首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Larvae of the staphylinid subfamily Trichophyinae are described for the first time based on larvae of a new species of Trichophya from the southwestern United States. Adults and larvae of the new species, Trichophya texana Ashe & Newton (type locality Texas, Brewster Co., Big Bend National Park), are described and illustrations of both provided. Also given are a key for separation of the Nearctic species of Trichophya , a checklist of the known World fauna of the Trichophyinae (including first report of the genus from Mexico and Guatemala), and a characterization of the subfamily Trichophyinae based on both larvae and adults. The relationships of major genera and higher taxa in the tachyporine group of staphylinid subfamilies are analysed cladistically using larval characters. No larval characters were found that provide evidence for the monophyly of the tachyporine group; no evidence was found for the monophyly of the Tachyporinae; Charhyphus, Olisthaerus and Phloeocharis (Phloeocharinae + Olisthaerinae) form a monophyletic group; the Trichophyinae and Habrocerinae are sister groups and together probably are the sister group to the Aleocharinae; the Aleocharinae are confirmed to be monophyletic based on larval characters; and Gymnusa + Deinopsis form the sister group to the remainder of the Aleocharinae.  相似文献   

2.
《Systematic Entomology》2018,43(1):183-199
The rove beetle subfamily Aleocharinae is the largest subfamily of animals known in terms of species richness. Two small aleocharine tribes, Gymnusini and Deinopsini, are believed to be a monophyletic clade, sister to the rest of the Aleocharinae. Although the phylogenetic relationships of the extant lineages have been well investigated, the monophyly of Gymnusini has been questioned due to a series of previous studies and the recent discovery of the aleocharine †Cretodeinopsis Cai & Huang (Deinopsini) from mid‐Cretaceous Burmese amber. Using an additional specimen of †Cretodeinopsis and well‐preserved specimens of †Electrogymnusa Wolf‐Schwenninger from Eocene Baltic amber, we present here two types of morphology‐based phylogenetic analyses, employing all extant/extinct genera of Gymnusini and Deinopsini for the first time. The maximum parsimony and Bayesian analyses recovered a monophyletic clade of the two tribes combined, but each analysis suggested nonmonophyly of Gymnusini. In agreement with the results of the present study, we synonymize Deinopsini syn.n. under Gymnusini sensu n. , by priority. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:F09EB444‐C6CA‐4525‐A986‐3CFC826F5877 .  相似文献   

3.
Structure, particularly of the mouthparts, of the unusual aleocharine staphylinid Stylogymnusa subantarctica Hammond was reevaluated. The mouthparts are described in detail, and drawings of their structure are provided. Several features were found to be misinterpreted in previous accounts of the structure of this aleocharine. In particular, the stylate structures found on the prementum are not a highly modified, hollow, stylate glossa, as had been previously suggested. Instead, these structures represent highly modified labial palpi; the segments are completely fused, all signs of typical setae of the labial palpi are missing, and the palpi are very long and slender. In addition, there is no sign that they are hollow. Small, slender, membranous lobes at the base of, and between, the palpi are interpreted as the true glossae (=ligula). Reinterpretation of these characters, and greatly improved phylogenetic techniques in the 20 years since previous phylogenies had been proposed, allowed testing of previous hypotheses of the phylogenetic position of Stylogymnusa and the relationships of the tribes Gymnusini and Deinopsini within the Aleocharinae. Phylogenetic analysis of 7 out‐group and 12 in‐group taxa, based on 84 characters and 231 character states, produced 3 equally most‐parsimonious trees (tree length = 253, C.I. = 0.557, R.I. =0.674, rescaled C.I. = 0.376). These trees provide strong support for a monophyletic lineage consbting of Stylogymnusa, Gymnusa and the Deinopsini but only weak support for a monophyletic Gymnusini (Gymnusa + Stylogymnusa). Bootstrap analysis based on 1000 resampling repetitions showed the following monophyletic clades to be well supported by the dataset: Aleocharinae (79%), Stylogymnusa+Gymnusa+ Deinopsini (99%), Deinopsis+Adinopsis (100%), and representatives of Myllaenini + Athetini + Aleocharini + Homalotini + Oxypodini (the “higher Aleocharinae”) (88%). Weakly supported clades in the bootstrap analysis were: Paraconosoma+ Gymnusini + Deinopsini (56%), Anacyptus+‘higher Aleocharinae’ (54%), and Athetini + Oxypodini + Homalotini + Aleocharini (52%).  相似文献   

4.
A new genus and species, Stylogymnusa subantarctica of Gymnusini (Staphylinidae Aleocharinae), is described from the Auckland Islands. The morphological peculiarities, including vestigial eyes and remarkable mouth-parts, of the new species are discussed in relation to its possible habits. The phylogenetic relationships of the new genus are explored, leading to a discussion of the taxonomy and phylogeny of the Gymnusini and other groups of Aleocharinae. The tribes Gymnusini, to include Gymnusa and Stylogymnusa, and Deinopsini, to include Deinopsis and Adinopsis, are redefined, Adinopsini falling as a synonym of Deinopsini. Two species currently included in Deinopsis are transferred to other genera. The subfamily Aleocharinae is briefly characterised and considered to include several groups currently placed in other subfamilies.  相似文献   

5.
A new extinct rove beetle, Palaeomesoporus electiricus gen. et sp.n., is described from a single specimen of Eocene Baltic amber. This fossil beetle is placed in the tribe Mesoporini, a ‘basal’ group of the mega-diverse subfamily Aleocharinae. Palaeomesoporus is easily discriminated from other mesoporine genera due to its less-developed antennal club, longer and slender elytron lacking a sinuate posterior margin, and prominently shorter mesotarsus. This finding sheds light on the paleodiversity and evolutionary history of the tribe and ‘basal’ Aleocharinae.  相似文献   

6.
The exclusive use of characters coding for specific life stages may bias tree reconstruction. If characters from several life stages are coded, the type of coding becomes important. Here, we simulate the influence on tree reconstruction of morphological characters of Odonata larvae incorporated into a data matrix based on the adult body under different coding schemes. For testing purposes, our analysis is focused on a well‐supported hypothesis: the relationships of the suborders Zygoptera, ‘Anisozygoptera’, and Anisoptera. We studied the cephalic morphology of Epiophlebia, a key taxon among Odonata, and compared it with representatives of Zygoptera and Anisoptera in order to complement the data matrix. Odonate larvae are characterized by a peculiar morphology, such as the specific head form, mouthpart configuration, ridge configuration, cephalic musculature, and leg and gill morphology. Four coding strategies were used to incorporate the larval data: artificial coding (AC), treating larvae as independent terminal taxa; non‐multistate coding (NMC), preferring the adult life stage; multistate coding (MC); and coding larval and adult characters separately (SC) within the same taxon. As expected, larvae are ‘monophyletic’ in the AC strategy, but with anisopteran and zygopteran larvae as sister groups. Excluding larvae in the NMC approach leads to strong support for both monophyletic Odonata and Epiprocta, whereas MC erodes phylogenetic signal completely. This is an obvious result of the larval morphology leading to many multistate characters. SC results in the strongest support for Odonata, and Epiprocta receives the same support as with NMC. Our results show the deleterious effects of larval morphology on tree reconstruction when multistate coding is applied. Coding larval characters separately is still the best approach in a phylogenetic framework. © 2015 The Linnean Society of London  相似文献   

7.
The family Syrphidae (Diptera) is traditionally divided into three subfamilies. The aim of this study was to address the monophyly of the tribes within the subfamily Syrphinae (virtually all with predaceous habits), as well as the phylogenetic placement of particular genera using molecular characters. Sequence data from the mitochondrial protein-coding gene cytochrome c oxidase subunit I ( COI ) and the nuclear 28S ribosomal RNA gene of 98 Syrphinae taxa were analyzed using optimization alignment to explore phylogenetic relationships among included taxa. Volucella pellucens was used as outgroup, and representatives of the tribe Pipizini (Eristalinae), with similar larval feeding mode, were also included. Congruence of our results with current tribal classification of Syrphinae is discussed. Our results include the tribe Toxomerini resolved as monophyletic but placed in a clade with genera Ocyptamus and Eosalpingogaster . Some genera traditionally placed into Syrphini were resolved outside of this tribe, as the sister groups to other tribes or genera. The tribe Bacchini was resolved into several different clades. We recovered Paragini as a monophyletic group, and sister group of the genus Allobaccha . The present results highlight the need of a reclassification of Syrphinae.
© The Willi Hennig Society 2008.  相似文献   

8.
Phylogenetic analysis of the Malacostraca (Crustacea)   总被引:13,自引:0,他引:13  
The Malacostraca comprises about 28 000 species with a broad disparity in morphology, anatomy, embryology, behaviour and ecology. The phylogenetic relationships of the major taxa are still under debate. Is the Leptostraca the sister group of the remaining Malacostraca, or is this taxon more closely related to other Crustacea? Does the Stomatopoda or the Bathynellacea represent the most basal taxon within the remaining taxa? Is the Peracarida monophyletic or are some peracarid taxa more closely related to other ‘caridoid’ taxa? Is the Thermosbaenacea part of the Peracarida or its sister group, and how much support is there for a taxon Amphipoda + Isopoda? To answer these questions a phylogenetic analysis of the Malacostraca combining different phylogenetic approaches was undertaken. In a first step, the monophyly of the Malacostraca including the Leptostraca is shown using the ‘Hennigian approach’. A computer cladistic analysis of the Malacostraca was carried out with NONA and PEE ‐WEE , based on 93 characters from morphology, anatomy and embryology. Nineteen higher malacostracan taxa are included in our analysis. Taxa whose representatives are exclusively fossils were not included. The Leptostraca was used as an operational out‐group. The present analysis supports the basal position of the Stomatopoda. Syncarida and Peracarida (including Thermosbaenacea) are supported as monophyletic, the Eucarida is not. Instead a sister‐group relationship is suggested between Euphausiacea and Peracarida (including Thermosbaenacea), with the Syncarida as the sister group to both taxa. Certain embryonic characters are interpreted as support for the monophyly of the Peracarida (without Thermosbaenacea) because convergences or reversals of these characters seem implausible. Within the Peracarida, the Mysidacea (Lophogastrida + Mysida) represents the sister group to the remaining taxa. A sister‐group relationship between Amphipoda and Isopoda is not supported.  相似文献   

9.
We present the most comprehensive analysis of higher-level relationships in gall wasps conducted thus far. The analysis was based on detailed study of the skeletal morphology of adults, resulting in 164 phylogenetically informative characters, complemented with a few biological characters. Thirty-seven cynipid species from thirty-one genera, including four genera of the apparently monophyletic Cynipini and almost all of the genera in the other tribes, were examined. The outgroup included exemplar species from three successively more distant cynipoid families: Figitidae (the sister group of the Cynipidae), Liopteridae and Ibaliidae. There was considerable homoplasy in the data, but many groupings in the shortest tree were nonetheless well supported, as indicated by bootstrap proportions and decay indices. Partitioning of the data suggested that the high level of homoplasy is characteristic of the Cynipidae and not the result of the amount of available phylogenetically conservative characters being exhausted. The analysis supported the monophyly of the Cynipini (oak gall wasps) which, together with the Rhoditini (the rose gall wasps), Eschatocerini and Pediaspidini formed a larger monophyletic group of gall inducers restricted to woody representatives of the eudicot subclass Rosidae. The inquilines (Synergini) were indicated to be monophyletic, whereas the Aylacini, primarily herb gall inducers, appeared as a paraphyletic assemblage of basal cynipid groups. The shortest tree suggests that the Cynipidae can be divided into three major lineages: one including the inquilines, the Aylacini genera associated with Rosaceae, and Liposthenes ; one consisting entirely of Aylacini genera, among them Aulacidea , Isocolus and Neaylax ; and one comprising the woody rosid gallers (the oak and rose gall wasps and allies), the Phanacis-Timaspis complex and the Aylacini genera associated with Papaveraceae.  相似文献   

10.
Abstract. This study compares the results of Rozen's cladistic analysis of the larvae of fifteen genera of cleptoparasitic bees in the subfamily Nomadinae with an independent data set of adult characters for the same genera. Adult characters exhibited considerably higher levels of homoplasy and poorer resolution of cladistic relationships, with multiple equally parsimonious cladograms. However, comparison of a Nelson consensus tree based on adult characters with the cladogram based on larval characters reveals three components consistently supported in both analyses (the tribes Epeolini and Ammobatini, and Neopasites + Neolarra) , one component supported only by adult characters (Isepeolus + Protepeolus) , and one terminal component supported only by larval characters (Nomada + Ammobatini), as well as several more inclusive groupings based on larval characters that are difficult to compare with the adult consensus tree because it shows so much less resolution. When adult and larval characters are combined in a single data matrix, the resulting cladogram closely resembles the cladogram based on larval characters alone, although levels of homoplasy are considerably higher than in the larval analysis.
A preliminary analysis of adult characters for thirty-four genera in the Nomadinae also exhibited high levels of homoplasy and very large numbers of equally parsimonious cladograms. Nevertheless, certain consistent monophyletic groupings, most notably the Epeolini and Ammobatini, were also supported in this analysis. The one currently recognized tribe whose monophyly has received no support from any analysis is the Nomadini.
The relevance of these phylogenetic hypotheses to our understanding of host associations and variable features of egg morphology and oviposition behaviour in nomadine bees is briefly discussed.  相似文献   

11.
Abstract We develop a morphological dataset for the rove beetle subfamily Euaesthetinae comprising 167 morphological characters (135 adult and 32 larval) scored from 30 terminal taxa including 25 ingroup terminals (from subfamilies Euaesthetinae and Steninae) and five outgroups. Four maximum parsimony analyses using different sets of terminals and character sets were run to test the monophyly of (1) Euaesthetinae, (2) Steninae, (3) Euaesthetinae + Steninae, (4) euaesthetine tribes Austroesthetini, Alzadaesthetini, Euaesthetini, Fenderiini and Stenaesthetini, and (5) the ten currently known austral endemic genera together. Analyses of adult and larval character sets separately and in combination recovered the monophyly of Euaesthetinae, Steninae, and both subfamilies together, with strong support. Analysis of 13 ingroup terminals for which complete data were available suggests that monophyly of Euaesthetinae is supported by 19 synapomorphies (13 adult, six larval), of Steninae by 23 synapomorphies (14 adult, nine larval), and of both subfamilies together by 24 synapomorphies (21 adult, three larval). Within Euaesthetinae, only the tribe Stenaesthetini was recovered as monophyletic based on adult characters, and in no analyses were the ten austral endemic genera recovered as a monophyletic group. Phylogenetic relationships among euaesthetine genera were weakly supported, although analyses including adult characters supported monophyly of Octavius and Protopristus separately, and of Octavius + Protopristus, Austroesthetus + Chilioesthetus and Edaphus + Euaesthetus. Steninae may include a third genus comprising two undescribed species probably possessing a ‘stick–capture’ method of prey capture, similar to that in Stenus. These two species formed a strongly supported clade recovered as the sister group of Stenus based on adult characters. Diagnoses and a key to adults are provided for the 15 euaesthetine genera currently known from the austral region (Australia, New Zealand, South Africa and southern South America). Euaesthetine larvae previously were known only for Euaesthetus, and we describe the larvae of nine more genera and provide the first larval identification key for genera of Euaesthetinae.  相似文献   

12.
The Asteraceae are commonly divided into two large subfamilies, the Cichorioideae (syn. Lactucoideae; Mutisieae, Cardueae, Lactuceae, Vernonieae, Liabeae, Arctoteae) and the Asteroideae (Inuleae, Astereae, Anthemideae, Senecioneae, Calenduleae, Heliantheae, Eupatorieae). Recent phylogenetic analyses based on morphological and chloroplast DNA data conclusively show that the Mutisieae-Barnadesiinae are the sister group to the rest of the family and that the Asteroideae tribes form a monophyletic group. The Vernonieae and Liabeae are sister tribes and the Eupatorieae are nested within a paraphyletic Heliantheae; otherwise tribal interrelationships are still largely uncertain. The Mutisieae-Barnadesiinae are excluded from the Mutisieae and elevated to the new subfamily Barnadesioideae. The two subfamilies Barnadesioideae and Asteroideae are monophyletic, whereas the status of the Cichorioideae remains uncertain. Analyses of chloroplast DNA data support the monophyly of the Cichorioideae; however, morphological data indicate that the subfamily is paraphyletic. Further studies are needed to test the monophyly of the Cichorioideae, as well as to further resolve tribal interrelationships in the two larger subfamilies.  相似文献   

13.
Extant genera of Characeae have been assigned to two tribes: Chareae (Chara, Lamprothamnium, Nitellopsis, and Lychnothamnus) and Nitelleae (Nitella and Tolypella), based on morphology of the thallus and reproductive structures. Character analysis of fossil and extant oogonia suggest that Tolypella is polyphyletic, the genus comprising two sections, one in each of the two tribes. Eleven morphological characters and sequence data for the Rubisco large subunit (rbcL) were used to reconstruct the phylogeny of genera, including the two sections of Tolypella. Parsimony analysis of the rbcL data, with all positions and changes weighted equally, strongly supports the monophyly of the Characeae. The two Tolypella sections form a robust monophyletic group basal to the family. Transversion weighting yielded the same tree but with a paraphyletic Tolypella. The rbcL data strongly support monophyly of tribe Chareae but tribe Nitelleae is paraphyletic. Parsimony analysis of morphological data produced one unrooted tree consistent with monophyly of the two tribes; on this tree the Tolypella sections were paraphyletic. Combining morphological with rbcL data did not change the results derived from rbcL sequences alone. The rbcL data support the monophyly of the Characeae and Coleochaete, which together form a monophyletic sister group to embryophytes.  相似文献   

14.
The phylogeny of the subfamily Tephritinae (Diptera: Tephritidae) was reconstructed from mitochondrial 16S ribosomal RNA gene sequences using 53 species representing 11 currently recognized tribes of the Tephritinae and 10 outgroup species. The minimum evolution and Bayesian trees suggested the following phylogenetic relationships: (1) monophyly of the Tephritinae was strongly supported; (2) a sister group relationship between the Tephritinae and Plioreocepta was supported by the Bayesian tree; (3) the tribes Tephrellini, Myopitini, and Terelliini (excluding Neaspilota) were supported as monophyletic groups; (4) the non-monophyletic nature of the tribes Dithrycini, Eutretini, Noeetini, Tephritini, Cecidocharini, and Xyphosiini; and (5) recognition of 10 putative tribal groups, most of which were supported strongly by the statistical tests of the interior branches. Our results, therefore, convincingly suggest that an extensive rearrangement of the tribal classification of the Tephritinae is necessary. Since our sampling of taxa heavily relied on the current accepted classification, some lineages identified by the present study were severely under-sampled and other possible major lineages of the Tephritinae were probably not even represented in our dataset. We believe that our results provide baseline information for a more rigorous sampling of additional taxa representing all possible major lineages of the subfamily, which is essential for a comprehensive revision of the tephritine tribal classification.  相似文献   

15.
Cladistic parsimony analyses of rbcL nucleotide sequence data from 171 taxa representing nearly all tribes and subtribes of Orchidaceae are presented here. These analyses divide the family into five primary monophyletic clades: apostasioid, cypripedioid, vanilloid, orchidoid, and epidendroid orchids, arranged in that order. These clades, with the exception of the vanilloids, essentially correspond to currently recognized subfamilies. A distinct subfamily, based upon tribe Vanilleae, is supported for Vanilla and its allies. The general tree topology is, for the most part, congruent with previously published hypotheses of intrafamilial relationships; however, there is no evidence supporting the previously recognized subfamilies Spiranthoideae, Neottioideae, or Vandoideae. Subfamily Spiranthoideae is embedded within a single clade containing members of Orchidoideae and sister to tribe Diurideae. Genera representing tribe Tropideae are placed within the epidendroid clade. Most traditional subtribal units are supported within each clade, but few tribes, as currently circumscribed, are monophyletic. Although powerful in assessing monophyly of clades within the family, in this case rbcL fails to provide strong support for the interrelationships of the subfamilies (i.e., along the spine of the tree). The cladograms presented here should serve as a standard to which future morphological and molecular studies can be compared.  相似文献   

16.
Ariid monophyly and intrafamilial relationships are investigated based on cladistic analysis of 230 morphological characters. Terminal taxa examined include whenever possible type‐species, or the most morphologically similar species to the type‐species of the nominal genera, and the largest possible number of species, including cleared and stained specimens, available in zoological collections. Previous hypotheses about monophyly of the Ariidae are strongly corroborated by new synapomorphies discovered in the present study. The subfamily Galeichthyinae and the remaining ariids are strongly supported by new morphological characters. The monotypic subfamily Bagreinae is recognized as the sister group to all nongaleichthyin ariids, supported by a large series of exclusive synapomorphies. A new concept of Ariinae is presented: the subfamily is found to be unequivocally monophyletic and includes all ariid genera, except Galeichthys and Bagre. New data supporting the monophyly of the genera included in the Ariinae are introduced and previous hypotheses of monophyly, species composition, morphological definition, and relationships are reviewed and discussed.  相似文献   

17.
This is the first study to comprehensively address the phylogeny of the tribe Oxypodini Thomson and its phylogenetic relationships to other tribes within the staphylinid subfamily Aleocharinae. Using the hitherto largest molecular dataset of Aleocharinae comprising of 4599 bp for representatives of 22 tribes, the Oxypodini are recovered as non‐monophyletic. Members of the tribe belong to three distantly related lineages within the Aleocharinae: (i) the Amarochara group as sister clade to the tribe Aleocharini, (ii) the subtribe Tachyusina within a clade that also includes the tribes Athetini and Hygronomini, (iii) all other Oxypodini in a clade that also includes the tribes Placusini, Hoplandriini and Liparocephalini. Based on the inferred phylogeny, five subtribes of the Oxypodini are recognized: Dinardina Mulsant & Rey, Meoticina Seevers, Microglottina Fenyes, Oxypodina Thomson and Phloeoporina Thomson. The following changes in the classification of the Aleocharinae are proposed: (i) Amarochara Thomson is removed from the Oxypodini and placed in the tribe Aleocharini; (ii) the subtribe Taxicerina Lohse of the Athetini is reinstated as tribe Taxicerini to include Discerota Mulsant & Rey, Halobrecta Thomson (both removed from the Oxypodini) and Taxicera Mulsant & Rey; (iii) the subtribe Tachyusina Thomson is excluded from the Oxypodini and provisionally treated as tribe Tachyusini; (iv) the oxypodine subtribe name Blepharhymenina Klimaszewski & Peck is placed in synonymy with the subtribe name Dinardina Mulsant & Rey.  相似文献   

18.
The phylogeny of the basal hymenopteran lineages, including representatives of all ‘symphytan’ families, is anal; In total, 236 morphological characters were scored for 44 exemplars, including six outgroup, two xyelic tenthredinoid, five pamphilioid, three cephoid, five ‘siricoid’, one orussid, and six apocritan taxa. The datas analysed with parsimony under equal weights and under implied weights. The monophyly of the Hymenopte strongly supported but the sistergroup of the Hymenoptera cannot be identified with confidence. The relations of the ‘symphytan’ lineages are Xyeloidea +(Tenthredinoidea+ (Pamphilioidea + (Cephoidea + (Ariaxyelic (Siricidae + (Xiphydriidae +(Orussoidea+Apocrita))))))). Many of the relationships between the superfamilies, especially in the basal branching pattern, are only weakly corroborated. The monophyly of most superfamilies is supported, and all may be monophyletic except the ‘Siricoidea’, which is clearly paraphyletic. It is difficult to di whether the Siricidae or the Anaxyelidae are the closest relatives of Xiphydriidae + (Orussoidea + Apocrita). support for the sistergroup relationship between the Orussoidea and the Apocrita is substantial, putative apomorphies being provided by most character systems. There is also good evidence in favour of the monophj the Apocrita. The internal phylogeny of the Tenthredinoidea differs considerably from the results of earlier anal The Blasticotomidae are the sistergroup of the Tenthredinoidea s.s. Relationships at the base of the Tenthredini s.s. are weakly supported. It is uncertain whether the Tenthredinidae are monophyletic or comprise a 1 paraphyletic grade within the Tenthredinoidea s.s. The Diprionidae may be the sistergroup to Cimbicidae +(Argidae+ Pergidae). Most relationships within the Cimbicidae + (Argidae + Pergidae) clade are corroborated, with the exception of the monophyly of the Argidae. It is proposed to elevate the Anaxyelidae the Xiphydriida both to superfamily status. The family‐level classification of the Tenthredinoidea will probably have to be changed, but this must await further clarification of the phylogeny of this superfamily.  相似文献   

19.
Despite recent progress on the higher‐level relationships of Cichlidae and its Indian, Malagasy, and Greater Antillean components, conflict and uncertainty remain within the species‐rich African, South American, and Middle American assemblages. Herein, we combine morphological and nucleotide characters from the mitochondrial large ribosomal subunit, cytochrome c oxidase subunit I, NADH dehydrogenase four, and cytochrome b genes and from the nuclear histone H3, recombination activating gene two, Tmo‐4C4, Tmo‐M27, and ribosomal S7 loci to analyse relationships within the Neotropical cichlid subfamily Cichlinae. The simultaneous analysis of 6309 characters for 90 terminals, including representatives of all major cichlid lineages and all Neotropical genera, resulted in the first well‐supported and resolved generic‐level phylogeny for Neotropical cichlids. The Neotropical subfamily Cichlinae was recovered as monophyletic and partitioned into seven tribes: Astronotini, Chaetobranchini, Cichlasomatini, Cichlini, Geophagini, Heroini, and Retroculini. Chaetobranchini + Geophagini (including the “crenicichlines”) was resolved as the sister group of Heroini + Cichlasomatini (including Acaronia). The monogeneric Astronotini was recovered as the sister group of these four tribes. Finally, a clade composed of Cichlini + Retroculini was resolved as the sister group to all other cichlines. The analysis included the recently described ?Proterocara argentina, the oldest known cichlid fossil (Eocene), which was placed in an apical position within Geophagini, further supporting a Gondwanan origin for Cichlidae. These phylogenetic results were used as the basis for generating a monophyletic cichline taxonomy. © The Willi Hennig Society 2008.  相似文献   

20.
The monophyly of Agrotis Ochsenheimer in addition to the relationships among the South American species of the genus and the relationship between Agrotis and Feltia Walker are examined. A cladistic analysis was performed based on 45 terminals, with 28 ingroup and 17 outgroup taxa, and 126 characters (two continuous and 124 discrete) from adult morphology, including male and female genitalia. Parsimony analyses were performed under equal and implied weighting. Results support Agrotis as a monophyletic group, sister to the South American species of Feltia (Feltia tent.), and the latter being more closely related to Agrotis than to the ‘true’ Feltia. Species of Agrotis that branched off first (including the type species) have characters shared with both Feltia and Agrotis. South American species of Agrotis (with some proviso) form a clade that branched off later, with some weakly supported species groups that had been proposed in previous works. Biogeographical aspects of the group are discussed after optimizing species distributions on the tree. Trees obtained after analyses using implied weights show similar relationships to those under equal weights, particularly regarding Feltia tent., showing Feltia tent. plus Agrotis forming a monophyletic group, sister to the ‘true’ Feltia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号