首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of rat extraorbital lacrimal gland slices with the β-agonist isoproterenol caused peroxidase secretion but no K+ release. The peroxidase secretion was inhibited by propranolol. Addition od dibutyryl cyclic AMP or adenosine 3′,5′-cyclic phosphorothioate to lacrimal slices produced peroxidase secretion at a higher rate than that obtained with optimal concentration of isoproterenol. Methyl isobutylxanthine is also a strong stimulator of peroxidase secretion. Peroxidase activity was determined by a modified sensitive guaiacol method. Membrane fraction of lacrimal cells was shown to contain an isoproterenol-stimulated adenylate cyclase activity. It is therefore suggested that there is a β-adrenergic receptor in the rat lacrimal gland and that its stimulation causes activation of an adenylate cyclase which leads to peroxidase secretion.  相似文献   

2.
Previous studies have described a decrease in the activity of adenylate cyclase in the parotid gland of isoproterenol-treated rats. In the present studies, a similar decrease was observed in mice treated with isoproterenol. Studies on the subcellular distribution of adenylate cyclase after isoproterenol stimulation of the parotid gland showed that enzyme activity was increased in the lysosomal fraction and decreased in the cellular membrane fractions. Cytochemical studies on the localization of adenylate cyclase in stimulated gland showed an increase in vesicles which contained enzyme activity and a decrease in activity at the luminal and plasma membranes. It is suggested, based on the present findings and results reported by other investigators, that after isoproterenol stimulation of the parotid gland, adenylate cyclase (along with excess membrane) is degraded by lysosomes. If this suggestion is true, then the observed decrease in adenylate cyclase would have a molecular explanation.  相似文献   

3.
Cyclic adenosine monophosphate (cAMP)-mediated signal transduction was evaluated in synaptosomes prepared from rat brain cortex. Adenylate cyclase was responsive to known adenylate cyclase stimulators including peptides (CRH and VIP), catecholamines (norepinephrine and isoproterenol) and ligands that directly stimulate adenylate cyclase (forskolin). Cyclic AMP accumulation also increased approximately 2 to 3-fold, but none of the agonists was able significantly to activate cyclic AMP-dependent protein kinase (A-kinase) in cortical synaptosomes. However, in parallel studies with slices prepared from rat brain cortex, adenylate cyclase activity, cAMP accumulation and A-kinase activity were all stimulated by CRH, VIP, norepinephrine, isoproterenol and forskolin. These data suggest that, in intact synaptosomes, either the cellular machinery which facilitates binding of cAMP to the regulatory subunit of A-kinase is missing or the cAMP produced by adenylate cyclase is not accessible to A-kinase.  相似文献   

4.
M Ohgushi  A Wada 《FEBS letters》1983,164(1):21-24
In rat lacrimal glands, Forskolin induces a dose-dependent [3H]protein release. This effect can be potentiated by papaverine. As for the other inducers whose effects on protein secretion are assumed to be cAMP-mediated, Forskolin secretion time course shows a latency. Isoproterenol decreases the Forskolin EC5- at least 60--times. On the other hand, Forskolin enhances the efficacy of isoproterenol without affecting its potency. As a whole, the data collected show that isoproterenol-induced [3H]protein secretion in rat lacrimal glands involved adenylate cyclase activation by coupling with β-adrenergic receptors.  相似文献   

5.
The action of phospholipase A2 and alpha-tocopherol on adenylate cyclase system functioning and on the lipid bilayer microviscosity of the rat brain synaptosome membranes was investigated. It was shown that the exposure of the synaptosomes to phospholipase A2 increases the adenylate cyclase activity stimulated by guanylyl imidotriphosphate (GITP), decreases the adenylate cyclase activity stimulated both by isoproterenol and by isoproterenol with GITP. The preincubation of synaptosomes in medium containing alpha-tocopherol does not change the character of the phospholipase action on the adenylate cyclase activity stimulated by isoproterenol but normalizes the adenylate cyclase activity stimulated both by GITP and by GITP with isoproterenol. In the last case the normalizing action of alpha-tocopherol is not caused by alteration of the microviscosity of the lipid bilayer. It appears to be due to the modification of the lipid-protein interactions of annular lipids with activated complex of catalytic subunit and guanyl nucleotide-binding protein.  相似文献   

6.
The albumen gland in Helisoma secretes a perivitelline fluid which surrounds each egg and is made up of several 66 kDa protein subunits and polysaccharide complexes. Forskolin, an adenylate cyclase activator, stimulated the secretion and release of the perivitelline fluid. An acidic extract of the central nervous system increased the intracellular concentration of cAMP in the albumen gland and this results in the release of the 66 kDa molecule and other proteins. Digestion of the brain extract with proteases abolished this activity, suggesting that the factor is a peptide. Cyclic AMP analogues and [BMX also stimulated the protein secretion in dose-dependent manner. Forskolin when added with the brain factor had an additive response. SQ22536, a non-competitive inhibitor of adenylate cyclase, inhibited brain extract dependent adenylate cyclase activity whereas aluminum fluoride, a G protein activator, was found to stimulate adenylate cyclase. Dopamine also stimulates protein secretion by the albumen gland and through the application of various agonists and antagonists of dopamine, it was established that the neurotransmitter acts via D1-like receptors by stimulating adenylate cyclase.  相似文献   

7.
Release of [14C]glucosamine-labelled mucins was studied in vitro using well-characterised preparations of rat submandibular acini. Mucin release was stimulated by forskolin, an activator of the catalytic subunit of adenylate cyclase, and 3-isobutyl-1-methylxanthine (IBMX), a cyclic nucleotide phosphodiesterase inhibitor. Both stimulated in a dose-dependent manner to the same maximum as that seen with isoproterenol. Neither forskolin nor IBMX added in the presence of isoproterenol increased secretion above the maximum in response to isoproterenol alone, suggesting a similar mechanism of action, mediated by cyclic AMP. Prior exposure of acini to isoproterenol (10 microM) for 45 min, followed by washout resulted in (a) persistent increase in basal secretion which was abolished by propranolol and (b) reduced stimulation of mucin secretion in response to either a second isoproterenol challenge, noradrenaline or forskolin. Thus, exposure of rat submandibular acini in vitro desensitizes the cells to subsequent stimulation. Although this mimics the decreased beta-adrenergic secretory responses seen in submandibular cells from cystic fibrosis patients, results suggest that the isoproterenol-induced desensitization is at the level of beta-receptor and adenylate cyclase, rather than distal to cyclic AMP.  相似文献   

8.
The effects of magnesium and sodium ions on adenylate cyclase activity in plasma membranes from chicken heart and eggshell gland mucosa were studied. It was found that the increase in magnesium chloride concentration from 5 to 40 mM results in the stimulation (4.1-fold) of the adenylate cyclase activity. The increase in sodium chloride concentration up to 150 mM stimulated the enzyme activity 2-fold. The stimulation of adenylate cyclase by magnesium and sodium ions was less pronounced in the eggshell gland. GTP did not activate adenylate cyclase. The activating effect of magnesium and sodium ions was accompanied by the attenuation of the enzyme sensitivity to NaF, guanylyl imidodiphosphate and isoproterenol. Activation by guanylyl imidodiphosphate was completely abolished in the presence of 40 mM magnesium chloride. It is assumed that high concentrations of the salt promote subunit dissociation of the adenylate cyclase regulatory protein and its interaction with the catalytic subunit in the presence of endogenous nucleotides. The differences in the adenylate cyclase sensitivity to cations in chicken heart and eggshell gland mucosa correlate with the amount of pertussis toxin substrate.  相似文献   

9.
Ovine luteal slices were used to study the effects of prostaglandins (PG) F2α on luteinizing hormone (LH)-stimulated secretion of progesterone and adenylate cyclase activity. The accumulation of progesterone in incubation medium and adenylate cyclase activity was similar after incubation of luteal slices with Medium 199 alone or Medium 199 containing PGF2α (250 ng/ml) for 3 hr. Addition of luteinizing hormone (LH; 100 ng/ml) resulted in a 2–3 fold increase in both the rate of progesterone accumulation and adenylate eyclase activity by 3 hr. When luteal slices were incubated in the presence of both LH and PGF2α the rates of progesterone accumulation and adenylate cyclase activity were identical to those in flasks containing LH alone after 1 hr; however, after 3 hr both LH stimulated progesterone accumulation and adenylate cyclase activity were inhibited to levels similar to those observed in control slices.In a second experiment, after 60–120 min of exposure to PGF2α the rate of progesterone accumulation in the medium was not different from that in untreated control slices. In addition, after this experiment the luteal slices were homogenized and the basal, sodium fluoride, LH, isoproterenol (ISO) and PGE2 sensitive adenylate cyclase activities were determined to evaluate the hormonal specificity of the negative effect of the pretreatment with PGF2α. Both LH and ISO stimulated adenylate cyclase activities were reduced after PGF2α pretreatment. However, fluoride ion stimulated adenylate cyclase activity was not significantly effected by PGF2α pretreatment and PGE2 sensitive adenylate cyclase was effected only slightly.  相似文献   

10.
Exposure of rat glioma C6 cells to either isoproterenol or 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in desensitization of isoproterenol-stimulated adenylate cyclase activity. After either treatment, the affinity of beta-receptors for isoproterenol was reduced. Thus, desensitization by TPA or isoproterenol appeared to involve an "uncoupling" of the beta-receptor from the stimulatory regulatory component (Ns) of adenylate cyclase. The activity of Ns, assayed by reconstitution of S49 cyc- adenylate cyclase activity, was found to be unchanged after desensitization. The activity of beta-receptors was measured by inactivating Ns and the catalytic component of adenylate cyclase in C6 membranes and fusing them with membranes lacking beta-receptors. Receptors from isoproterenol-treated C6 cells were less active in "coupling" to the foreign adenylate cyclase than receptors from untreated cells, whereas receptors from TPA-treated cells were fully active. This unexpected latter result was explored further. Lysates from C6 cells were centrifuged on linear sucrose density gradients and the gradient fractions assayed for beta-receptor binding activity. Most of the receptors were recovered in a "heavy" plasma membrane peak but some receptors also appeared in a "light" membrane peak. After treatment of the cells with isoproterenol or TPA, the proportion of receptors in the light peak increased. Prior treatment of the cells with concanavalin A prevented the increase in light receptors caused by isoproterenol or TPA. In addition, the concanavalin A treatment prevented the desensitization of adenylate cyclase caused by TPA but not that caused by isoproterenol. Finally, desensitization of adenylate cyclase was reversed by polyethylene glycol-induced fusion of membranes from cells treated with TPA but not isoproterenol. We conclude that beta-agonists and phorbol esters desensitize adenylate cyclase by distinct mechanisms. Agonists cause a reduction in the functional activity of the beta-receptors followed by a segregation of the receptors into a light membrane fraction devoid of Ns. Phorbol esters do not alter the activity of the receptors but do cause their segregation.  相似文献   

11.
The present study was undertaken to localize adenylate cyclase activity in salivary glands by cytochemical means. For the study, serous parotid glands and mixed sublingual glands of the rat were used. Pieces of the fixed glands were incubated with adenosine triphosphate (ATP) or adenylyl-imidodi-phosphate (AMP-PNP) as substrate: inorganic pyrophosphate or PNP liberated upon the action of adenylate cyclase on the substrates is precipitated by lead ions at their sites of production. In both glands, the reaction product was detected along the myoepithelial cell membranes in contact with secretory cells, indicating that a high level of adenylate cyclase activity occurs in association with these cell membranes. The association with a high level of the enzyme activity might be related to the contractile nature of myoepithelial cells which are supposed to aid secretory cells in discharging secretion products. A high level of adenylate cyclase activity was also detected associated with serous secretory cells (acinar cells of the parotid gland and demilune cells of the sublingual gland), but not with mucous secretory cells. In serous cells, deposits of reaction product were localized along the extracellular space of the apical cell membrane bordering the lumen. This is the portion of the cell membrane which fuses with the granule membranes during secretion. Since the granule membranes are not associated with a detectable level of adenylate cyclase activity, it appears that the enzyme activity becomes activated or associated with the granule membranes as they become part of the cell membrane by fusion. The association with a high level of adenylate cyclase activity appears to be related to the ability of the membrane to fuse with other membranes. It is likely, since the luminal membrane of mucous cells which does not fuse with mucous granule membranes during secretion is not associated with a detectable enzyme activity.  相似文献   

12.
Adenylate cyclase activity was stimulated by vasoactive intestinal peptide (VIP) in rat parotid membranes, in the presence of 100 microM guanosine triphosphate (GTP). The threshold concentration of VIP was 300 nM and the activity doubled at the maximal VIP concentration tested (30 microM). The relative potency of peptides of the VIP family was: VIP greater than peptide histidine isoleucinamide (PHI) greater than secretin. The beta-adrenergic agent isoproterenol was a more efficient activator of rat parotid adenylate cyclase and its stimulatory effect, like that of VIP, depended on the presence of GTP. The effects of VIP and isoproterenol were both potentiated by 10 microM forskolin. By comparison with rat parotid preparations, membranes from a human parotid gland responded similarly to the VIP family of peptides (VIP greater than PHI greater than secretin). In both rat and human parotid membranes, two proteins (Mr 44 kDa and 53 kDa) of the alpha-subunit of Ns (the guanyl nucleotide-binding stimulatory protein) were labelled by ADP-ribosylation, in the presence of cholera toxin. Taken together, these results indicate that VIP receptors, when coupled to Ns, were able to activate the adenylate cyclase system in rat and human parotid membranes.  相似文献   

13.
A thorough search for a soluble peroxidase in 31 different tissues of rat indicated the presence of a constitutive activity only in lacrimal, preputial and submaxillary gland. An induced soluble peroxidase activity was also detected in the lactating mammary gland and in the estrogen-induced uterine secretory fluid. The lacrimal gland was the richest source of the enzyme. No peroxidase activity was detected in the lactating mammary gland of mouse and hamster nor in the preputial gland of mouse and uterine fluid of hamster. The three constitutive and two induced soluble peroxidases of rat had a native molecular mass of 73 kDa by gel filtration and they showed a similar mobility in native PAGE. Lactoperoxidase of cow's milk and solubilized rat membrane-bound peroxidases of uterus, intestine and bone marrow showed in native PAGE a mobility which was distinctly different from that of rat soluble peroxidases. As the lacrimal gland of rat was the richest source of soluble peroxidase, the enzyme was purified from this gland to apparent homogeneity; SDS/PAGE then showed a single band of molecular mass 75 kDa which was similar to that obtained by gel filtration. Peroxidase also purified from preputial and submaxillary gland, as well as commercial lactoperoxidase, had a similar molecular mass on SDS/PAGE to purified lacrimal peroxidase. The visible spectrum of lacrimal peroxidase was similar to that of lactoperoxidase but different from membrane-bound peroxidase of rat neutrophils. On isoelectric focussing, purified lacrimal peroxidase resolved into about 14 multiple forms spanning a pI range of 6.5-3.5 while lactoperoxidase focussed at the cathode. Evidence presented suggests that the multiple forms are possibly due to differences in glycosylation. Immunodiffusion, immunoprecipitation and Western blot using antilacrimal peroxidase serum showed a similar interacting species for all five soluble peroxidases of rat while membrane-bound peroxidases showed no interaction. Although in immunodiffusion, the antiserum failed to cross-react with lactoperoxidase it did interact with lactoperoxidase on Western blot. The results indicate that the various constitutive and induced soluble peroxidases of rat tissues are similar to lacrimal peroxidase but are distinctly different from the known membrane-bound peroxidases of rat. However the lacrimal peroxidase shows both similarities as well as dissimilarities with bovine lactoperoxidase. This soluble peroxidase system of rat could be useful to study tissue-specific regulation of gene expression at the molecular level.  相似文献   

14.
Cholesterol, a major structural component of plasma membranes, has a profound influence on cell surface receptor characteristics and on adenylate cyclase activity. β-Adrenergic receptor number, adenylate cyclase activity, and receptor-cyclase coupling were assessed in rat lung membranes following preincubation with cholesteryl hemisuccinate. β-Adrenergic receptor number increased by 50% without a change in antagonist affinity. However, β-adrenergic receptor affinity for isoproterenol increased 2-fold as a result of an increase in the affinity of the isoproterenol high-affinity binding site. This increase in agonist affinity did not potentiate hormone-stimulated adenylate cyclase activity, which decreased 3-fold following cholesterol incorporation. However, the ratio of isoproterenol to GTP-stimulated activity was unchanged with cholesterol. Stimulation distal to the receptor by GTP, NaF, GppNHp, Mn2+ and forskolin also demonstrated 50–80% reduced enzyme activity following cholesterol incorporation. These data suggest that membrane cholesterol incorporation decreases catalytic unit activity without affecting transduction of the hormone signal.  相似文献   

15.
Cholesterol, a major structural component of plasma membranes, has a profound influence on cell surface receptor characteristics and on adenylate cyclase activity. beta-Adrenergic receptor number, adenylate cyclase activity, and receptor-cyclase coupling were assessed in rat lung membranes following preincubation with cholesteryl hemisuccinate. beta-Adrenergic receptor number increased by 50% without a change in antagonist affinity. However, beta-adrenergic receptor affinity for isoproterenol increased 2-fold as a result of an increase in the affinity of the isoproterenol high-affinity binding site. The increase in agonist affinity did not potentiate hormone-stimulated adenylate cyclase activity, which decreased 3-fold following cholesterol incorporation. However, the ratio of isoproterenol to GTP-stimulated activity was unchanged with cholesterol. Stimulation distal to the receptor by GTP, NaF, GppNHp, Mn2+ and forskolin also demonstrated 50-80% reduced enzyme activity following cholesterol incorporation. These data suggest that membrane cholesterol incorporation decreases catalytic unit activity without affecting transduction of the hormone signal.  相似文献   

16.
The diterpene forskolin markedly activates adenylate cyclase in membranes from various rat brain regions and elicits marked accumulations of radioactive cyclic AMP in adenine-labeled slices from cerebral cortex, cerebellum, hippocampus, striatum, superior colliculi, hypothalamus, thalamus, and medulla-pons. In cerebral cortical slices, forskolin has half-maximal effects at 20-30 microM on cyclic AMP levels, both alone and in the presence of the phosphodiesterase inhibitor ZK 62771. The presence of a very low dose of forskolin (1 microM) can augment the response of brain cyclic AMP-generating systems to norepinephrine, isoproterenol, histamine, serotonin, dopamine, adenosine, prostaglandin E2, and vasoactive intestinal peptide. Forskolin does not augment responses to combinations of histamine-norepinephrine adenosine-norepinephrine, or histamine-adenosine. For norepinephrine and isoproterenol in rat cerebral cortical slices and for histamine in guinea pig cerebral cortical slices, the presence of 1 microM-forskolin augments the apparent efficacy of the amine, whereas for adenosine, prostaglandin E2, and vasoactive intestinal peptide, the major effect of 1 microM-forskolin is to increase the apparent potency of the stimulatory agent. In rat striatal slices, forskolin reveals a significant response of cyclic AMP systems to dopamine and augments the dopamine-elicited activation of adenylate cyclase in rat striatal membranes. The activation of cyclic AMP systems by forskolin is rapid and reversible, and appears to involve both direct activation of adenylate cyclase and facilitation and/or enhancement of receptor-mediated activation of the enzyme.  相似文献   

17.
Inclusion of EDTA in the homogenization buffer of both mouse and rat myocardium profoundly alters the properties of the adenylate cyclase complex. EDTA leads to an increase in the Vmax for adenylate cyclase activity due to all of the following agents: isoproterenol, Gpp[NH]p, forskolin and Mg2+. For forskolin and Mg2+, the EDTA-associated increase in Vmax is not accompanied by a change in sensitivity to activation. However, EDTA is associated with enhanced sensitivity to activation by isoproterenol and increased sensitivity to the effect of Mg2+ on isoproterenol-dependent adenylate cyclase activity. A result of greater isoproterenol-dependent adenylate cyclase activity, due to the presence of EDTA, is an attenuated synergistic contribution of Gpp[NH]p. Changes in stimulatable adenylate cyclase activity as a result of EDTA occurs in concert with effects of cholera toxin upon ADPribosylation of the guanine nucleotide regulatory protein, Ns. Substantial auto-ADP-ribosylation occurs in a cholera toxin-sensitive 42 kDa band in membranes prepared in the presence of EDTA. In addition, cofactor and substrate requirements in the cholera toxin-dependent ADP-ribosylation reaction depend on the method of membrane preparation. The results suggest that the integrity of the adenylate cyclase complex depends in part on the attention given to proteolysis that may be activated during the course of homogenization.  相似文献   

18.
Adenylate cyclase activity was measured in homogenates of submandibular glands of 1 to 42 day old rats. During this period of time the gland reached its final stage of differentiation. Adenylate cyclase activity was higher in the glands of one day old rats than in those of 7 and 14 day old animals. Between 14 and 28 days of age the enzyme activity more than doubled and approached the level that characterized the glands of adult animals. Fluoride (10mM) stimulated the enzyme activity in all age groups but the stimulation was less in the case of one day old rats as compared to older animals. Isoproterenol (10?4 M) stimulated adenylate cyclase by 50–60% in the gland of adult rats but had no effect on the enzyme activity in 7 to 28 day old animals. Administration of isoproterenol for 5 days to 9 day old rats increased the weight of the submandibular gland by 70 per cent. Total adenylate cyclase activity increased parallel with the weight of the gland but the specific activity of the enzyme remained unchanged. It is concluded that during the postnatal development of the submandibular gland the rapid increase in adenylate cyclase activity occurs after weaning and it coincides with an accelerated rate of functional differentiation of the acinar cells.  相似文献   

19.
The adrenergic regulation of renin secretion was studied in renal cortical slices from control and pertussis toxin-treated rats. Pertussis toxin was used to study the role of adenylate cyclase in the control of renin release. It was observed that isoproterenol and epinephrine stimulated renin secretion and that clonidine decreased both basal and isoproterenol-stimulated renin secretion in the control group. Pertussis toxin: a) increased significantly basal renin secretion, b) displaced to the left the concentration-response curve for isoproterenol and epinephrine and magnified the response to epinephrine and c) abolished the inhibitory effect of clonidine on renin secretion. This work confirms our previous results obtained in vivo and suggests a direct effect of pertussis toxin on the cells that secrete renin.  相似文献   

20.
The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号