首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of surround-induced depolarizing responses in goldfish cones   总被引:2,自引:0,他引:2  
Cones in the vertebrate retina project to horizontal and bipolar cells and the horizontal cells feedback negatively to cones. This organization forms the basis for the center/surround organization of the bipolar cells, a fundamental step in the visual signal processing. Although the surround responses of bipolar cells have been recorded on many occasions, surprisingly, the underlying surround-induced responses in cones are not easily detected. In this paper, the nature of the surround-induced responses in cones is studied. Horizontal cells feed back to cones by shifting the activation function of the calcium current in cones to more negative potentials. This shift increases the calcium influx, which increases the neurotransmitter release of the cone. In this paper, we will show that under certain conditions, in addition to this increase of neurotransmitter release, a calcium-dependent chloride current will be activated, which polarizes the cone membrane potential. The question is, whether the modulation of the calcium current or the polarization of the cone membrane potential is the major determinant for feedback-mediated responses in second-order neurons. Depolarizing light responses of biphasic horizontal cells are generated by feedback from monophasic horizontal cells to cones. It was found that niflumic acid blocks the feedback-induced depolarizing responses in cones, while the shift of the calcium current activation function and the depolarizing biphasic horizontal cell responses remain intact. This shows that horizontal cells can feed back to cones, without inducing major changes in the cone membrane potential. This makes the feedback synapse from horizontal cells to cones a unique synapse. Polarization of the presynaptic (horizontal) cell leads to calcium influx in the postsynaptic cell (cone), but due to the combined activity of the calcium current and the calcium-dependent chloride current, the membrane potential of the postsynaptic cell will be hardly modulated, whereas the output of the postsynaptic cell will be strongly modulated. Since no polarization of the postsynaptic cell is needed for these feedback-mediated responses, this mechanism of synaptic transmission can modulate the neurotransmitter release in single synaptic terminals without affecting the membrane potential of the entire cell.  相似文献   

2.
In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons. Mutant zebrafish were generated that lack connexin 55.5 hemichannels in horizontal cells. Whole cell voltage clamp recordings were made from isolated horizontal cells and cones in flat mount retinas. Light-induced feedback from horizontal cells to cones was reduced in mutants. A reduction of feedback was also found when horizontal cells were pharmacologically hyperpolarized but was absent when they were pharmacologically depolarized. Hemichannel currents in isolated horizontal cells showed a similar behavior. The hyperpolarization-induced hemichannel current was strongly reduced in the mutants while the depolarization-induced hemichannel current was not. Intracellular recordings were made from horizontal cells. Consistent with impaired feedback in the mutant, spectral opponent responses in horizontal cells were diminished in these animals. A behavioral assay revealed a lower contrast-sensitivity, illustrating the role of the horizontal cell to cone feedback pathway in contrast enhancement. Model simulations showed that the observed modifications of feedback can be accounted for by an ephaptic mechanism. A model for feedback, in which the number of connexin hemichannels is reduced to about 40%, fully predicts the specific asymmetric modification of feedback. To our knowledge, this is the first successful genetic interference in the feedback pathway from horizontal cells to cones. It provides direct evidence for an unconventional role of connexin hemichannels in the inhibitory synapse between horizontal cells and cones. This is an important step in resolving a long-standing debate about the unusual form of (ephaptic) synaptic transmission between horizontal cells and cones in the vertebrate retina.  相似文献   

3.
Feedback from horizontal cells (HCs) to cone photoreceptors plays a key role in the center-surround-receptive field organization of retinal neurons. Recordings from cone photoreceptors in newt retinal slices were obtained by the whole-cell patch-clamp technique, using a superfusate containing a GABA antagonist (100 microM picrotoxin). Surround illumination of the receptive field increased the voltage-dependent calcium current (ICa) in the cones, and shifted the activation voltage of ICa to negative voltages. External alkalinization also increased cone ICa and shifted its activation voltage toward negative voltages. Enrichment of the pH buffering capacity of the extracellular solution increased cone ICa, and blocked any additional increase in cone ICa by surround illumination. Hyperpolarization of the HCs by a glutamate receptor antagonist-augmented cone ICa, whereas depolarization of the HCs by kainate suppressed cone ICa. From these results, we propose the hypothesis that pH changes in the synaptic clefts, which are intimately related to the membrane voltage of the HCs, mediate the feedback from the HCs to cone photoreceptors. The feedback mediated by pH changes in the synaptic cleft may serve as an additional mechanism for the center-surround organization of the receptive field in the outer retina.  相似文献   

4.
On the basis of the syncytial structure of the layer of horizontal cells of the fish retina, a method is developed which effectively shifts the membrane potential of cells by means of an electrical current. It is shown that the response of L-type horizontal cells to light and electrical stimulation of the retina is reversed when the membrane of the horizontal cells is depolarized by a direct current. The equilibrium potential of the cells was near the zero level. Consequently, the depolarization response of the horizontal cells to disconnection of the light and to electrical stimulation of the retina is an excitatory postsynaptic potential, whereas hyperpolarization of the horizontal cells to light is a decrease of this potential. It is shown that the membrane of fish horizontal cells have pronounced nonlinear properties: in the case of strong depolarization and especially in the case of hyperpolarization its impedance drops markedly. The latter probably occurs due to an increase of the permeability of the nonsynaptic membrane of the horizintal cells for K+. This can also explain the decrease of membrane impedance during the hyperpolarization response of the horizontal cells to bright light. The available data indicate the presence of regenerative properties of the membrane of horizontal cells.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 89–98, January–February, 1971.  相似文献   

5.
The response of cone photoreceptors to light is stable and reproducible because of the exceptional regulation of the cascade of enzymatic reactions that link visual pigment (VP) excitation to the gating of cyclic GMP (cGMP)-gated ion channels (cyclic nucleotide-gated [CNG]) in the outer segment plasma membrane. Regulation is achieved in part through negative feedback control of some of these reactions by cytoplasmic free Ca(2+). As part of the control process, Ca(2+) regulates the phosphorylation of excited VP, the activity of guanylate cyclase, and the ligand sensitivity of the CNG ion channels. We measured photocurrents elicited by stimuli in the form of flashes, steps, and flashes superimposed on steps in voltage-clamped single bass cones isolated from striped bass retina. We also developed a computational model that comprises all the known molecular events of cone phototransduction, including all Ca-dependent controls. Constrained by available experimental data in bass cones and cone transduction biochemistry, we achieved an excellent match between experimental photocurrents and those simulated by the model. We used the model to explore the physiological role of CNG ion channel modulation. Control of CNG channel activity by both cGMP and Ca(2+) causes the time course of the light-dependent currents to be faster than if only cGMP controlled their activity. Channel modulation also plays a critical role in the regulation of the light sensitivity and light adaptation of the cone photoresponse. In the absence of ion channel modulation, cone photocurrents would be unstable, oscillating during and at the offset of light stimuli.  相似文献   

6.
The role of nitric oxide (NO) as a novel neurochemical mechanism controlling light adaptation of the outer retina is discussed by considering mainly published results. The emphasis is on the retinae of fishes and amphibia, but some data from the mammalian (rabbit) retinae have also been included for completeness. In the fish retina, application of NO donors in the dark caused light-adaptive photomechanical movements of cones. The normal effect of light adaptation in inducing cone contractions was suppressed by pretreatment of retinae with an NO scavenger. NO donors modulated horizontal cell activity by uncoupling the cells' lateral gap junctional interconnections and enhancing negative feedback to cones, again consistent with a light-adaptive role of NO. Direct evidence for light adaptation-induced release of NO has been obtained in fish (carp) and rabbit retinae. The results strongly suggest that control of retinal light adaptation is, under multiple neurochemical control, with NO and dopamine having an interactive role.  相似文献   

7.

Background

Recent studies designed to identify the mechanism by which retinal horizontal cells communicate with cones have implicated two processes. According to one account, horizontal cell hyperpolarization induces an increase in pH within the synaptic cleft that activates the calcium current (Ca2+-current) in cones, enhancing transmitter release. An alternative account suggests that horizontal cell hyperpolarization increases the Ca2+-current to promote transmitter release through a hemichannel-mediated ephaptic mechanism.

Methodology/Principal Findings

To distinguish between these mechanisms, we interfered with the pH regulating systems in the retina and studied the effects on the feedback responses of cones and horizontal cells. We found that the pH buffers HEPES and Tris partially inhibit feedback responses in cones and horizontal cells and lead to intracellular acidification of neurons. Application of 25 mM acetate, which does not change the extracellular pH buffer capacity, does lead to both intracellular acidification and inhibition of feedback. Because intracellular acidification is known to inhibit hemichannels, the key experiment used to test the pH hypothesis, i.e. increasing the extracellular pH buffer capacity, does not discriminate between a pH-based feedback system and a hemichannel-mediated feedback system. To test the pH hypothesis in a manner independent of artificial pH-buffer systems, we studied the effect of interfering with the endogenous pH buffer, the bicarbonate/carbonic anhydrase system. Inhibition of carbonic anhydrase allowed for large changes in pH in the synaptic cleft of bipolar cell terminals and cone terminals, but the predicted enhancement of the cone feedback responses, according to the pH-hypothesis, was not observed. These experiments thus failed to support a proton mediated feedback mechanism. The alternative hypothesis, the hemichannel-mediated ephaptic feedback mechanism, was therefore studied experimentally, and its feasibility was buttressed by means of a quantitative computer model of the cone/horizontal cell synapse.

Conclusion

We conclude that the data presented in this paper offers further support for physiologically relevant ephaptic interactions in the retina.  相似文献   

8.
A model with nonlinearity of the photoreceptor presynaptic membrane as its important distinguishing feature was created on the basis of the hypothesis that feedback between the horizontal cells and photoreceptors is effected by a current generated by the subsynaptic membrane of the horizontal cells and leaking partly into the photoreceptors. Measurements with the model also reproduced experimental observations such as depolarization of the cone during hyperpolarization of the horizontal cell in response to the showing of a ring of light or passage of an electric current, and also certain special features of the current-voltage curves of the cones.Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 9, No. 1, pp. 86–94, January–February, 1977.  相似文献   

9.
The closer the wavelength of a steady background of monochromatic light is to the peak sensitivity of a cone that is being illuminated, the stronger is the desensitization of that cone; this is chromatic adaptation. A model of the freshwater turtle retina with the neural components of chromatic adaptation via negative feedback circuits is used to simulate and study various aspects of chromatic adaptation. An internal negative feedback circuit resides solely within the cone pedicle and thereby, its adaptive effects are relatively specific, so that univariance is maintained. The cone-L-horizontal cell circuit is an external negative feedback circuit and its adaptive effects are less specific since all 3 chromatic cone types are involved, so that univariance is violated. Chromatic adaptation is the result of the decrease in the cone gain due to the dependency of the gains of the negative feedback circuits on the mean illuminance level. The results of the model are consistent with von Kries law, but the changes in gains of the cones due to chromatic adaptation are dependent on wavelength, intensity of the adapting light and size.  相似文献   

10.
The objective of this study was to investigate the effects of taurine on cone retinomotor movements and the responses of cone-driven horizontal cells in dark-adapted teleost retina. In isolated goldfish retina preparations maintained in the dark, cones spontaneously contracted, and the responses of horizontal cells were suppressed. Addition of 5 mM taurine to the physiological solution blocked the spontaneous contraction of cones in the dark but did not block the dark-suppression of horizontal cell responses. These results indicate that the mechanism that leads to horizontal cell dark suppression is not sensitive to taurine. Although both cone retinomotor position and horizontal cell responsiveness are known to be modulated by dopamine, the present results do not support the hypothesis that taurine inhibits dopamine release in the dark because only spontaneous cone contraction was affected by taurine. These results also indicate that spontaneous cone contraction in the dark is not the cause of horizontal cell dark suppression because, in the presence of taurine, cones were elongated yet horizontal cell responses were still suppressed. Consequently, these results make it clear that horizontal cell dark suppression is not an artifact produced by incubating isolated teleost retina preparations in taurine-free physiological solution.  相似文献   

11.
In the present EM study, we investigate the retina of Belone belone , a visually-orientated marine predator living close to the water surface. In the duplex retina, four morphologically different cone types are observed: unequal and equal double cones, long single cones and triple cones. In the light-adapted state, five different cone patterns occur: row, twisted row, square, pentagonal and hexagonal patterns. High double cone densities are found ventro-nasally, ventro-temporally and dorso-temporally. Throughout the retina the double cone/single cone ratio is 2 : 1, in the ventral part, however, a 1 : 1 ratio occurs. In the vitreous body we found a curtain-like intraocular septum dividing the retina into two morphologically different regions. In most areas of the dark-adapted retina the cone patterns are absent at the ellipsoid level, with long single cones standing more vitreally in the light path than double cones. The mosaics are retained, however, in the outer nuclear layer. Typical dark adaptation, i.e. the retinomotor movements of the retinal pigment epithelium and photoreceptors in response to the dark adaptation (light change) is not present in the peripheral ventral and parts of the central ventral area. In both regions we found a twisted row pattern of cones having a vitreal position. The findings are discussed with respect to the photic habitat and feeding habits of this species.  相似文献   

12.
On-center bipolar cells in the dark-adapted carp retina were divided into four types (A, B, C, and D) on the basis of response wave forms, spectral response properties, and electrical membrane properties. Type A and B cells responded to a spot of light with a transient depolarization followed by a plateau, whereas the response of type C and D cells were approximately rectangular in shape. The center and surround responses of type A cells had maximum spectral response of approximately 525 nm in the lower mesopic range; the polarity of both responses was reversed at positive membrane potentials as the membrane was depolarized by extrinsic current. The center and surround responses of type D cells had a maximum spectral response of approximately 625 nm in the mesopic or photopic range; the polarity of both responses was reversed at membrane potentials that were more negative than those at the dark level. The results suggest that the center and surround responses mediated by rods are generated by changes in sodium conductance, but in opposite ways; whereas those mediated by red cones are generated by changes in potassium and/or chloride conductances. In type B and C cells, which probably receive inputs from both rods and/or green cones as well as red cones, the center responses were composed of the two ionic mechanisms described above. The surround responses of many type B and C cells were dominated by only one ionic mechanism with a negative reversal potential, but in some type B cells the surround responses were resulted from two ionic mechanisms similar to those of the center responses.  相似文献   

13.
The structure of light- and dark-adapted retina of the black bass, Micropterus salmoides has been studied by light and electron microscopy. This retina lacks blood vessels at all levels. The optic fiber layer is divided into fascicles by the processes of Müller cells and the ganglion cell layer is represented by a single row of voluminous cells. The inner nuclear layer consists of two layers of horizontal cells and bipolar, amacrine and interplexiform cells. In the outer plexiform layer we observed the synaptic terminals of photoreceptor cells, rod spherules and cone pedicles and terminal processes of bipolar and horizontal cells. The spherules have a single synaptic ribbon and the pedicles possess multiple synaptic ribbons. Morphologically, we have identified three types of photoreceptors: rods, single cones and equal double cones which undergo retinomotor movements in response to changes in light conditions. The cones are arranged in a square mosaic whereas the rods are dispersed between the cones.  相似文献   

14.
Lateral inhibition at the first synapse in the retina is important for visual perception, enhancing image contrast, color discrimination, and light adaptation. Despite decades of research, the feedback signal from horizontal cells to photoreceptors that generates lateral inhibition remains uncertain. GABA, protons, or an ephaptic mechanism have all been suggested as the primary mediator of feedback. However, the complexity of the reciprocal cone to horizontal cell synapse has left the identity of the feedback signal an unsolved mystery.  相似文献   

15.
The presence of cones in potto's retina has been proved beyond doubt although they are very restricted in number (1 cone for 300 rods). Morphologically, speaking there is no point in calling these cones "rudimentary" except for their slender outer segment. There are red sensitive elements in that retina at wavelengths beyond the spectral sensitivity of visual purple and it is tempting to assume that these elements are cones. The ERG evoked from these elements by red light differs from that in response to white and blue light. They dark-adapt faster than the receptors sensitive to blue and white flashes. However in some of their properties, for example fusion frequency, these cones behave like rods in other species. As these few cones seem to activate the bipolar cells nearly as effectively as the numerous rods, it is suggested that these cones may be responsible for day vision in the potto.  相似文献   

16.
Liang PJ 《生理学报》1999,51(4):377-385
本文应用胞内记录和动态模型分析方法,研究了离体鲫鱼视网膜视锥驱动的高度型水平细胞(LHC)上不同视锥信号的相互作用。实验表明,绿背景光的作用可以提高LHC的红光反应,这种增强作用与绿敏锥的活动程度密切相关,模型分析表明,背景光 的作用谷氨酸介导的前馈性通路和GABA介导的反馈性通路活动同时得以增强,水平细胞对光反应的增强效应不能为外泊性GABA所消除。则其程度为前馈性通路和反馈性通路活动增加的相对  相似文献   

17.
The model of the vertebrate cone retina was adapted to the turtle retina with its red cone- and L-channel-dominances. The model consists of an ordering of four spatial organizations of unit hexagons, weighted inputs for all cones in the receptive fields, and linear polarization factors based on data from literature on turtle retina. Data generated by the model for spatial and chromatic patterns of receptive fields, intensity-response curves, dynamic ranges for cones, horizontal and bipolar cells proved remarkably consistent with literature. The model also generates observed phenomena such as near-field enhancement of cones due to stray light effects and electrical coupling of like-cones and far-field decrease in responses due to negative feedback from L-type horizontal cells to cones. Annular stimuli were shown to be more effective than spot stimuli for horizontal cells. The formal approach of the model demonstrates factors which play roles in various observed phenomena and all aspects of model can be displayed and tested both qualitatively and quantitatively.  相似文献   

18.
The early receptor potential (ERP), membrane potential, membrane resistance, and sensitivity were measured during light and/or dark adaptation in the ventral eye of Limulus. After a bright flash, the ERP amplitude recovered with a time constant of 100 ms, whereas the sensitivity recovered with an initial time constant of 20 s. When a strong adapting light was turned off, the recovery of membrane potential and of membrane resistance had time-courses similar to each other, and both recovered more rapidly than the sensitivity. The receptor depolarization was compared during dark adaptation after strong illumination and during light adaptation with weaker illumination; at equal sensitivities the cell was more depolarized during light adaptation than during dark adaptation. Finally, the waveforms of responses to flashes were compared during dark adaptation after strong illumination and during light adaptation with weaker illumination. At equal sensitivities (equal amplitude responses for identical flashes), the responses during light adaptation had faster time-courses than the responses during dark adaptation. Thus neither the photochemical cycle nor the membrane potential nor the membrane resistance is related to sensitivity changes during dark adaptation in the photoreceptors of the ventral eye. By elimination, these results imply that there are (unknown) intermediate process(es) responsible for adaptation interposed between the photochemical cycle and the electrical properties of the photoreceptor.  相似文献   

19.
The spectral and dynamic properties of cone-driven horizontal cells in carp retina were evaluated with silent substitution stimuli and/or saturating background illumination. The aim of this study was to describe the wiring underlying the spectral sensitivity of these cells. We will present electrophysiological data that indicate that all cone-driven horizontal cell types receive input from all spectral cone types, and we will present evidence that all cone-driven horizontal cell types feedback to all spectral cone types. These two findings are the basis for a model for the spectral and dynamic behavior of all cone-driven horizontal cells in carp retina. The model can account for the spectral as well as the dynamic behavior of the horizontal cells. It will be shown that the strength of the feedforward and feedback pathways between a horizontal cell and a particular spectral cone type are roughly proportional. This model is in sharp contrast to the Stell model, where the spectral behavior of the three horizontal cell types is explained by a cascade of feedforward and feedback pathways between cones and horizontal cells. The Stell model accounts for the spectral but not for the dynamic behavior of the horizontal cells.  相似文献   

20.
Effects of cobalt ions (Co2+) on horizontal cells in low extracellular calcium were examined in isolated, superfused carp retinas. While 0.1mmol/L Co2+ completely suppressed both rod- and cone-driven horizontal cells in normal Ringer's solution, it enhanced light responses of cone horizontal cells in low (0.1mmol/L) calcium. The enhancement of the cone horizontal cell response by Co2+ was not caused by changes in light responsiveness of cone photoreceptors. Moreover, application of 50μmol/L IBMX, an inhibitor of phosphodiester enzyme, reduced the suppressive effect of 0.1 mmol/L Co2+ in normal Ringer's solution. In consequence, the above-described enhancement of the cone horizontal cell light responsiveness may be due to a depolarization of cones caused by low calcium, which increases the activity of voltage-dependent calcium channels at cone terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号