首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seed oil of meadowfoam (Limnanthes alba) and other Limnanthes spp. is enriched in the unusual fatty acid Delta(5)-eicosenoic acid (20:1Delta(5)). This fatty acid has physical and chemical properties that make the seed oil of these plants useful for a number of industrial applications. An expressed sequence tag approach was used to identify cDNAs for enzymes involved in the biosynthesis of 20:1Delta(5)). By random sequencing of a library prepared from developing Limnanthes douglasii seeds, a class of cDNAs was identified that encode a homolog of acyl-coenzyme A (CoA) desaturases found in animals, fungi, and cyanobacteria. Expression of a cDNA for the L. douglasii acyl-CoA desaturase homolog in somatic soybean (Glycine max) embryos behind a strong seed-specific promoter resulted in the accumulation of Delta(5)-hexadecenoic acid to amounts of 2% to 3% (w/w) of the total fatty acids of single embryos. Delta(5)-Octadecenoic acid and 20:1Delta(5) also composed <1% (w/w) each of the total fatty acids of these embryos. In addition, cDNAs were identified from the L. douglasii expressed sequence tags that encode a homolog of fatty acid elongase 1 (FAE1), a beta-ketoacyl-CoA synthase that catalyzes the initial step of very long-chain fatty acid synthesis. Expression of the L. douglassi FAE1 homolog in somatic soybean embryos was accompanied by the accumulation of C(20) and C(22) fatty acids, principally as eicosanoic acid, to amounts of 18% (w/w) of the total fatty acids of single embryos. To partially reconstruct the biosynthetic pathway of 20:1Delta(5) in transgenic plant tissues, cDNAs for the L. douglasii acyl-CoA desaturase and FAE1 were co-expressed in somatic soybean embryos. In the resulting transgenic embryos, 20:1Delta(5) and Delta(5)-docosenoic acid composed up to 12% of the total fatty acids.  相似文献   

2.
3.
猫儿屎和三叶木通种子油中脂肪酸成分的GC-MS分析   总被引:3,自引:1,他引:2  
白成科 《西北植物学报》2007,27(5):1035-1038
采用索氏提取法提取木通科植物猫儿屎和三叶木通种子的脂溶性成分,甲酯化处理后用气相色谱-质谱联用技术(GC-MS)分离和鉴定其组成和含量。从猫儿屎种子油中鉴定出9种脂肪酸,占检出物总质量分数的94.67%(其中饱和脂肪酸占12.63%,不饱和脂肪酸占82.04%),主要成分为9-十六烯酸(47.22%)、9-油酸(27.13%)、棕榈酸(10.75%)、亚油酸(7.47%)和硬脂酸(1.61%)。从三叶木通种子油中鉴定出10种脂肪酸,占检出物总质量分数的99.75%(其中饱和脂肪酸占23.39%,不饱和脂肪酸占76.36%),主要成分为11-油酸(47.63%)、亚油酸(27.05%)、棕榈酸(20.14%)、16-甲基-十七烷酸(3.03%)和8-油酸(1.07%)。结果表明,猫儿屎和三叶木通种子油中脂肪酸含量丰富,在食用、医疗保健等方面具有较高的应用潜力和综合开发前景。  相似文献   

4.
Developing embryos of Brassica napus accumulate both triacylglycerols and proteins as major storage reserves. To evaluate metabolic fluxes during embryo development, we have established conditions for stable isotope labeling of cultured embryos under steady-state conditions. Sucrose supplied via the endosperm is considered to be the main carbon and energy source for seed metabolism. However, in addition to 220 to 270 mM carbohydrates (sucrose, glucose, and fructose), analysis of endosperm liquid revealed up to 70 mM amino acids as well as 6 to 15 mM malic acid. Therefore, a labeling approach with multiple carbon sources is a precondition to quantitatively reflect fluxes of central carbon metabolism in developing embryos. Mid-cotyledon stage B. napus embryos were dissected from plants and cultured for 15 d on a complex liquid medium containing (13)C-labeled carbohydrates. The (13)C enrichment of fatty acids and amino acids (after hydrolysis of the seed proteins) was determined by gas chromatography/mass spectrometry. Analysis of (13)C isotope isomers of labeled fatty acids and plastid-derived amino acids indicated that direct glycolysis provides at least 90% of precursors of plastid acetyl-coenzyme A (CoA). Unlabeled amino acids, when added to the growth medium, did not reduce incorporation of (13)C label into plastid-formed fatty acids, but substantially diluted (13)C label in seed protein. Approximately 30% of carbon in seed protein was derived from exogenous amino acids and as a consequence, the use of amino acids as a carbon source may have significant influence on the total carbon and energy balance in seed metabolism. (13)C label in the terminal acetate units of C(20) and C(22) fatty acids that derive from cytosolic acetyl-CoA was also significantly diluted by unlabeled amino acids. We conclude that cytosolic acetyl-CoA has a more complex biogenetic origin than plastidic acetyl-CoA. Malic acid in the growth medium did not dilute (13)C label incorporation into fatty acids or proteins and can be ruled out as a source of carbon for the major storage components of B. napus embryos.  相似文献   

5.
The seed oil content of Microula sikkimensis (Clarke) Hemsl. is up to 45% There is 8.1% of γ-linolenic acid which has the pharmacological action in the fatty acids composition, It has showed that this oil has a stronger effect on reducing triglyceride in serum. Fifteen different kinds of fatty acids were analysed. The unsaturated C20, C22, C24 acid, C18 triene-acid and tetraene-acid of the seed oil were separated on AgNO3-silica gel column and HPLC. and were identified by Periodata-Permanganate Oxidation, GLC, IR, UV, and MS. They are cis-11-eicosenoic, cis-13-docosenoic, cis-15-tetracosenoic, cis-6,9,12-octadecatrienoic and cis-6,9,12,15- octadecatetraenoic acids.  相似文献   

6.
Stereospecific degradation and combined gas chromatographic--mass spectrometric (gc/ms) analysis were employed in a detailed investigation of the triacylglycerol structure of mustard seed oil and of the triacylglycerols transiently accumulating in the hearts of young rats receiving the oil in their diet. It was shown that feeding of mustard seed oil at 40% of the daily caloric requirement resulted in a deposition of cardiac triacylglycerols containing a high proportion of enantiomers of a positional distribution and molecular association of fatty acids which were closely similar to those found in the dietary oil. Complete structures were derived for a total of 88 species representing 75 to 85% of the triacylglycerols. About 90% of the accumulated triacylglycerol contained at least one long-chain (C20--C22) monounsaturated fatty acid per molecule. The long-chain acids were confined mainly to the primary positions and preferentially to the sn-3-position of the glycerol molecule. The dietary lipidosis, is, therefore, accompanied by little or no accumulation of the normal rat tissue triacylglycerols containing C16 and C18 fatty acids. It is suggested that the deposition and eventual clearance of the enantiomeric long-chain triacylglycerols in the rat heart during mustard seed oil feeding may be largely a result of a gradual change in specificity of the cardiac lipases.  相似文献   

7.
A technique to produce biodiesel from crude Jatropha curcas seed oil (CJCO) having high free fatty acids (15%FFA) has been developed. The high FFA level of JCJO was reduced to less than 1% by a two-step pretreatment process. The first step was carried out with 0.60 w/w methanol-to-oil ratio in the presence of 1% w/w H(2)SO(4) as an acid catalyst in 1-h reaction at 50 degrees C. After the reaction, the mixture was allowed to settle for 2h and the methanol-water mixture separated at the top layer was removed. The second step was transesterified using 0.24 w/w methanol to oil and 1.4% w/w NaOH to oil as alkaline catalyst to produce biodiesel at 65 degrees C. The final yield for methyl esters of fatty acids was achieved ca. 90% in 2 h.  相似文献   

8.
Cactus pear (Opuntia ficus indica) is native to Tunisia and the fruit is consumed exclusively as fresh fruit. The seed oil is rich in polyunsaturated fatty acids but the nutritive value of the oil is unknown. The objective of our research was to determine the fatty acid content of cactus pear seed oil and to evaluate the effect of an oil supplemented diet on rats. The main fatty acids of prickly pear seed oil were C16:0, C18:0, C18:1, C18:2 with an exceptional level of linoleic acid, up to 700 g kg(-1), and a total content of unsaturated fatty acids of 884.8 g kg(-1). Feed intake and body weight of rats were measured every two days during the nine weeks of treatment. Digestibility, feed conversion efficiency and protein efficiency ratio were determined. No difference in digestibility was noted for the oil enriched diet. The results indicated a significant decrease in serum glucose concentration (22%) over the control group. However, an increase in the concentration of glycogen was noted in liver and muscle. Blood cholesterol and low density lipoprotein (LDL)-cholesterol decreased in the treated group. High density lipoprotein (HDL)-cholesterol concentration remained unaltered during the treatment. These findings support the nutritional value of cactus pear as a natural source of edible oil containing essential fatty acids and reinforce the possibility of cactus pear as a new crop for Tunisia especially in semi-arid regions, where conventional crops are difficult to establish.  相似文献   

9.
光质对湛江等鞭金藻生长和脂肪酸组成的影响   总被引:1,自引:0,他引:1  
在气升式光生物反应器中研究不同光质光影响湛江等鞭金藻的生长。结果表明,藻细胞密度的大小顺序为:红光〉白光+红光、白光〉白光+蓝光+红光〉白光+蓝光〉蓝光。蓝光下多不饱和脂肪酸百分含量最高,占总脂肪酸的50.01%。白光下总单不饱和脂肪酸和总饱和脂肪酸含量最高,占总脂肪酸的24.19%和27.46%。多不饱和脂肪酸中C18:4。.3含量最高,占总脂肪酸的20.3%-23.3%,最高值出现在蓝光下;其次为C22:6n-3(DHA),占总脂肪酸的10.2%-12.3%,在蓝光和白光+蓝光中较高;而C18:2n-6和C18:3n-3均以红光下的为最高,分别达3.11%和8.04%。  相似文献   

10.
Microalgae biomass can be a feasible source of ω‐3 fatty acids due to its stable and reliable composition. In the present study, the Crypthecodinium cohnii growth and docosahexaenoic acid (DHA, 22:6ω3) production in a 100 L glucose‐fed batch fermentation was evaluated. The lipid compounds were extracted by supercritical carbon dioxide (SC‐CO2) from C. cohnii CCMP 316 biomas, was and their fatty acid composition was analysed. Supercritical fluid extraction runs were performed at temperatures of 313 and 323 K and pressures of 20.0, 25.0 and 30.0 MPa. The optimum extraction conditions were found to be 30.0 MPa and 323 K. Under those conditions, almost 50% of the total oil contained in the raw material was extracted after 3 h and the DHA composition attained 72% w/w of total fatty acids. The high DHA percentage of total fatty acids obtained by SC‐CO2 suggested that this extraction method may be suitable for the production of C. cohnii value added products directed towards pharmaceutical purposes. Furthermore, the fatty acid composition of the remaining lipid fraction from the residual biomass with lower content in polyunsaturated fatty acids could be adequate for further uses as feedstock for biodiesel, contributing to the economy of the overall process suggesting an integrated biorefinery approach.  相似文献   

11.
本文以氯仿、石油醚和正己烷-异丙醇(3:2,v/v)三种不同溶剂对千年桐种子油进行提取,比较了不同溶剂对种子出油率的影响,结果表明以氯仿为溶剂时出油率最高,达到了35%;并考查了提取时间和提取溶剂体积对出油率的影响.最终优化的提取工艺为:以氯仿为溶剂,液料比为12:1(v/w),提取时间6h,出油率达到了37%.提取的种子油经转酯化后,GC-MS分析其主要脂肪酸组分,结果表明千年桐种子油中总脂肪酸占总油酯的90.55%,其中棕榈酸3.87%,硬脂酸4.11%,亚油酸12.15%,油酸13.31%,亚麻酸12.09%,共轭亚麻酸51.20%和EPA(二十碳五烯酸)3.30%.千年桐种子油中富含不饱和脂肪酸,是一种良好的干性油.  相似文献   

12.
Palmitic acid (C16:0) already makes up approximately 25% of the total fatty acids in the conventional cotton seed oil. However, further enhancements in palmitic acid content at the expense of the predominant unsaturated fatty acids would provide increased oxidative stability of cotton seed oil and also impart the high melting point required for making margarine, shortening and confectionary products free of trans fatty acids. Seed‐specific RNAi‐mediated down‐regulation of β‐ketoacyl‐ACP synthase II (KASII) catalysing the elongation of palmitoyl‐ACP to stearoyl‐ACP has succeeded in dramatically increasing the C16 fatty acid content of cotton seed oil to well beyond its natural limits, reaching up to 65% of total fatty acids. The elevated C16 levels were comprised of predominantly palmitic acid (C16:0, 51%) and to a lesser extent palmitoleic acid (C16:1, 11%) and hexadecadienoic acid (C16:2, 3%), and were stably inherited. Despite of the dramatic alteration of fatty acid composition and a slight yet significant reduction in oil content in these high‐palmitic (HP) lines, seed germination remained unaffected. Regiochemical analysis of triacylglycerols (TAG) showed that the increased levels of palmitic acid mainly occurred at the outer positions, while C16:1 and C16:2 were predominantly found in the sn‐2 position in both TAG and phosphatidylcholine. Crossing the HP line with previously created high‐oleic (HO) and high‐stearic (HS) genotypes demonstrated that HP and HO traits could be achieved simultaneously; however, elevation of stearic acid was hindered in the presence of high level of palmitic acid.  相似文献   

13.
The heart contractility and changes of lipid composition of isolated rat heart (n = 26) under total ischemia and ischemia-reperfusion was studied. The effect of N-stearoyl-ethanolamine under these conditions was investigated. N-stearoyl-ethanolamine leads to remodelling of fatty acyl chain composition of myocardial phospholipids: to drastic fall of polyunsaturated fatty acyl chains (18:2w6, 20:3w6, 20:4w6, 22:5w3, 22:5w6, 22:6w3 and 22:6w6) and enhancement of 18:0. This can be caused by N-stearoyl-ethanolamine-induced suppression of polyunsaturated fatty acids synthesis. Naturally occurring minor lipids--N-acyl phosphatidylethanolamine and its derivative N-acylethanolamine were detected in isolated rat heart under ischemia-reperfusion. It is notable that approximately 12% of total N-acylethanolamines were composed by anandamide. Treatment of N-acyl phosphatidylethanolamine by phospholipase D with subsequent fatty acyl chain analysis demonstrates that fatty acid composition of both N-acyl chains of N-acyl phosphatidylethanolamine and free N-acylethanolamine are similar and their main fatty acyl chains are 16:0, 18:0 and 20:4w6. It was shown that exogenous N-stearoyl-ethanolamine did not alter the levels of endogenous N-acyl phosphatidylethanolamine and N-acylethanolamine, but caused the decrease of lyso-phosphatidylcholine and phosphatidylglycerol levels. The rate of heart contractility and heart relaxation was found to increase during the early period of reperfusion. N-stearoyl-ethanolamine prevents this alteration and exerts a negative inotropic effect. It is concluded that membrane protective properties of N-stearoyl-ethanolamine at least partly depend on its ability to inhibit decrease amount of arachidonic and docosahexaenoic acids, to modulate the fatty acyl chains of cardiac phospholipids and to decrease the level of lyso-phosphatidylcholine.  相似文献   

14.
不同居群无患子果实组成比较研究   总被引:1,自引:0,他引:1  
无患子是一种广泛分布于我国南方的乔木,本文针对不同居群无患子全果的物理组成、种仁油脂及氨基酸组成等方面进行比较研究.福建无患子种仁含油率最高,达到42.8%;四川无患子种子含油率最高,达到13.7%.无患子油脂的脂肪酸碳链长度为C16~C24,其中C16~C20的脂肪酸均占92%以上,不饱和脂肪酸79%~85%.种仁氨...  相似文献   

15.
The incorporation and metabolism of [1-14C]18:3(n-3), [1-14C]20:5(n-3), [1-14C]18:2(n-6), and [1-14C]20:4(n-6) were studied in primary cultures of trout brain astrocytes. There were no significant differences between the amounts of individual fatty acids incorporated into total lipid at 22 degrees C, with greater than 90% of all the fatty acids being incorporated into polar lipid classes. The distributions of 18:2(n-6), 18:3(n-3), and 20:5(n-3) in individual phospholipid classes at 22 degrees C were very similar, with 57-63 and 18-24% being incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Approximately equal amounts of 20:4(n-6), approximately 30% of the total, were incorporated into each of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The metabolism of the (n-3) fatty acids to longer-chain and more unsaturated species was significantly greater than that of (n-6) acids, but delta 4-desaturase activity was very low. A culture temperature of 10 degrees C increased the incorporation of all the fatty acids into total lipid and that of C20 fatty acids into polar lipid. At 10 degrees C, the incorporation of C20 fatty acids into phosphatidylethanolamine and phosphatidylinositol was increased, and the incorporation into phosphatidylcholine and phosphatidylserine was decreased. The distribution of C18 fatty acids was unchanged at the lower temperature, as was the desaturation and elongation of all the polyunsaturated fatty acids incorporated.  相似文献   

16.
Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.  相似文献   

17.
华山松籽有机溶剂萃取出油率为41%。油的相对密度(25℃)0.9243、折光率(25℃)1.4770、皂化值153.4、酸值0.24、碘值142.1,过氧化值9.9。油的主要脂肪酸有:亚油酸(44.60%)、油酸(22.42%)、亚麻油酸(19.14%)、异油酸(4.68%)、棕榈酸(4.62%)、硬脂酸(1.87%)、花生酸(2.02%)和其他酸(2.61%)。不饱和脂肪酸含量较高(占90.9%)。与药用沙棘籽油进行了性质和脂肪酸组成比较,初步证明其质量指标优于沙棘油,脂肪酸组成与沙棘油相似。推断华山松籽油可作为医疗保健、食品工业等油源加以开发利用。  相似文献   

18.
Fatty acid profiles of seeds of the mussel Mytilus galloprovincialis originating from two habitats (rocky shore and subtidal) were compared after transfer to the same habitat (subtidal). The objective was to study the initial levels of different fatty acids of metabolic importance and, furthermore, the variability of these fatty acids over the experimental period. The results show that of all fatty acids identified in both seed groups, the polyunsaturated fatty acids (PUFA) is the group with highest percentage. Within this group, the C20:5n-3 and C22:6n-3 fatty acids show the highest levels. Additionally, the mussels of subtidal origin presented higher initial levels than the rocky shore mussels with regard to fatty acids characterised by energetic-type functions, such as the C14:0, C16:0, and the C20:5n-3 fatty acids, among others. Fatty acids characterised by structural-type functions, e.g. C18:0, C22:6n-3 and non-methylene interrupted dienoic (NMID) with 20 and 22 carbons in rocky shore mussels presented higher levels than those of the subtidal mussels. However, it has not been ruled out that aside from influences relating to the functional aspects of the different fatty acids, the initial differences were also associated with the quantitative and qualitative differences of the available food in both habitats. Nevertheless, 22 days into the experiment (in the majority of cases) the initial differences disappear in the different fatty acids with metabolic importance. On the basis of these results, the influence that mussel origin could exercise on the variability of the fatty acid profiles of recognised metabolic importance is discussed.  相似文献   

19.
Cholesterol and free fatty acids in membranes modulate major biological processes, and their cellular metabolism and actions are often coordinately regulated. However, effects of free fatty acid on cholesterol-membrane interactions have proven difficult to monitor in real time in intact systems. We developed a novel (13)C NMR method to assess effects of free fatty acids on molecular interactions of cholesterol within--and transfer between--model membranes. An important advantage of this method is the ability to acquire kinetic data without separation of donor and acceptor membranes. Large unilamellar phospholipid vesicles (LUV) with phosphatidylcholine/cholesterol ratios of 4:1 served as cholesterol donors. Small unilamellar vesicles (SUV) made with phosphatidylcholine were acceptors. The (13)C(4)-cholesterol peak is narrow in SUV, but very broad in LUV, spectra; the increase in intensity of this peak over time monitored transfer. Oleic acid and other long chain free fatty acids [saturated (C12-18) and unsaturated (C18)] dose-dependently increased mobilities of lipids in LUV (phospholipid and cholesterol) and cholesterol transfer rates, whereas short (C8-10) and very long (C24) chain free fatty acids did not. Decreasing pH from 7.4 to 6.5 (+/-oleic acid) had no effect on cholesterol transfer, and 5 mol % fatty acyl-CoAs increased transfer rates, demonstrating greater importance of the fatty-acyl tail over the headgroup. In LUV containing sphingomyelin, transfer rates decreased, but the presence of oleic acid increased transfer 1.3-fold. These results demonstrate free fatty acid-facilitated cholesterol movement within and between membranes, which may contribute to their multiple biological effects.  相似文献   

20.
Seed oils enriched in omega‐7 monounsaturated fatty acids, including palmitoleic acid (16:1?9) and cis‐vaccenic acid (18:1?11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega‐7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ?9 desaturation of stearoyl (18:0)‐acyl carrier protein (ACP) to ?9 desaturation of palmitoyl (16:0)‐acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed‐specific co‐expression of a mutant ?9‐acyl‐ACP and an acyl‐CoA desaturase with high specificity for 16:0‐ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega‐7 monounsaturated fatty acids were obtained. Further increases in omega‐7 fatty acid accumulation to 60–65% of the total fatty acids in camelina seeds were achieved by inclusion of seed‐specific suppression of 3‐keto‐acyl‐ACP synthase II and the FatB 16:0‐ACP thioesterase genes to increase substrate pool sizes of 16:0‐ACP for the ?9‐acyl‐ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号