首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rat and rabbit muscle fructose 1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) are inhibited by fructose 2,6-bisphosphate. In contrast with the liver isozyme, the inhibition of muscle fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate is not synergistic with that of AMP. Activation of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate has been observed at high concentrations of substrate. An attempt is made to correlate changes in concentrations of hexose monophosphate, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate with changes in fluxes through 6-phosphofructokinase and fructose-1,6-bisphosphatase in isolated epitrochlearis muscle challenged with insulin and adrenaline.  相似文献   

2.
The effects of temperature and pH on the phosphohydrolase activity of carp hepatic glucose-6-phosphatase (EC 3.1.3.9) have been investigated. The enzyme activity was maximum at about 308 K and in the pH range 5-6.5. The apparent Michaelis constant (KM) and Vmax of the reaction with glucose-6-phosphate were found to be 14.8 mM and 2.27 nmol/min/mg protein. The enzyme activity was partly inhibited by EDTA, while in the presence of sufficient PCMB virtually total inhibition was observed.  相似文献   

3.
  • 1.1. The native rat-kidney cortex Fructose-1,6-BPase is differentially regulated by Mg2+ and Mn2+.
  • 2.2. Mg2+ binding to the enzyme is hyperbolic and large concentrations of the cation are non-inhibitory.
  • 3.3. Mn2+ produces a 10-fold rise in Vmax higher than Mg2+. [Mn2+]0.5 is much larger than [Mg2+]0.5. At elevated [Mn2+] inhibition is observed.
  • 4.4. Mg2+ and Mn2+ produce antagonistic effects on the inhibition of the enzyme by high substrate.
  • 5.5. Fru-2,6-P2 inhibits the enzyme by rising the S0.5 and favouring a sigmoidal kinetics.
  • 6.6. The inhibition by Fru-2,6-P2 is released by Mg2+ and more powerfully by Mn2+ increasing the I0.5.
  相似文献   

4.
C Corredor  L Boscá  A Sols 《FEBS letters》1984,167(2):199-202
Fructose 2,6-bisphosphate has been claimed to be both a substrate analogue and an allosteric inhibitor of fructose-1,6-bisphosphatase. The results reported here show that fructose 2,6-bisphosphate can be both an inhibitor and an activator of the enzyme, depending on the substrate concentration. This biphasic behaviour at saturating concentrations of substrate can only be due to an allosteric effect. In addition to the mechanistic implication it is possible that this finding may have physiological meaning.  相似文献   

5.
K N Ekdahl  P Ekman 《FEBS letters》1984,167(2):203-209
Rat liver fructose-1,6-bisphosphatase was partially phosphorylated in vitro and separated into unphosphorylated and fully phosphorylated enzyme. The effects of fructose 2,6-bisphosphate and AMP on these two enzyme forms were examined. Unphosphorylated fructose-1,6-bisphosphatase was more easily inhibited by both effectors. Fructose 2,6-bisphosphate affected both K0.5 and Vmax, while the main effect of AMP was to lower Vmax. Fructose 2,6-bisphosphate and AMP together acted synergistically to decrease the activity of fructose-1,6-bisphosphatase, and since unphosphorylated and phosphorylated enzyme forms are affected differently, this might be a way to amplify the effect of phosphorylation.  相似文献   

6.
The binding site(s) in rabbit liver fructose-1,6-bisphosphatase for the active site binding ligand, fructose 6-phosphate, and the inhibitor, fructose 2,6-bisphosphate, have been investigated by using nuclear magnetic resonance spectroscopy. The distance from a nitroxide spin label to the bound ligands and the distance from the structural metal site to the bound ligands are about the same within experimental error. These data indicate that the two ligands probably bind at the active site in the rabbit liver enzyme.  相似文献   

7.
The effect of a 2-week period of oral immuno-stimulation from the age of 2 or 6 weeks post-fertilisation (wpf; before and after reaching the ability to produce antibodies) onwards was investigated on various immune functions of the common carp, Cyprinus carpio. The immuno-stimulants Aeromonas salmonicida lipopolysaccharide, Yeast DNA (containing unmethylated CpG motifs) or high-M alginate (an extract of algae containing poly-mannuronic acid) were used. The effect of this treatment was studied on the kinetics of B cells in head kidney and peripheral blood leucocytes using flow cytometry, on the total plasma IgM level using ELISA, on cytokine and inducible nitric oxide synthase (iNOS) expression in the intestine, and acute phase protein expression in the liver, using real time quantitative PCR, and on exposure to Vibrio anguillarum. Oral administration of immuno-stimulants from 6 wpf resulted in decreased WCI12(+) (B) cell percentages in PBL (only after administration of LPS) and head kidney (all test groups), and a decreased total IgM level in plasma, suggesting that suppressive effects are strongly indicative of oral or juvenile tolerance. After administration from 2 wpf, the effects on WCI12(+) (B) cell percentages were less pronounced: the group fed with Yeast DNA showed higher percentages compared to the control group at 6 wpf, but lower percentages at 8 wpf. No changes were observed in the cytokine or iNOS expression levels in the intestine or acute phase protein expression in the liver. A challenge with V. anguillarum resulted in an initially higher cumulative mortality in the group fed with LPS, but lower mortality in the groups fed with Yeast DNA or high-M alginate compared to the control group, providing a provisional warning especially for the use of pathogen-derived immuno-stimulants, such as A. salmonicida LPS, in larval and juvenile fish.  相似文献   

8.
This report describes the effects of pH and fructose 2,6-bisphosphate (an analog of fructose 1,6-bisphosphate) on the activity of oxidized and reduced fructose-1,6-bisphosphatase from spinach chloroplasts. Studies were carried out with either fructose 1,6-bisphosphate, the usual substrate, or sedoheptulose 1,7-bisphosphate, an alternative substrate. The reduction of the oxidized enzyme is achieved by a thiol/disulfide interchange. The pK values relative to each redox form for the same substrate (either fructose 1,6-bisphosphate or sedoheptulose 1,7-bisphosphate) are identical, suggesting the same site for both substrates on the active molecule. The finding that the analog (fructose 2,6-bisphosphate) behaves like a competitive inhibitor for both substrates also favours this hypothesis. The inhibitory effect of this sugar is more important when the enzyme is reduced than when it is oxidized. The shift in the optimum pH observed when [Mg2+] was raised is interpreted as a conformational change of oxidized enzyme demonstrated by a change in fluorescence. The reduced and oxidized forms have the same theoretical rates relative to both substrates, but the reduced form has an observed Vmax which is 60% of the theoretical Vmax while that of the oxidized form is only 37% of the theoretical Vmax. The reduced enzyme appears more efficient than the oxidized one in catalysis.  相似文献   

9.
Preclimacteric bananas fruits were treated for 12 h with ethylene to induce the climacteric rise in respiration. One day after the end of the hormonal treatment, the two activities of the bifunctional enzyme, phosphofructokinase 2/fructose-2,6-bisphosphatase started to increase to reach fourfold their initial value 6 days later. By contrast, the activities of the pyrophosphate-dependent and of the ATP-dependent 6-phosphofructo-1-kinases remained constant during the whole experimental period, the first one being fourfold greater than the second. The concentrations of fructose 2,6-bisphosphate and of fructose 1,6-bisphosphate increased in parallel during 4 days and then slowly decreased, the second one being always about 100-fold greater than the first. The change in fructose 2,6-bisphosphate concentration can be partly explained by the rise of the bifunctional enzyme, but also by an early increase in the concentration of fructose 6-phosphate, the substrate of all phosphofructokinases, and also by the decrease in the concentration of glycerate 3-phosphate, a potent inhibitor of phosphofructokinase 2. The burst in fructose 2,6-bisphosphate and the activity of the pyrophosphate-dependent phosphofructokinase, which is in banana the only enzyme known to be sensitive to fructose 2,6-bisphosphate, can explain the well-known increase in fructose 1,6-bisphosphate which occurs during ripening.  相似文献   

10.
The binding of beta-D-fructose 2,6-bisphosphate to rabbit muscle phosphofructokinase and rabbit liver fructose-1,6-bisphosphatase was studied using the column centrifugation procedure (Penefsky, H. S., (1977) J. Biol. Chem. 252, 2891-2899). Phosphofructokinase binds 1 mol of fructose 2,6-bisphosphate/mol of protomer (Mr = 80,000). The Scatchard plots of the binding of fructose 2,6-bisphosphate to phosphofructokinase are nonlinear in the presence of three different buffer systems and appear to exhibit negative cooperativity. Fructose 1,6-bisphosphate and glucose 1,6-bisphosphate inhibit the binding of fructose-2,6-P2 with Ki values of 15 and 280 microM, respectively. Sedoheptulose 1,7-bisphosphate, ATP, and high concentrations of phosphate also inhibit the binding. Other metabolites including fructose-6-P, AMP, and citrate show little effect. Fructose-1,6-bisphosphatase binds 1 mol of fructose 2,6-bisphosphate/mol of subunit (Mr = 35,000) with an affinity constant of 1.5 X 10(6) M-1. Fructose 1,6-bisphosphate, fructose-6-P, and phosphate are competitive inhibitors with Ki values of 4, 2.7, and 230 microM, respectively. Sedoheptulose 1,7-bisphosphate (1 mM) inhibits approximately 50% of the binding of fructose 1,6-bisphosphate to fructose bisphosphatase, but AMP has no effect. Mn2+, Co2+, and a high concentration of Mg2+ inhibit the binding. Thus, we may conclude that fructose 2,6-bisphosphate binds to phosphofructokinase at the same allosteric site for fructose 1,6-bisphosphate while it binds to the catalytic site of fructose-1,6-bisphosphatase.  相似文献   

11.
The structures of the native fructose-1,6-bisphosphatase (Fru-1,6-Pase), from pig kidney cortex, and its fructose 2,6-bisphosphate (Fru-2,6-P2) complexes have been refined to 2.8 A resolution to R-factors of 0.194 and 0.188, respectively. The root-mean-square deviations from the standard geometry are 0.021 A and 0.016 A for the bond length, and 4.4 degrees and 3.8 degrees for the bond angle. Four sites for Fru-2,6-P2 binding per tetramer have been identified by difference Fourier techniques. The Fru-2,6-P2 site has the shape of an oval cave about 10 A deep, and with other dimensions about 18 A by 12 A. The two Fru-2,6-P2 binding caves of the dimer in the crystallographically asymmetric unit sit next to one another and open in opposite directions. These two binding sites mutually exchange their Arg243 side-chains, indicating the potential for communication between the two sites. The beta, D-fructose 2,6-bisphosphate has been built into the density and refined well. The oxygen atoms of the 6-phosphate group of Fru-2,6-P2 interact with Arg243 from the adjacent monomer and the residues of Lys274, Asn212, Tyr264, Tyr215 and Tyr244 in the same monomer. The sugar ring primarily contacts with the backbone atoms from Gly246 to Met248, as well as the side-chain atoms, Asp121, Glu280 and Lys274. The 2-phosphate group interacts with the side-chain atoms of Ser124 and Lys274. A negatively charged pocket near the 2-phosphate group includes Asp118, Asp121 and Glu280, as well as Glu97 and Glu98. The 2-phosphate group showed a disordered binding perhaps because of the disturbance from the negatively charged pocket. In addition, Asn125 and Lys269 are located within a 5 A radius of Fru-2,6-P2. We argue that Fru-2,6-P2 binds to the active site of the enzyme on the basis of the following observations: (1) the structure similarity between Fru-2,6-P2 and the substrate; (2) sequence conservation of the residues directly interacting with Fru-2,6-P2 or located at the negatively charged pocket; (3) a divalent metal site next to the 2-phosphate group of Fru-2,6-P2; and (4) identification of some active site residues in our structure, e.g. tyrosine and Lys274, consistent with the results of the ultraviolet spectra and the chemical modification. The structures are described in detail including interactions of interchain surfaces, and the chemically modifiable residues are discussed on the basis of the refined structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The alpha- and beta-anomers of arabinose 1,5-bisphosphate and ribose 1,5-bisphosphate were tested as effectors of rat liver 6-phosphofructo-1-kinase and fructose-1,6-bisphosphatase. Both anomers of arabinose 1,5-bisphosphate activated the kinase and inhibited the bisphosphatase. The alpha-anomer was the more effective kinase activator while the beta-anomer was the more potent inhibitor of the bisphosphatase. Inhibition of the bisphosphatase by both anomers was competitive, and both potentiated allosteric inhibition by AMP. beta-Arabinose 1,5-bisphosphate was also more effective in decreasing fructose 2,6-bisphosphate binding to the enzyme. Neither anomer of ribose 1,5-bisphosphate affected 6-phosphofructo-1-kinase or fructose-1,6-bisphosphatase, indicating that the configuration of the C-2 (C-3 in Fru 2,6-P2) hydroxyl group is important for biological activity. These results are also consistent with arabinose 1,5-bisphosphate binding to the active site and thereby enhancing the interaction of AMP with the allosteric site.  相似文献   

13.
Carp IgM, isolated from normal serum is more sensitive to trypsinization compared to a human myeloma protein IgMGo. Under the same conditions (treatment with trypsin at 56 degrees C for 30 min) carp IgM was degraded to small, mostly dialysable peptides to a larger extent than IgMGo. In both cases the fragmentation resulted in immunoelectrophoretically pure Fab mu and Fc mu fragments. The Fab mu fragments of human IgM (yield: 20% of used IgM material) had a molecular weight of 54,000, the Fc mu fragments (yield: 30%) were a heterogenous mixture as far as molecular sizes concerned with values of about 300,000. For the corresponding fragments of carp IgM we could analyze a molecular weight of about 43,000 for Fab mu (yield: 8%) and for Fc mu (yield 10%) three fractions of 160,000, 130,000 and 90,000. The reductive subunits of Fc mu fragments showed different molecular weights: 39,000 for IgMGo and 45,000 for carp IgM. The anti-fragment antisera prepared in rabbits were monospecific as demonstrated by immunodiffusion.  相似文献   

14.
Molecular size and polypeptide chain composition of cell membrane immunoglobulin (mIg) on lymphocytes of carp were studied using lactopreoxidase-catalysed surface radioiodination and SDS-polyacrylamide gel electrophoresis. Carp lymphocytes prepared from pronephros, blood and thymus carry mIgM in relatively high quantity. That means about 5-10% of the radiolabelled macromolecular cell surface material precipitates as IgM. Cell surface IgM on carp lymphocytes is present as monomeric IgM (m.w. 220000-260000) and HL subunit (m.w. 110000). There are differences among molecular weights of mIg monomers of pronephric lymphocytes (m.w. 220000) and thymocytes (m.w. 260000), whereas blood lymphocytes show both components. Following reduction and alkylation H and L chains were observed. Additional thymocytic mIg possesses two unidentified components with m.w. 35000-40000 and 110000.  相似文献   

15.
The activity of glucose-6-phosphatase (G6Pase) and fructose-1,6-bisphosphatase (FDPase) was determined in the homogenate of the liver of 69 pig fetuses during the last third of gestation (80th to 114th day), 47 piglets from birth to 4 weeks old (suckling period) and to slaughter pigs. G6Pase is evident in fetal liver at an early date and raises steadily during gestation. In newborn piglets, the enzyme activity increases rapidly during the first hours of life and remains at this high level during the first week of life. Afterwards the enzyme activity returns to birth level, which exists also in pigs at slaughtering. The activity of FDPase is constant during the fetal period. After birth enzyme activity rises at a lower rate than the G6Pase during the first week of life. This level remains constant during the suckling period and increases thereafter until the time of slaughtering of pigs. The role of hormones in the perinatal development of these enzymes is described. Probably, thyroxine causes the prenatal increase of the activity of both the enzymes. The rapid postnatal rise of G6Pase activity may be induced by the high level of hydrocortisone at parturition, and furthermore, glucagon may have a permissive effect.  相似文献   

16.
Rat liver fructose-2,6-bisphosphatase, which catalyzes its reaction via a phosphoenzyme intermediate, is evolutionarily related to the phosphoglycerate mutase enzyme family (Bazan, F., Fletterick, R., and Pilkis, S.J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). Arg-7 and Arg-59 of the yeast phosphoglycerate mutase have been postulated to be substrate-binding residues based on the x-ray crystal structure. The corresponding residues in rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, Arg-257 and Arg-307, were mutated to alanine. The Arg257Ala and Arg307Ala mutants and the wild-type enzyme were expressed in Escherichia coli and then purified to homogeneity. Both mutant enzymes had identical far and near UV circular dichroism spectra and 6-phosphofructo-2-kinase activities when compared with the wild-type enzyme. However, the Arg257Ala and Arg307Ala mutants had altered steady state fructose-2,6-bisphosphatase kinetic properties; the Km values for fructose-2,6-bisphosphate of the Arg257Ala and Arg307Ala mutants were increased by 12,500- and 760-fold, whereas the Ki values for inorganic phosphate were increased 7.4- and 147-fold, respectively, as compared with the wild-type values. However, the Ki values for the other product, fructose-6-phosphate, were unchanged for the mutant enzymes. Although both mutants exhibited parallel changes in kinetic parameters that reflect substrate/product binding, they had opposing effects on their respective maximal velocities; the maximal velocity of Arg257Ala was 11-fold higher, whereas that for Arg307Ala was 700-fold lower, than that of the wild-type enzyme. Pre-steady state kinetic studies demonstrated that the rate of phosphoenzyme formation for Arg307Ala was at least 4000-fold lower than that of the wild-type enzyme, whereas the rate for Arg257Ala was similar to the wild-type enzyme. Furthermore, consistent with the Vmax changes, the rate constant for phosphoenzyme breakdown for Arg257Ala was increased 9-fold, whereas that for Arg307Ala was decreased by a factor of 500-fold, as compared with the wild-type value. The results indicate that both Arg-257 and Arg-307 interact with the reactive C-2 phospho group of fructose 2,6-bisphosphate and that Arg-307 stabilizes this phospho group in the transition state during phosphoenzyme breakdown, whereas Arg-257 stabilizes the phospho group of the ground state phosphoenzyme intermediate.  相似文献   

17.
The occurrence of fructose 2,6-bisphosphate was detected in Dictyostelium discoideum. The levels of this compound were compared with those of cyclic AMP and several glycolytic intermediates during the early stages of development. Removal of the growth medium and resuspension of the organism in the differentiation medium decreased the content of fructose 2,6-bisphosphate to about 20% within 1 h, remaining low when starvation-induced development was followed for 8 h. The content of cyclic AMP exhibited a transient increase that did not correlate with the change in fructose 2,6-bisphosphate. If after 1 h of development 2% glucose was added to the differentiation medium, fructose 2,6-bisphosphate rapidly rose to similar levels to those found in the vegetative state, while the increase in cyclic AMP was prevented. The contents of hexose 6-phosphates, fructose 1,6-bisphosphate and triose phosphates changed in a way that was parallel to that of fructose 2,6-bisphosphate, and addition of sugar resulted in a large increase in the levels of these metabolites. The content of fructose 2,6-bisphosphate was not significantly modified by the addition of the 8-bromo or dibutyryl derivatives of cyclic AMP to the differentiation medium. These results provide evidence that the changes in fructose 2,6-bisphosphate levels in D. discoideum development are not related to a cyclic-AMP-dependent mechanism but to the availability of substrate. Fructose 2,6-bisphosphate was found to inhibit fructose-1,6-bisphosphatase activity of this organism at nanomolar concentrations, while it does not affect the activity of phosphofructokinase in the micromolar range. The possible physiological implications of these phenomena are discussed.  相似文献   

18.
Fructose 1,6-bisphosphatase and glucose 6-phosphatase were induced in organ cultures of liver tissues from 15- and 19-day-old fetal mice, using a culture method that allowed the tissues to be maintained for 7 days in the absence of serum. In cultures from 15-day-old fetal liver, both enzyme activities increased significantly per milligram of DNA after a lag period of 1 to 3 days. In cultures from 19-day-old fetal liver only glucose 6-phosphatase increased in the absence of inducer. N6,O2'-Dibutyryladenosine 3',5'-monophosphate enhanced the rate of increase in fructose 1,6-bisphosphatase and glucose 6-phosphatase activities. The minimum effective concentration of the cyclic nucleotide was approximately 10(-6) M. Dexamethazone inhibited the increase in fructose 1,6-bisphosphatase during culture for 7 days. Glucose 6-phosphatase activity was enhanced by dexamethazone in cultures from 19-day-old fetal liver, but was without effect on glucose 6-phosphatase in cultures from 15-day-old fetal liver. The minimum inhibitory concentration of dexamethazone was less than 10(-8) M. The results suggest a complicated effect of the cyclic nucleotide on the two enzymes in fetal mouse liver as well as different mechanisms of action of dexamethazone on the induction of two enzymes.  相似文献   

19.
The interaction of AMP and fructose 2,6-bisphosphate with rabbit liver fructose-1,6-bisphosphatase has been investigated by proton nuclear magnetic resonance spectroscopy (1H NMR). The temperature dependence of the line widths of the proton resonances of AMP as a function of fructose-1,6-bisphosphatase concentration indicates that the nucleotide C2 proton is in fast exchange on the NMR time scale while the C8 proton is exchange limit. The exchange rate constant, koff, has been calculated for the adenine C8 proton and is 1900 s-1. Binding of fructose 6-phosphate and inorganic phosphate, or the regulatory inhibitor, fructose 2,6-bisphosphate, results in a decrease in the dissociation rate constant for AMP from fructose-1,6-bisphosphatase, as indicated by the sharpened AMP signals. A temperature dependence experiment indicates that the AMP protons are in slow exchange when AMP dissociates from the ternary complex. The rate constant for dissociation of AMP from the enzyme.AMP.fructose 2,6-bisphosphate complex is 70 s-1, 27-fold lower than that of AMP from the binary complex. These results are sufficient to explain the enhanced binding of AMP in the presence of fructose 2,6-bisphosphate and, therefore, the synergistic inhibition of fructose-1,6-bisphosphatase observed with these two regulatory ligands. Binding of fructose 2,6-bisphosphate to the enzyme results in broadening of the ligand proton signals. The effect of AMP on the binding of fructose 2,6-bisphosphate to the enzyme has also been investigated. An additional line width broadening of all the fructose 2,6-bisphosphate protons has been observed in the presence of AMP. The assignment of these signals to the sugar was accomplished by two-dimensional proton-proton correlated spectra (two-dimensional COSY) NMR. From these data, it is concluded that AMP can also affect fructose 2,6-bisphosphate binding to fructose-1,6-bisphosphatase.  相似文献   

20.
J E Scheffler  H J Fromm 《Biochemistry》1986,25(21):6659-6665
The fluorescent nucleotide analogue formycin 5'-monophosphate (FMP) inhibits rabbit liver fructose-1,6-bisphosphatase (I50 = 17 microM, Hill coefficient = 1.2), as does the natural regulator AMP (I50 = 13 microM, Hill coefficient = 2.3), but exhibits little or no cooperativity of inhibition. Binding of FMP to fructose-1,6-bisphosphatase can be monitored by the increased fluorescence emission intensity (a 2.7-fold enhancement) or the increased fluorescence polarization of the probe. A single dissociation constant for FMP binding of 6.6 microM (4 sites per tetramer) was determined by monitoring fluorescence intensity. AMP displaces FMP from the enzyme as evidenced by a decrease in FMP fluorescence and polarization. The substrates, fructose 6-phosphate and fructose 1,6-bisphosphate, and inhibitors, methyl alpha-D-fructofuranoside 1,6-bisphosphate and fructose 2,6-bisphosphate, all increase the maximal fluorescence of enzyme-bound FMP but have little or no effect on FMP binding. Weak metal binding sites on rabbit liver fructose-1,6-bisphosphatase have been detected by the effect of Zn2+, Mn2+, and Mg2+ in displacing FMP from the enzyme. This is observed as a decrease in FMP fluorescence intensity and polarization in the presence of enzyme as a function of divalent cation concentration. The order of binding by divalent cations is Zn2+ = Mn2+ greater than Mg2+, and the Kd for Mn2+ displacement of FMP is 91 microM. Methyl alpha-D-fructofuranoside 1,6-bisphosphate, as well as fructose 6-phosphate and inorganic phosphate, enhances metal-mediated FMP displacement from rabbit liver fructose-1,6-bisphosphatase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号