首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The expression of the structural genes nit-3 and nit-6, which encode the nitrate assimilatory enzymes nitrate reductase and nitrite reductase, respectively, is highly regulated by the global-acting NIT2 regulatory protein. These structural genes are also controlled by nitrogen catabolite repression and by specific induction via nitrate. A pathway-specific regulatory protein, NIT4, appears to mediate nitrate induction of nit-3 and of nit-6. The NIT4 protein, composed of 1090 amino acids, contains a putative GAL4-like Cys-6 zinc cluster DNA-binding motif, which is joined by a short segment to a stretch of amino acids that appear to constitute a coiled-coil dimerization domain. Chemical crosslinking studies demonstrated that a truncated form of NIT4 forms homodimers. Mobility-shift and DNA-footprinting experiments have identified two NIT4-binding sites of significantly different strengths in the promoter region of the nit-3 gene. The stronger binding site contains a symmetrical octameric sequence, TCCGCGGA, whereas the weaker site has a related sequence. Sequences related to this palindromic element can be found upstream of the nit-6 gene.  相似文献   

3.
The nitrogen regulatory circuit of Neurospora crassa consists of a set of unlinked structural genes which specify various nitrogen catabolic enzymes plus control genes and metabolic effectors which regulate their expression. The positive-acting nit-2 regulatory gene is required to turn on the expression of the nitrogen catabolic enzymes during conditions of nitrogen limitation. The complete nucleotide sequence of the nit-2 gene was determined. The nit-2 mRNA is 4.3 kilobases long and has a long nontranslated sequence at both its 5' and 3' ends. The nit-2 gene nucleotide sequence can be translated to yield a protein containing 1,036 amino acid residues with a molecular weight of approximately 110,000. Deletion analyses demonstrated that approximately 21% of the NIT2 protein at its carboxy terminus can be removed without loss of function. The nit-2 protein contains a single putative Cys2/Cys2 zinc finger domain which appears to function in DNA binding and which has striking homology to a mammalian trans-acting factor, GF-1.  相似文献   

4.
In higher plants, the expression of the nitrate assimilation pathway is highly regulated. Although the molecular mechanisms involved in this regulation are currently being elucidated, very little is known about the trans-acting factors that allow expression of the nitrate and nitrite reductase genes which code for the first enzymes in the pathway. In the fungus Neurospora crassa, nit-2, the major nitrogen regulatory gene, activates the expression of unlinked structural genes that specify nitrogen-catabolic enzymes during conditions of nitrogen limitation. The nit-2 gene encodes a regulatory protein containing a single zinc finger motif defined by the C-X2-CX17-C-X2-C sequence. This DNA-binding domain recognizes the promoter region of N. crassa nitrogen-related genes and fragments derived from the tomato nia gene promoter. The observed specificity of the binding suggests the existence of a NIT2-like homolog in higher plants. PCR and cross-hybridization techniques were used to isolate, respectively, a partial cDNA from Nicotiana plumbaginifolia and a full-length cDNA from Nicotiana tabacum. These clones encode a NIT2-like protein (named NTL1 for nit-2-like), characterized by a single zinc finger domain, defined by the C-X2-C-X18-C-X2-C amino acids, and associated with a basic region. The amino acid sequence of NTL1 is 60% homologous to the NIT2 sequence in the zinc finger domain. The Ntl1 gene is present as a unique copy in the diploid N. plumbaginifolia species. The characteristics of Ntl1 gene expression are compatible with those of a regulator of the nitrate assimilation pathway, namely weak nitrate inducibility and regulation by light.  相似文献   

5.
Nitrogen metabolism is a highly regulated process in Neurospora crassa . The structural genes that encode nitrogen catabolic enzymes are subject to nitrogen metabolite repression, mediated by the positive-acting NIT2 protein and by the negative-acting NMR protein. NIT2, a globally acting factor, is a member of the GATA family of regulatory proteins and has a single Cys2/Cys2 zinc finger DNA-binding domain. The negative-acting NMR protein interacts via specific protein–protein binding with two distinct regions of the NIT2 protein, a short alpha-helical motif within the NIT2 DNA-binding domain and a second motif at its carboxy terminus. Deletions of segments of NIT2 throughout most of its length result in truncated proteins, which are still functional for activating gene expression; most of these mutant NIT2 proteins still allow proper nitrogen repression of nitrate reductase synthesis. In contrast, deletions or certain amino acid substitutions within the zinc finger and the carboxy-terminal tail result in a loss of nitrogen metabolite repression. Those mutated forms of NIT2 that are insensitive to nitrogen repression have also lost one of the NIT2–NMR protein–protein interactions. These results provide compelling evidence that the specific NIT2–NMR interactions have a regulatory function and play a central role in establishing nitrogen metabolite repression.  相似文献   

6.
cys-3, the major sulfur regulatory gene of Neurospora crassa, activates the expression of a set of unlinked structural genes which encode sulfur catabolic-related enzymes during conditions of sulfur limitation. The cys-3 gene encodes a regulatory protein of 236 amino acid residues with a leucine zipper and an upstream basic region (the b-zip region) which together may constitute a DNA-binding domain. The b-zip region was expressed in Escherichia coli to examine its DNA-binding activity. The b-zip domain protein binds to the promoter region of the cys-3 gene itself and of cys-14, the sulfate permease II structural gene. A series of CYS3 mutant proteins obtained by site-directed mutagenesis were expressed and tested for function, dimer formation, and DNA-binding activity. The results demonstrate that the b-zip region of cys-3 is critical for both its function in vivo and specific DNA-binding in vitro.  相似文献   

7.
B Feng  X Xiao    G A Marzluf 《Nucleic acids research》1993,21(17):3989-3996
The NIT2 nitrogen regulatory protein of Neurospora is a DNA binding protein which contains a single Cys2/Cys2 type finger motif followed immediately by a highly basic region. Several different approaches were employed to identify nucleotides which appear to be in contact with NIT2 in the DNA-protein complex. Methylation interference and missing contact analyses with the promoter DNA fragment of the L-amino acid oxidase gene showed that all three purines in both of two GATA core sequences and the single adenine residue in each of the complementary TATC sequences were in intimate contact with NIT2. Modification or loss of the three purine residues located between the two GATA core sequences also significantly reduced NIT2 binding, whereas alteration of purines which flank the binding element showed only minor effects. Chemical modification of all six thymine bases in the two GATA and TATC complement core sequences also strongly affected NIT2 binding. High affinity NIT2 binding sites appear to contain at least two GATA core sequences, with single GATA sequences acting only as weak binding sites. Mobility shift experiments with the DNA fragment upstream of nit-3, the structural gene for nitrate reductase, revealed two DNA-NIT2 protein complexes. In complex I, which is formed first, NIT2 was bound to a pair of GATA sites located at -180. In complex II, the paired GATA sites at -180 plus a single GATA site at -290 were all occupied by NIT2. A DNA fragment containing only the single -290 GATA element bound NIT2 very weakly. The affinity of this single GATA for NIT2 was ten to twenty times greater when it was situated on the same DNA fragment with the distant paired GATA elements than when alone.  相似文献   

8.
The nit-3 gene of the filamentous fungus Neurospora crassa encodes nitrate reductase, the enzyme which catalyzes the first step in nitrate assimilation. The nit-3 gene is subject to a high degree of regulation by metabolic inducers and repressors, and its expression requires two distinct trans-acting regulatory proteins. Hypersensitive sites in the 5' DNA sequence upstream of the nit-3 gene were mapped with the use of three different nucleases as molecular probes. Six hypersensitive sites, three of which are very strong, were detected at essentially identical positions by all three nucleases. The hypersensitive sites appear to develop in a constitutive fashion and are present under conditions in which the nit-3 structural gene is expressed but also when this gene is inactive, although these sites are considerably less prominent in cells subjected to nitrogen catabolite repression. The presence of the hypersensitive sites appears to depend upon both the positively acting NIT2 and the positively acting NIT4 regulatory proteins, which might play a role in positioning of chromatin protein.  相似文献   

9.
In the filamentous fungus Neurospora crassa, both the global-acting regulatory protein NIT2 and the pathway-specific regulatory protein NIT4 are required to turn on the expression of the nit-3 gene, which encodes nitrate reductase, the first enzyme in the nitrate assimilatory pathway. Three NIT2 binding sites and two NIT4 binding sites have been identified in the 1.3-kb nit-3 promoter region via mobility shift and footprinting experiments with NIT2-beta-galactosidase and NIT4-beta-Gactosidase fusion proteins. Quantitative mobility shift assays were used to examine the affinity of individual NIT2 binding sites for the native NIT2 protein present in N. crassa nuclear extracts. In vivo analysis of nit-3 promoter 5' deletion constructs and individual NIT2 and NIT4 binding-site deletions or mutations revealed that all of the NIT2 and NIT4 binding sites are required for the full level of expression of the nit-3 gene. A cluster of two NIT2 and two NIT4 binding sites located more than 1 kb upstream of the translational start site is required for nit-3 expression, and one NIT2 binding site and one NIT4 site, which are immediately adjacent to each other, are of particular functional importance. A significant NIT2-NIT4 protein-protein interaction might occur upon their binding to nearby sites.  相似文献   

10.
11.
12.
NIT2, a positive-acting regulatory protein in Neurospora crassa, activates the expression of a series of unlinked structural genes that encode nitrogen catabolic enzymes. NIT2 binding sites in the promoter regions of nit3, alc and lao have at least two GATA sequence elements. We have examined the binding affinity of the NIT2 protein for the yeast DAL5 wild-type upstream activation sequence UASNTR, which contains two GATA elements, and for a series of mutated binding sites, each differing from the wild-type site by a single base. Substitution for individual nucleotides within 5′ or 3′ sequences that flank the GATA elements had only modest effects upon NIT2 binding. In contrast, nearly all substitutions within the GATA elements almost completely eliminated NIT2 binding, demonstrating the importance of the GATA sequence for NIT2 binding. Four high-affinity binding sites for the NIT2 protein were found within a central region of the nit-2 gene itself.  相似文献   

13.
H Lee  Y H Fu  G A Marzluf 《Biochemistry》1990,29(37):8779-8787
The nitrogen regulatory circuit of Neurospora crassa contains structural genes that encode nitrogen catabolic enzymes which are subject to complex genetic and metabolic regulation. This set of genes is controlled by nitrogen limitation, by specific induction, and by the action of nit-2, a major positive-acting regulatory gene, and nmr, a negative-acting control gene. The complete nucleotide sequence of alc, the gene that encodes allantoicase, a purine catabolic enzyme, is presented. The alc gene contains a single intron, is transcribed from two initiation sites situated approximately 50 nb upstream of the translation start site, and encodes a protein comprised of 354 amino acids. Mobility shift and DNA footprint experiments identified a single binding site for the NIT2 regulatory protein in the alc promoter region. The binding site contains a 10 nucleotide base pair symmetrical sequence which is flanked by two possible core binding sequences, TATCT and TATCG. Mutant NIT2/beta-gal fusion proteins with amino acid substitutions in a putative zinc-finger motif were shown to be completely deficient in the ability to bind to the alc promoter DNA fragment.  相似文献   

14.
The nit-2 gene of Neurospora crassa encodes the major nitrogen regulatory protein which acts in a positive fashion to activate the expression of many different structural genes during conditions of nitrogen limitation. An E. coli-expressed NIT2/-Gal fusion protein binds specifically to DNA in vitro by recognizing GATA core elements. Nuclear extracts prepared from a wild-type N. crassa strain contain a protein factor which displays all of the properties expected for the native NIT2 protein. The native NIT2 protein in nuclear extracts binds with high affinity to DNA fragments which contain two GATA elements, weakly to fragments with a single GATA element, and fails to bind to DNAs which lack these sequences. The DNA binding ability of the protein factor in nuclear extracts is efficiently blocked by a polyclonal antibody developed against the zinc-finger region of NIT2 protein. Western blot analysis with the anti-NIT2 antiserum revealed a specific protein with a size of approximately 110,000 daltons, in excellent agreement with the predicted size of NIT2. Both the specific NIT2 DNA binding activity and the protein detected by Western blot are totally lacking in nuclear extracts of a nit-2 rip mutant strain. These results all support the conclusion that the native NIT2 protein in Neurospora cells has been identified. The NIT2 protein is localised in nuclei and could not be detected in the cytoplasmic fraction of cells subjected to nitrogen derepression or nitrogen repression, indicating that the nuclear import of NIT2 is not regulated.  相似文献   

15.
16.
The nit-4 genes of three conventional Neurospora crassa mutations and of the closely related species, Neurospora intermedia, have been isolated by amplifying the genomic DNA with the polymerase chain reaction. Nucleotide sequencing has revealed that the three nit-4 mutants, alleles 15, 1214, and 2994, are the result of a missense mutation, a nonsense mutation and a frameshift mutation, respectively. The nucleotide sequence of the NIT4 protein coding region of a nit-4 mutant (allele 2994) and of N. intermedia have been determined and compared with that of wild-type N. crassa. The molecular characteristics confirm that the mutated gene of 2994 originated from N. intermedia and was introgressed into N. crassa. The polyglutamine domains of the N. crassa wild type, the 2994 mutant, or N. intermedia cannot replace an upstream glutamine-rich domain which is essential for nit-4 function.  相似文献   

17.
The gene areA-GF, a homologue of the major nitrogen regulatory genes nit-2, areA, nre and NUT1 of Neurospora crassa, Aspergillus nidulans, Penicillium chrysogenum and Magnaporthe grisea, respectively, was cloned from the gibberellin (GA)-producing rice pathogen Gibberella fujikuroi.areA-GF encodes a protein of 972 amino acid residues which contains a single putative zinc finger DNA-binding domain that is at least 98% identical to the zinc finger domains of the homologous fungal proteins. The areA-GF gene has been shown to be functional in N. crassa by heterologous complementation of a RIP induced nit-2 mutant. The transformation rate was nearly as high as in a homologous complementation control. Transformants were able to utilize nitrate and expressed a normally regulated nitrate reductase activity. To generate areA-GF  mutants, gene replacement experiments were performed using a linearized replacement vector carrying the hygromycin B phosphotransferase (hph) gene. The replacement of the zinc finger by the hygromycin cassette resulted in transformants which were unable to utilize nitrogen sources other than ammonium and glutamine, and gave significantly reduced gibberellin production yields. Complementation of such a mutant with the wild-type gene led to the full recovery of gibberellin production. Received: 23 April 1998 / Accepted: 16 October 1998  相似文献   

18.
cys-3, the positive-acting master sulfur regulatory gene of Neurospora crassa, turns on the expression of an entire set of unlinked structural genes which encode sulfur-catabolic enzymes. cys-3 encodes a protein of 236 amino acid residues and contains a potential bipartite DNA-binding domain which consists of a leucine zipper and an adjacent highly basic region. Gel band mobility shift and DNA footprint experiments were used to demonstrate that the CYS3 protein, expressed in Escherichia coli, binds to three distinct sites in the 5' upstream DNA of cys-14, the structural gene for sulfate permease II. The CYS3 protein also binds to one distinct sequence element upstream of the cys-3 gene itself, which suggests an autoregulatory role for this protein. Two mutant CYS3 proteins, altered in the basic region of the DNA-binding domain, failed to bind to either the cys-14 or the cys-3 upstream recognition elements.  相似文献   

19.
20.
NIT2, a positive-acting regulatory protein in Neurospora crassa, activates the expression of a series of unlinked structural genes that encode nitrogen catabolic enzymes. NIT2 binding sites in the promoter regions of nit3, alc and lao have at least two GATA sequence elements. We have examined the binding affinity of the NIT2 protein for the yeast DAL5 wild-type upstream activation sequence UASNTR, which contains two GATA elements, and for a series of mutated binding sites, each differing from the wild-type site by a single base. Substitution for individual nucleotides within 5 or 3 sequences that flank the GATA elements had only modest effects upon NIT2 binding. In contrast, nearly all substitutions within the GATA elements almost completely eliminated NIT2 binding, demonstrating the importance of the GATA sequence for NIT2 binding. Four high-affinity binding sites for the NIT2 protein were found within a central region of the nit-2 gene itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号