首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The relationships of EMG and muscle force with elbow joint angle were investigated for muscle modelling purposes. Eight subjects had their arms fixed in an isometric elbow jig where the biceps brachii was electrically stimulated (30 Hz) and also in maximum voluntary contraction (MVC). Biceps EMG and elbow torque transduced at the wrist were recorded at 0.175 rad intervals through 1.75 rad of elbow extension. The results revealed that while the torque-length relationship displayed the classic inverted U pattern in both evoked and MVC conditions, the force-length relationship displayed a monotonically increasing pattern. Analyses of variance of the EMG data showed that there were no significant changes in the EMG amplitudes for the different joint angles during evoked or voluntary contractions. The result also showed that electrical stimulation can effectively isolated the torque-angle and force-length relationships of the biceps brachii and that the myoelectric signal during isometric contraction is uniform regardless of the length of the muscle or the joint angle.  相似文献   

2.
Mechanical properties of skeletal muscles are often studied for controlled, electrically induced, maximal, or supra-maximal contractions. However, many mechanical properties, such as the force-length relationship and force enhancement following active muscle stretching, are quite different for maximal and sub-maximal, or electrically induced and voluntary contractions. Force depression, the loss of force observed following active muscle shortening, has been observed and is well documented for electrically induced and maximal voluntary contractions. Since sub-maximal voluntary contractions are arguably the most important for everyday movement analysis and for biomechanical models of skeletal muscle function, it is important to study force depression properties under these conditions. Therefore, the purpose of this study was to examine force depression following sub-maximal, voluntary contractions. Sets of isometric reference and isometric-shortening-isometric test contractions at 30% of maximal voluntary effort were performed with the adductor pollicis muscle. All reference and test contractions were executed by controlling force or activation using a feedback system. Test contractions included adductor pollicis shortening over 10 degrees, 20 degrees, and 30 degrees of thumb adduction. Force depression was assessed by comparing the steady-state isometric forces (activation control) or average electromyograms (EMGs) (force control) following active muscle shortening with those obtained in the corresponding isometric reference contractions. Force was decreased by 20% and average EMG was increased by 18% in the shortening test contractions compared to the isometric reference contractions. Furthermore, force depression was increased with increasing shortening amplitudes, and the relative magnitudes of force depression were similar to those found in electrically stimulated and maximal contractions. We conclude from these results that force depression occurs in sub-maximal voluntary contractions, and that force depression may play a role in the mechanics of everyday movements, and therefore may have to be considered in biomechanical models of human movement.  相似文献   

3.
Recently it was demonstrated that postactivation potentiation (PAP), which refers to the enhancement of the muscle twitch torque as a result of a prior conditioning contraction, increased the maximal rate of torque development of tetanic and voluntary isometric contractions (3). In this study, we investigated the effects of PAP and its decay over time on the load-velocity relation. To that purpose, angular velocity of thumb adduction in response to a single electrical stimulus (twitch), a high-frequency train of 15 pulses at 250 Hz (HFT(250)), and during ballistic voluntary shortening contractions, performed against loads ranging from 10 to 50% of the maximum torque, were recorded before and after a conditioning 6-s maximal voluntary contraction (MVC). The results showed an increase of the peak angular velocity for the different loads tested after the conditioning MVC (P < 0.001), but the effect was greatest for the twitch ( approximately 182%) compared with the HFT(250) or voluntary contractions ( approximately 14% for both contraction types). The maximal potentiation occurred immediately following the conditioning MVC for the twitch, whereas it was reached 1 min later for the tetanic and ballistic voluntary contractions. At that time, the load-velocity relation was significantly shifted upward, and the maximal power of the muscle was increased ( approximately 13%; P < 0.001). Furthermore, the results also indicated that the effect of PAP on shortening contractions was not related to the modality of muscle activation. In conclusion, the findings suggest a functional significance of PAP in human movements by improving muscle performance of voluntary dynamic contractions.  相似文献   

4.
Firing rates of motor units and surface EMG were measured from the triceps brachii muscles of able-bodied subjects during brief submaximal and maximal isometric voluntary contractions made at 5 elbow joint angles that covered the entire physiological range of muscle lengths. Muscle activation at the longest, midlength, and shortest muscle lengths, measured by twitch occlusion, averaged 98%, 97%, and 93% respectively, with each subject able to achieve complete activation during some contractions. As expected, the strongest contractions were recorded at 90 degrees of elbow flexion. Mean motor unit firing rates and surface EMG increased with contraction intensity at each muscle length. For any given absolute contraction intensity, motor unit firing rates varied when muscle length was changed. However, mean motor unit firing rates were independent of muscle length when contractions were compared with the intensity of the maximal voluntary contraction (MVC) achieved at each joint angle.  相似文献   

5.
SYNOPSIS. Post-activation potentiation is a phenomena that occursonly in fasttwitch muscle fibers. Its main effect is to enhancemuscle force at sub-maximal activation levels for a short durationof time following previous muscle activation. We characterizedthis phenomenon in feline caudofemoralis (CF) muscle (composedof 100% fast-twitch muscle fibers) to understand its importanceduring physiological patterns of activation. During such patterns(e.g., 43 pps, 8 pulse trains delivered at 1 sec intervals)CF potentiated rapidly and apparently maximally. When CF wasallowed to relax, potentiation decayed slowly with a time constant20–40 x slower than the rise-time. The level of potentiationreached during the potentiating paradigm was stable in responseto a wide range of stimuli, including various stimulation rates(15–120 pps) and various inter-train intervals (up to10 sec). The shape of the twitch force-length curve for potentiatedCF was similar to that of the tetanic force-length curve ineither the potentiated or unpotentiated state. In contrast,the shape of the twitch force-length curve for unpotentiatedCF was shifted markedly to the right accompanied by a narrowingof the curve's peak. We conclude from our observations thatfast-twitch muscle fibers operate and should be modeled in astate of full potentiation, and that modeling the potentiatedstate may actuaUy be simpler than modeling the unpotentiatedstate.  相似文献   

6.
The purpose of this study was to investigate the effect of the differences between the actual fascicle length during a voluntary contraction and the fascicle length at rest of the triceps surae muscle on the determination of the voluntary activation (VA) by using the interpolated twitch technique. Twelve participants performed isometric voluntary maximal (MVC) and submaximal (20%, 40%, 60% and 80% MVC) contractions at two different ankle angles (75 degrees and 90 degrees ) under application of the interpolated twitch technique. Two ultrasound probes were used to determine the fascicle length of soleus, gastrocnemius medialis and gastrocnemius lateralis muscles. Further, the MVCs and the twitches were repeated for six more ankle angles (85 degrees , 95 degrees , 100 degrees , 105 degrees , 110 degrees and 115 degrees ). The VA of the triceps surae muscle were calculated (a) using the rest twitch force (RTF) measured during the same trial as the interpolated twitch force (ITF; traditional method) and (b) using the RTF at an ankle angle where the fascicle length showed similar values between ITF and RTF (fascicle length consideration method). The continuous changes in fascicle length from rest to MVC affect the accuracy of the assessment of the VA. The traditional method overestimates the assessment of the VA on average 4% to 12%, especially at 90 degrees ankle angle (i.e. short muscle length). The reason for this influence is the unequal force-length potential of the muscle at twitch application by the measure of ITF and RTF. These findings provide evidence that the fascicle length consideration method permits a more precise prediction (an improvement of 4-12%) of the voluntary contraction compared to the traditional method.  相似文献   

7.
The superimposed twitch technique is frequently used to study the degree of motor unit activation during voluntary effort. This technique is one of the preferred methods to determine the activation deficit (AD) in normal, athletic, and patient populations. One of the limitations of the superimposed twitch technique is its variability under given contractile conditions. The objective of this research was to determine the source(s) of variability in the superimposed twitch force (STF) for repeat measurements. We hypothesized that the variability in the AD measurements may be caused by the timing of the twitch force relative to the onset of muscle activation, by force transients during the twitch application, by small variations in the actual force from the nominal target force, and by variations in the resting twitch force. Twenty-eight healthy subjects participated in this study. Sixteen of these subjects participated in a protocol involving contractions at 50% of their maximal voluntary contraction (MVC) effort, whereas the remaining 12 participated in a protocol involving contractions at 100% of their MVC. Doublet-twitch stimuli were superimposed onto the 50 and 100% effort knee extensor muscle contractions, and the resting twitch forces, voluntary knee extensor forces, and STFs were then measured. The mean resting twitch forces obtained before and after 8 s of 50% of MVC were the same. Similarly, the mean STFs determined at 1, 3, 5, and 7 s into the 50% MVC were the same. The variations in twitch force were significantly smaller after accounting for the actual force at twitch application than those calculated from the prescribed forces during the 50% MVC protocol (P < 0.05). Furthermore, the AD and the actual force showed statistically significant negative correlations for the 50% MVC tests. The interpolated twitch torque determined for the maximal effort contractions ranged from 1 to 70%. In contrast to the protocol at 50% of MVC, negative correlations were only observed in 5 of the 12 subjects during the 100% effort contractions. These results suggest that small variations in the actual force from the target force can account for the majority of the variations in the STFs for submaximal but not maximal effort contractions. For the maximal effort contractions, large variations in the STF exist due to undetermined causes.  相似文献   

8.
Postactivation potentiation (PAP), a mechanism by which the torque of a muscle twitch is increased following a conditioning contraction, is well documented in muscular physiology, but little is known about its effect on the maximal rate of torque development and functional significance during voluntary movements. The objective of this study was to investigate the PAP effect on the rate of isometric torque development of electrically induced and voluntary contractions. To that purpose, the electromechanical responses of the thumb adductor muscles to a single electrical stimulus (twitch), a train of 15 pulses at 250 Hz (HFT(250)), and during ballistic (i.e., rapid torque development) voluntary contractions at torque levels ranging from 10 to 75% of maximal voluntary contraction (MVC) were recorded before and after a conditioning 6-s MVC. The results showed that the rate of torque development was significantly (P < 0.001) increased after the conditioning MVC, but the effect was greater for the twitch ( approximately 200%) compared with the HFT(250) ( approximately 17%) or ballistic contractions (range: 9-24%). Although twitch potentiation was maximal immediately after the conditioning MVC, maximal potentiation for HFT(250) and ballistic contractions was delayed to 1 min after the 6-s MVC. Furthermore, the similar degree of potentiation for the rate of isometric torque development between tetanic and voluntary ballistic contractions indicates that PAP is not related to the modality of muscle activation. These observations suggest that PAP may be considered as a mechanism that can influence our contractions during daily tasks and can be utilized to improve muscle performance in explosive sports.  相似文献   

9.
The effects of sustained and rhythmically performed isometric contractions on electrically evoked twitch and tetanic force generation of the triceps surae have been investigated in 4 healthy male subjects. The isometric contractions were performed separately and on different occasions at 30%, 60% and 100% of the force of maximal voluntary contraction (MVC). The area under the maximal voluntary contraction (MVC) force/time curve during the rhythmic and sustained contractions was the same for each experiment. The results showed that following rhythmic isometric exercise there was a small decrease in low (10 and 20 Hz) and high (40 Hz) frequency tetanic tension which was associated with % MVC. However, there was no change in the 20/40 ratio of tetanic forces, MVC or the contraction times and force of the maximal twitch. In contrast, following sustained isometric exercise tetanic forces were markedly reduced, particularly at low frequencies of stimulation. The 20/40 ratio decreased and the induced muscle weakness was greater at 30% than 60% or 100% MVC. The performance of sustained isometric contractions also effected a decrease in contraction time of the twitch and MVC. The results are in accord with previous findings for dynamic work (Davies and White 1982), and show that if isometric exercise is performed rhythmically the effect on tetanic tensions is small and there is no evidence of a preferential loss of electrically evoked force at either high or low frequencies of stimulation following the contractions. For sustained contractions, however, the opposite is true, the ratio of 20/40 Hz forces is markedly reduced and following 30% sustained MVC there is a significant (p less than 0.05) change in the time to peak tension (TPT) of the maximal twitch.  相似文献   

10.
The present study re-examines the 15% MVC concept, i.e. the existence of a circulatory steady-state in low intensity static contractions below 15% of maximal voluntary contraction (MVC). Mean arterial blood pressure was studied during static endurance contractions of the elbow flexor and extensor muscles at forces corresponding to 10% and 40% MVC. Mean value for endurance time at 10% MVC was significantly longer for flexion [111.3 (SD 56.1) min] than for extension [18.1 (SD 7.5) min; n = 7]. At 40% MVC the difference in mean endurance time disappeared [2.3 (SD 0.7) min for elbow flexion and 2.3 (SD 0.7) min for elbow extension]. Mean arterial blood pressure exhibited a continuous and progressive increase during the 10% MVC contractions indicating that the 15% MVC concept would not appear to be valid. The terminal blood pressure value recorded at the point of exhaustion in the 10% MVC elbow extension experiment was identical to the peak pressure attained in the 40% MVC contraction. For the elbow flexors the terminal pressor response was slightly but significantly lower at 10% MVC [122.3 (SD 10.1) mmHg, 16.3 (SD 1.4) kPa] in comparison with 40% MVC [130.4 (SD 7.4) mmHg, 17.4 (SD 1.0) kPa]. When the circulation to the muscles was arrested just prior to the cessation of the contraction, blood pressure only partly recovered and remained elevated for as long as the occlusion persisted, indicating the level of pressure-raising muscle chemoreflexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
PurposeWe assessed fascicle behaviors of the upper extremities during isometric contractions at different joint angles in this study.MethodsThirteen healthy men and women performed isometric elbow extension tasks at 50% and 75% of maximal voluntary contraction (MVC) at 60°, 90°, and 120° of elbow extension (full extension = 180°). Extended field-of-view B-mode ultrasonography was used to obtain sagittal plane panoramic images of the long head (TB-Long) and medial head (TB-Med) of the triceps brachii at rest and during contraction; fascicle length and pennation angle were measured.ResultsIn the TB-Long, significant fascicle shortening from rest was found during 50% and 75%MVC at 60° and during 75%MVC at 90° of extension. There was no significant fascicle shortening in the TB-Med muscle under any conditions. There was no significant pennation angle change from rest in either muscle. The pennation angle of the TB-Long was significantly greater than that of the TB-Med under all conditions.ConclusionsThese results suggest that fascicle shortening in the TB-Long muscle occurs in flexion; however, no change was found in the TB-Med. In the upper extremity muscle–tendon complex, the superficial and deeper muscles may have different force-transmission efficiency at flexed joint angles.  相似文献   

12.
This study was designed to investigate the local effect of experimental muscle pain on the MMG and the surface EMG during a range of sub-maximal isometric contractions. Muscle pain was induced by injections of hypertonic saline into the biceps brachii muscle in 12 subjects. Injections of isotonic saline served as a control. Pain intensity and location, MMG and surface EMG from the biceps brachii were assessed during static isometric (0%, 10%, 30%, 50% and, 70% of the maximal voluntary contraction) and ramp isometric (0-50% of the maximal voluntary contraction) elbow flexions. MMG and surface EMG signals were analyzed in the time and frequency domain. Experimentally induced muscle pain induced an increase in root mean square values of the MMG signal while no changes were observed in the surface EMG. Most likely this increase reflects changes in the mechanical contractile properties of the muscle and indicates compensatory mechanisms, i.e. decreased firing rate and increased twitch force to maintain a constant force output in presence of experimental muscle pain. Under well-controlled conditions, MMG recordings may be more sensitive than surface EMG recordings and clinically useful for detecting non-invasively increased muscle mechanical contributions during muscle pain conditions.  相似文献   

13.
Young women are less fatigable than young men for maximal and submaximal contractions, but the contribution of supraspinal fatigue to the sex difference is not known. This study used cortical stimulation to compare the magnitude of supraspinal fatigue during sustained isometric maximal voluntary contractions (MVCs) performed with the elbow flexor muscles of young men and women. Eight women (25.6 +/- 3.6 yr, mean +/- SD) and 9 men (25.4 +/- 3.8 yr) performed six sustained MVCs (22-s duration each, separated by 10 s). Before the fatiguing contractions, the men were stronger than the women (75.9 +/- 9.2 vs. 42.7 +/- 8.0 N.m; P < 0.05) in control MVCs. Voluntary activation measured with cortical stimulation before fatigue was similar for the men and women during the final control MVC (95.7 +/- 3.0 vs. 93.3 +/- 3.6%; P > 0.05) and at the start of the fatiguing task (P > 0.05). By the end of the six sustained fatiguing MVCs, the men exhibited greater absolute and relative reductions in torque (65 +/- 3% of initial MVC) than the women (52 +/- 9%; P < 0.05). The increments in torque (superimposed twitch) generated by motor cortex stimulation during each 22-s maximal effort increased with fatigue (P < 0.05). Superimposed twitches were similar for men and women throughout the fatiguing task (5.5 +/- 4.1 vs. 7.3 +/- 4.7%; P > 0.05), as well as in the last sustained contraction (7.8 +/- 5.9 vs. 10.5 +/- 5.5%) and in brief recovery MVCs. Voluntary activation determined using an estimated control twitch was similar for the men and women at the start of the sustained maximal contractions (91.4 +/- 7.4 vs. 90.4 +/- 6.8%, n = 13) and end of the sixth contraction (77.2 +/- 13.3% vs. 73.1 +/- 19.6%, n = 10). The increase in the area of the motor-evoked potential and duration of the silent period did not differ for men and women during the fatiguing task. However, estimated resting twitch amplitude and the peak rates of muscle relaxation showed greater relative reductions at the end of the fatiguing task for the men than the women. These results indicate that the sex difference in fatigue of the elbow flexor muscles is not explained by a difference in supraspinal fatigue in men and women but is largely due to a sex difference of mechanisms located within the elbow flexor muscles.  相似文献   

14.
The length dependence of force development of mammalian skeletal muscles was evaluated during twitch, double-pulse, and tetanic contractions, and the relation between muscle length and the time-dependent characteristics of twitch and double-pulse contractions were determined. In situ isometric contractions of the rat gastrocnemius muscle were analyzed at seven different lengths, based on a reference length at which the maximal response to double-pulse contractions occurred (Lopt-2P). Twitch and double-pulse contractions were analyzed for developed tension (DT), contraction time (tC), average rate of force development (DT-tC(-1)), half-relaxation time (t50%R), peak rate of relaxation (DT x dtmin(-1)), and 90%-relaxation time (t90%R). Considering the length at which maximal tetanic DT occurred to be the optimal length (Lo-TET), the peak DT for twitch contractions and double-pulse contractions was observed at Lo-TET + 0.75 mm (p < 0.05) and Lo-TET + 0.1 mm (p > 0.05), respectively. When measured at the length for which maximal twitch and double-pulse contractions were obtained, tetanic DT was 95.2 +/- 3 and 99.0 +/- 2% of the maximal value, respectively. These observations suggest that double-pulse contractions are more suitable for setting length for experimental studies than twitch contractions. Twitch and double-pulse contraction tC were 15.53 +/- 1.14 and 25.0 +/- 0.6 ms, respectively, at Lopt-2P, and increased above Lopt-2P and decreased below Lopt-2P. Twitch t50%R was 12.18 +/- 0.90 ms at Lopt-2P, and increased above Lopt-2P and below Lopt-2P. Corresponding changes for double-pulse contractions were greater. Stretching the muscle leads to slower twitch contractions and double-pulse contractions, but the mechanisms of this change in time course remain unclear.  相似文献   

15.
Blood pressure and heart rate changes during sustained isometric exercise were studied in 11 healthy male volunteers. The responses were measured during voluntary and involuntary contractions of the biceps brachii at 30% of maximal voluntary contraction (MVC), and the triceps surae at 30% and 50% MVC. Involuntary contractions were evoked by percutaneous electrical stimulation of the muscle. Measurements of the time to peak tension of maximal twitch showed the biceps brachii (67.0 +/- 7.9 ms) muscle to be rapidly contracting, and the triceps surae (118.0 +/- 10.5 ms) to be slow contracting. The systolic and diastolic blood pressures increased linearly throughout the contractions, and systolic blood pressure increased more rapidly than diastolic. There was no significant difference in response to stimulated or voluntary contractions, nor was there any significant difference between the responses to contractions of the calf or arm muscles at the same relative tension. In contrast the heart rate rose to a higher level (P less than 0.01) in the biceps brachii than the triceps surae at given % MVC, and during voluntary compared with the electrically evoked contractions in the two muscle groups. It was concluded that the arterial blood pressure response to isometric contractions, unlike heart rate, is primarily due to a reflex arising within the active muscles (cf. Hultman and Sj?holm 1982) which is associated with relative tension but independent of contraction time and muscle mass.  相似文献   

16.
Our purpose was to characterize the relationship between EMG mean power frequency (MPF) or median frequency (MF) and rate of torque development in voluntary ballistic and electrically elicited isometric contractions. Twenty-three healthy adults participated in two sets of experiments performed on elbow flexor muscles. For Experiment 1, subjects were asked to generate voluntary ballistic contractions by reaching four different target torque levels (20, 40, 60 and 100% of the maximal voluntary contraction (MVC)) as fast as they could. For Experiment 2, electrical (M-waves) and mechanical (twitches) responses to electrical stimulation of the nerves supplying the biceps brachii and brachioradialis muscles were recorded with the subjects at rest and with a background isometric contraction of 15% MVC. MPF, MF and rate of torque development (% MVC/s) were calculated for both voluntary and elicited contractions. Significant positive correlations were observed between MPF and rate of torque development for the voluntary contractions, whereas significant negative correlations were observed between the two variables for elicited contractions. This suggests that factors other than muscle fiber composition influence the frequency content of EMG signals and/or the rate of torque development, and that the effect of these factors will vary between voluntary and elicited contractions.  相似文献   

17.
It has been known for a long time that the steady-state isometric force after muscle stretch is bigger than the corresponding force obtained in a purely isometric contraction for electrically stimulated and maximal voluntary contractions (MVC). Recent studies using sub-maximal voluntary contractions showed that force enhancement only occurred in a sub-group of subjects suggesting that force enhancement for sub-maximal voluntary contractions has properties different from those of electrically-induced and maximal voluntary contractions. Specifically, force enhancement for sub-maximal voluntary contractions may contain an activation-dependent component that is independent of muscle stretching. To address this hypothesis, we tested for force enhancement using (i) sub-maximal electrically-induced contractions and stretch and (ii) using various activation levels preceding an isometric reference contraction at 30% of MVC (no stretch). All tests were performed on human adductor pollicis muscles. Force enhancement following stretching was found for all subjects (n = 10) and all activation levels (10%, 30%, and 60% of MVC) for electrically-induced contractions. In contrast, force enhancement at 30% of MVC, preceded by 6 s of 10%, 60%, and 100% of MVC was only found in a sub-set of the subjects and only for the 60% and 100% conditions. This result suggests that there is an activation-dependent force enhancement for some subjects for sub-maximal voluntary contractions. This activation-dependent force enhancement was always smaller than the stretch-induced force enhancement obtained at the corresponding activation levels. Active muscle stretching increased the force enhancement in all subjects, independent whether they showed activation dependence or not. It appears that post-activation potentiation, and the associated phosphorylation of the myosin light chains, might account for the stretch-independent force enhancement observed here.  相似文献   

18.
To elucidate the changes in neuro-muscular function during strength training and detraining, five male subjects underwent progressive isotonic strength training of their calf muscles three times a week for 8 weeks with additional detraining for the same periods. Electrically evoked twitch contractions were induced in the triceps surae muscles of each subject every 4 weeks during the training and detraining periods. At the same time, maximal voluntary isometric contractions (MVC) and the maximal girth of the calf (MGC) were measured. During the training period, MVC increased significantly from 98.4 to 129.6 Nm (31.7%, P less than 0.01) for the first 4 weeks of training but MGC showed little increase. Neither of the changes correlated with each other. Twitch contraction parameters, i.e. maximal twitch torque (Pt), maximal rate of torque development (max dT/dt) and rate of relaxation (relax dT/dt) showed no statistical change. During detraining, on the contrary, a large and significant increase (22.5%, P less than 0.01) was observed in max dT/dt without any changes in Pt and relax dT/dt. The MVC/Pt showed both significant increases during training and decreases during detraining. Our data suggest that short term strength training as employed in the present study does not induce changes in the contractile properties of the muscle during training, but may significantly affect the rate of force development during the subsequent detraining period, indicating the possible existence of complex post-training muscle adaptation.  相似文献   

19.
Voluntary muscle activation varies with age and muscle group.   总被引:3,自引:0,他引:3  
The consistency and the number of attempts required to achieve maximal voluntary muscle activation have not been documented and compared between young and old adults. Furthermore, few studies have contrasted activation between functional pairs of muscle groups, and no study has tested upper limb muscles. The purpose of this study was to measure and compare voluntary muscle activation of the elbow flexors and extensors in young and old men over two separate test sessions. With the method of twitch interpolation to measure activation, six young (24 +/- 1 yr) and six old (83 +/- 4 yr) men performed five maximal voluntary contractions (MVC) during each session for each muscle group. Elbow flexion and extension MVC was less (43 and 47%, respectively) in the old men, yet the best maximal voluntary muscle activation was similar between age groups. However, when all 10 attempts at MVC were compared, the mean activation scores were slightly less (approximately 5%) in the elbow extensors but were approximately 11% less (P < 0.001) in the elbow flexors of old men, compared with young men. During the second session, there was a significant improvement of 13% (P < 0.005) in mean elbow flexor activation in the old men. There were no session differences for either muscle group for the young men. The results indicate that, for aged men, elbow flexor maximal activation is achieved less frequently compared with elbow extensors, and thus mean activation for elbow flexors is less than for elbow extensors. However, if sufficient attempts are provided, the best effort for the old men is not different from that of the young men for either muscle group.  相似文献   

20.
The purpose of this study was to evaluate the neuromuscular adaptation that occurred with aging, by comparing young and aged subjects with respect to changes in surface EMG from the tibialis anterior muscle during fatiguing contractions. EMG variables such as the averaged rectified value (ARV), median frequency (MDF), and muscle fiber conduction velocity (MFCV) were calculated during maximal (MVC, 3 sec) and submaximal (60% MVC, 60 sec) isometric contractions. Muscular force, ARV, MDF, and MFCV during MVC were significantly greater in the young than in the elderly (p < 0.05). EMG amplitude increased and the waveform slowed in all subjects during submaximal contractions, indicating the development of local muscle fatigue. As fatigue progressed, the ARV increased and the MDF and MFCV decreased significantly (p < 0.01). The fatigue-induced changes in the MDF and MFCV were significantly smaller in aged than in young subjects (p < 0.05), a trend also seen in the ARV change, which means that the elderly cannot be fatigued as much as the young with contractions of the same relative intensity. These results as a whole suggest that the aged subjects hold an adaptive motor strategy to cope with age-related neuromuscular deteriorations, due to the decline of motor unit activation and selective atrophy of fast twitch muscle fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号