is essential for its function in vivo. This property of self association is localized in the light meromyosin (LMM) region of the myosin II molecules. To explore this property in more detail within the context of living cells, we expressed the LMM portion of the Dictyostelium myosin II heavy chain gene in wild-type Dictyostelium cells. We found that the LMM protein was expressed at high levels and that it folded properly into alpha- helical coiled-coiled molecules. The expressed LMM formed large cytoplasmic inclusions composed of entangled short filaments surrounded by networks of long tubular structures. Importantly, these abnormal structures sequestered the cell's native myosin II, completely removing it from its normal cytoplasmic distribution. As a result the cells expressing LMM displayed a myosin-null phenotype: they failed to undergo cytokinesis and became multinucleate, failed to form caps after treatment with Con A, and failed to complete their normal developmental cycle. Thus, expression of the LMM fragment in Dictyostelium completely abrogates myosin II function in vivo. The dominant-negative character of this phenotype holds promise as a general method to disrupt myosin II function in many cell types without the necessity of gene targeting.  相似文献   

18.
Accessory cell function of Th2 clones   总被引:2,自引:0,他引:2  
We have investigated the ability of T helper clones to serve as accessory cells and in the presence of mitogen activate freshly-isolated, splenic T cells. In this type of costimulatory assay, the Th cells that secrete IL-4 but not the Th cells that secrete IL-2 function as AC to induce T cell proliferation in the presence of various T cell mitogens (Con A, anti-CD3 mAb, anti-TCR mAb, and anti-Thy-1 mAb). The signal provided by the accessory Th2 cells occurred independently of MHC restriction, and the analysis of dose-response curves showed the involvement of a single stimulator cell. CD4, as well as CD8 expressing splenic T cells were induced to proliferate by the Th2 clones and mitogen, but mAb specific for CD4 or CD8 failed to affect the response. These findings indicate that cloned Th2 cells functioned as accessory cells and induced naive T cells to proliferate in the presence of mitogen.  相似文献   

19.
Dictyostelium is one of the model systems of choice for studying the cytokinesis of animal-type cells. Two types of cytokinesis mutants have been used to identify proteins involved in the cytokinesis of Dictyostelium: (1) type I, the mutant cells grow on substrates to produce giant multinucleate cells; (2) type II, the mutant cells divide nearly normally on substrates, but are unable to divide at all and get highly multinucleate in suspension culture. These two mutant types might correspond to the myosin II-independent and myosin II-including cytokinesis mechanisms, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号