首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Morphogens are defined as signaling molecules that are produced locally, yet act directly at a distance to pattern the surrounding field of cells in a concentration-dependent manner. In recent years many laboratories have devoted their attention to how morphogens actually reach distant cells. Several models have been proposed, including diffusion in the extracellular space and planar transcytosis. A combination of genetic, developmental, and cell-biological approaches have been taken to tackle this issue. I will present the models and discuss the types of experiments that have been designed to test them. It stands out that most of the work has been carried out in Drosophila. Morphogens contribute to patterning of the vertebrate nervous system, and the same signaling molecules have recently been shown to play important, possibly instructive, roles in axon guidance. Little, if anything, is known about the movement of morphogens in the context of nervous system development. The long-standing tradition of biophysical studies on diffusion in the brain extracellular space, along with the sophisticated in vitro culture systems developed in neurobiology laboratories, may provide new tools and ideas to test these models in a new context.  相似文献   

2.
Patterning of multicellular fields requires mechanisms to coordinate developmental decisions made by populations of cells. Evidence is accumulating that the necessary information is provided by localized sources of secreted signalling proteins which act as morphogens. We review evidence that Wingless, Dpp and Hedgehog proteins act as morphogens in the developing wing of Drosophila and discuss recent work illustrating that signalling helps to shape their activity gradients by regulating ligand distribution and by modulating the responsiveness of target cells. These studies suggest that there is more to being a morphogen than formation of a ligand gradient by passive diffusion.  相似文献   

3.
During embryonic development, morphogens act as graded positional cues to dictate cell fate specification and tissue patterning. Recent findings indicate that morphogen gradients also serve to guide axonal pathfinding during development of the nervous system. These findings challenge our previous notions about morphogens and axon guidance molecules, and suggest that these proteins, rather than having sharply divergent functions, act more globally to provide graded positional information that can be interpreted by responding cells either to specify cell fate or to direct axonal pathfinding. This review presents the roles identified for members of three prominent morphogen families--the Hedgehog, Wnt and TGFbeta/BMP families--in axon guidance, and discusses potential implications for the molecular mechanisms underlying their guidance functions.  相似文献   

4.
The differentiation of mesenchymal stromal cells has been shown to be affected by many parameters such as morphogens, flow rate, medium viscosity, and shear stress when exposed to fluid flow. The mechanism by which these cells sense their environment is still under intense discussion. In particular, during flow chamber experiments, it is difficult to interpret the interplay of the above-mentioned parameters in the process of cell differentiation. In this work, we tested the hypothesis that the competition between diffusion and advection of paracrine morphogens could explain the dependency of the cell differentiation to the above-mentioned parameters. To evaluate this hypothesis, we developed a numerical model simulating a simplified version of the advection-diffusion-reaction of morphogens secreted by the cells within a flow chamber. The model predicted a sharp transition in the fraction of receptors bound to the morphogen. This transition was characterized by a new, dimensionless number depending on flow rate, flow viscosity, flow chamber dimensions, and morphogen decay rate. We concluded that the competition between diffusion and advection of paracrine morphogens can act as a probe for the cells to sense their pericellular environment.  相似文献   

5.
Our knowledge about molecular mechanisms underlying axon guidance along the antero-posterior axis in contrast to the dorso-ventral axis of the developing nervous system is very limited. During the past two years in vitro and in vivo studies have indicated that morphogens have a role in longitudinal axon guidance. Morphogens are secreted proteins that act in a concentration-dependent manner on susceptible groups of precursor cells and induce their differentiation to a specific cell fate. Thus, gradients of morphogens are responsible for the appropriate patterning of the nervous system during early phases of neural development. Therefore, it was surprising to find that gradients of two of these morphogens, Wnt4 and Shh, can be re-used for longitudinal axon guidance during later stages of nervous system development.  相似文献   

6.
Argosomes: membrane fragments on the run   总被引:3,自引:0,他引:3  
Any biology student will know that the plasma membrane separates the inside of a cell from the outside world. Indeed, the plasma membrane is the guardian of a cell's physiology. Fewer students will be aware that cells can export bits of plasma membrane to distant sites in a tissue. Recent work demonstrates the transfer of membrane fragments in a live epithelium and, importantly, suggests that these fragments might be used as a vehicle to transport morphogens in a developing tissue.  相似文献   

7.
New research demonstrates that mechanics can serve as a means of information propagation in developing embryos. Historically, the study of embryonic development has had a dichotomy between morphogens and pattern formation on the one hand and morphogenesis and mechanics on the other. Secreted signals are the preeminent means of information propagation between cells and used to control cell fate, while physical forces act downstream or in parallel to shape tissue morphogenesis. However, recent work has blurred this division of function by demonstrating that mechanics can serve as a means of information propagation. Adhesive or repulsive interactions can propagate through a tissue as a wave. These waves are rapid and directional and can be used to control the flux of cells through a developmental trajectory. Here, two examples are reviewed in which mechanics both guides and mediates morphogenesis and two examples in which mechanics intertwines with morphogens to regulate cell fate.  相似文献   

8.
Morphogens are secreted proteins that organize surrounding tissues into distinct territories and are thought to act as a function of a threshold of their concentration. Although it has been demonstrated that morphogens act directly on the cells and do not rely on secondary signalling relays, intracellular sequential induction mechanisms, which are dependent on a simple signalling instruction, have not been excluded. Here, we present an alternative model to account for the organizing properties of morphogens, and propose that initial exposure to signalling changes cell context, which in combination with continuing morphogen activity, results in the expression of novel targets.  相似文献   

9.
ABSTRACT: Cell signaling mediated by morphogens is essential to coordinate growth and patterning, two key processes that govern the formation of a complex multi-cellular organism. During growth and patterning, cells are specified by both quantitative and directional information. While quantitative information regulates cell proliferation and differentiation, directional information is conveyed in the form of cell polarities instructed by local and global cues. Major morphogens like Wnts play critical roles in embryonic development and they are also important in maintaining tissue homeostasis. Abnormal regulation of these signaling events leads to a diverse array of devastating diseases including cancer. Wnts transduce their signals through several distinct pathways and they regulate vertebrate embryonic development by providing both quantitative and directional information. Here, taking the developing skeletal system as an example, we review our work on Wnt signaling pathways in various aspects of development. We focus particularly on our most recent findings that showed that in vertebrates, Wnt5a acts as a global cue to establishing planar cell polarity (PCP). Our work suggests that Wnt morphogens regulate development by integrating quantitative and directional information. Our work also provides important insights in disease like Robinow syndrome, brachydactyly type B1 (BDB1) and spina bifida, which can be caused by human mutations in the Wnt/PCP signaling pathway.  相似文献   

10.
Cell signaling mediated by morphogens is essential to coordinate growth and patterning, two key processes that govern the formation of a complex multi-cellular organism. During growth and patterning, cells are specified by both quantitative and directional information. While quantitative information regulates cell proliferation and differentiation, directional information is conveyed in the form of cell polarities instructed by local and global cues. Major morphogens like Wnts play critical roles in embryonic development and they are also important in maintaining tissue homeostasis. Abnormal regulation of these signaling events leads to a diverse array of devastating diseases including cancer. Wnts transduce their signals through several distinct pathways and they regulate vertebrate embryonic development by providing both quantitative and directional information. Here, taking the developing skeletal system as an example, we review our work on Wnt signaling pathways in various aspects of development. We focus particularly on our most recent findings that showed that in vertebrates, Wnt5a acts as a global cue to establishing planar cell polarity (PCP). Our work suggests that Wnt morphogens regulate development by integrating quantitative and directional information. Our work also provides important insights in disease like Robinow syndrome, brachydactyly type B1 (BDB1) and spina bifida, which can be caused by human mutations in the Wnt/PCP signaling pathway.  相似文献   

11.
Wnt and Hedgehog family proteins are secreted morphogens that act on surrounding cells to pattern many different tissues in both vertebrates and invertebrates. The discovery that these proteins are covalently linked to lipids has raised the puzzling problem of how they come to be released from cells and move through tissue. A synergistic combination of biochemical, cell biological and genetic approaches over the past several years is beginning to illuminate both the forms in which lipid-linked morphogens are released from cells and the variety of molecular and cell biological mechanisms that control their dispersal.  相似文献   

12.
Hedgehog and Wnt family proteins can act as classic developmental morphogens to pattern a field of nai;ve cells. Surprising new studies show that members of these same protein families also act as guidance cues for growing axons in the developing nervous system.  相似文献   

13.
Morphogen gradient theories have enjoyed considerable popularity since the beginning of this century, but conclusive evidence for a role of morphogens in controlling multicellular development has been elusive. Recently, work on three secreted signalling proteins, Activin in Xenopus, and Wingless and Dpp in Drosophila, has stongly suggested that these proteins function as morphogens. In order to define a factor as a morphogen, it is necessary to show firstly, that it has a direct effect on target cells and secondly, that it affects the development of target cells in a concentration-dependent manner. With these criteria in mind, the evidence available for a variety of proposed morphogens is discussed. While the evidence is not conclusive in most of the cases considered, there is a strong case in favour of the three proteins mentioned above, which suggests that morphogens are potentially of general importance in controlling the development of multicellular organisms.  相似文献   

14.
15.
BACKGROUND: Secreted signaling proteins of the Wingless (Wg)/Wnt, Hedgehog and bone morphogenetic protein (BMP)/Decapentaplegic (Dpp) families function as morphogens to control growth and pattern formation during development. Although these proteins have been shown to act directly on distant cells in the developing limbs of the fruit fly Drosophila, little is known about how ligand gradients form in vivo. Wg protein is found in vesicles in Wg-responsive cells in the embryo and imaginal discs. It has been proposed that Wg may be transported by a vesicle-mediated mechanism. RESULTS: A novel method to visualize extracellular Wg protein was used to show that Wg forms an unstable gradient on the basolateral surface of the wing imaginal disc epithelium. Wg movement did not require internalization by dynamin-mediated endocytosis. Dynamin activity was, however, required for Wg secretion. By reversibly blocking Wg secretion, we found that Wg moves rapidly to form a long-range extracellular gradient. CONCLUSIONS: The Wg morphogen gradient forms by rapid movement of ligand through the extracellular space, and depends on continuous secretion and rapid turnover. Endocytosis is not required for Wg movement, but contributes to shaping the gradient by removing extracellular Wg. We propose that the extracellular Wg gradient forms by diffusion.  相似文献   

16.
The finding that morphogens, signalling molecules that specify cell identity, also act as axon guidance molecules has raised the possibility that the mechanisms that establish neural cell fate are also used to assemble neuronal circuits. It remains unresolved, however, how cells differentially transduce the cell fate specification and guidance activities of morphogens. To address this question, we have examined the mechanism by which the Bone morphogenetic proteins (BMPs) guide commissural axons in the developing spinal cord. In contrast to studies that have suggested that morphogens direct axon guidance decisions using non-canonical signal transduction factors, our results indicate that canonical components of the BMP signalling pathway, the type I BMP receptors (BMPRs), are both necessary and sufficient to specify the fate of commissural neurons and guide their axonal projections. However, whereas the induction of cell fate is a shared property of both type I BMPRs, axon guidance is chiefly mediated by only one of the type I BMPRs, BMPRIB. Taken together, these results indicate that the diverse activities of BMP morphogens can be accounted for by the differential use of distinct components of the canonical BMPR complex.  相似文献   

17.
Morphogens, their identification and regulation   总被引:17,自引:0,他引:17  
During the course of development, cells of many tissues differentiate according to the positional information that is set by the concentration gradients of morphogens. Morphogens are signaling molecules that emanate from a restricted region of a tissue and spread away from their source to form a concentration gradient. As the fate of each cell in the field depends on the concentration of the morphogen signal, the gradient prefigures the pattern of development. In this article, we describe how morphogens and their functions have been identified and analyzed, focusing on model systems that have been extensively studied.  相似文献   

18.
The search for morphogens in Dictyostelium   总被引:1,自引:0,他引:1  
Classical embryological studies have led to the suggestion that cells in developing tissues may be directed to differentiate along a particular pathway by the concentrations of molecules called morphogens. Studies of the slime mould Dictyostelium discoideum, which has a simple tissue pattern consisting of only two cell types, have revealed several molecules which may act as morphogens. Cyclic AMP and ammonia promote the formation of spores, while adenosine and a novel class of compounds called DIFs promote the formation of stalk cells, the alternative cell fate. The constant proportions of the two differentiated cell types observed in this organism may result from a balance among the influences of these compounds.  相似文献   

19.
Osterfield M  Kirschner MW  Flanagan JG 《Cell》2003,113(4):425-428
Recent evidence indicates that gradients of the same extracellular molecules can act as both morphogens, specifying cell differentiation, and guidance cues, directing axon movement. We discuss how cells may use common mechanisms to convert graded information into discrete responses; and how extracellular signals provide coordinate systems that can be linked to highly diverse cellular outputs.  相似文献   

20.
Regulation of cell differentiation and assembly remains a fundamental question in developmental biology. During development, tissues emerge from coordinated sequences of the renewal, differentiation, and assembly of stem cells. Likewise, regeneration of an adult tissue is driven by the migration and differentiation of repair cells. The fields of stem cells and regenerative medicine are starting to realize how important is the entire context of the cell environment, with the presence of other cells, three‐dimensional matrices, and sequences of molecular and physical morphogens. The premise is that to unlock the full potential of stem cells, at least some aspects of the dynamic environments normally present in vivo need to be reconstructed in experimental systems used in vitro. We review here some recent work that utilized engineered environments for guiding the embryonic and adult human stem cells, and focus on vasculogenesis as a critical and universally important aspect of tissue development and regeneration. Birth Defects Research (Part C) 84:335–347, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号