首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dose conversion coefficients (DCCs) for assessment of internal and external radiation exposures to terrestrial and aquatic biota are compiled for 75 radionuclides, for 14 terrestrial and 22 aquatic reference organisms. DCC values for internal exposure are calculated based on a homogeneous distribution of the radionuclides in both types of organisms. DCC values for external exposure of aquatic organisms are calculated for complete immersion in water. For external exposure of terrestrial organisms the soil is considered as a planar and homogenously contaminated volume source with a surface roughness of 3 mm and a thickness of 10 cm, respectively. For in-soil-organisms, DCC values for external exposure are given assuming that these organisms live in the middle of a uniformly contaminated 50 cm-thick soil layer. The tables can be used for assessment of exposures of animals and plants living in various habitats. The list of considered organisms covers the Reference Animals and Plants as adopted by the ICRP.  相似文献   

2.
How Do Benthic Organisms Withstand Moving Water?   总被引:4,自引:0,他引:4  
Many aquatic plants and animals spend part of their lives anchoredto the substratum as water flows by. There are a number of mechanismsby which such sessile organisms can affect the magnitude ofthe flow-induced forces they encounter, as well as the distributionand magnitude of the mechanical stresses in their bodies producedby those forces. Furthermore, the mechanical properties of theskeletal tissues of such organisms affect how much they deformand whether or not they will break in response to flow-inducedstresses. There are different mechanisms by which organismscan withstand the water flow characterizing a particular typeof habitat. Biomechanics is a useful tool for studying how theperformance of organisms depends on their structure. Biomechanicalstudies should be accompanied by knowledge of the natural historyand ecology of the organisms in question if they are to leadto insights about how organisms work.  相似文献   

3.
How a particular threat influences extinction risk may depend on biological traits. Empirical studies relating threats and traits are needed, but data are scarce, making simulations useful. We implemented an eco-evolutionary model to analyse how five threat types influence the extinction risk of virtual organisms differing in body size, maturity age, fecundity, and dispersal ability. The model consisted of observing the evolutionary shift in the mean trait values of an assemblage of organisms when a threat was added into the virtual world where they lived. If a positive shift was found in trait values, we considered that the threat negatively influenced organisms with lower values for that trait. Direct killing mostly affected organisms with slow life cycles (slower-living) and poorly dispersive organisms. Habitat loss caused a reduction in the average dispersal ability of organisms. Habitat fragmentation caused an increase of average dispersal ability, and had a negative effect on larger, less fecund organisms. Habitat degradation and the introduction of invasive competitors had similar effects, mostly affecting large and fast-living organisms, with habitat degradation also affecting highly fecund and poorly dispersive organisms. These results agree with previous empirical studies in which larger, slower-lived, and less fecund organisms are more vulnerable to a greater range of threats. On the other hand, our results challenge two commonly seen hypotheses in the literature: that organisms with high dispersal ability fare well under any high habitat loss scenarios, and that fast-living, highly fecund organisms always do well during environmental change. Our study shows that highly dispersive organisms may be the losers when habitat loss removes large continuous areas of habitat, and fast-living and highly reproductive organisms may be the losers when resources or energy availability dwindle to very low levels. Most importantly, our study underpins the importance of considering the type of threat when analysing the relation between traits and extinction. Even in simple scenarios such as the ones modelled here, different threats lead to different, sometimes opposite, extinction probabilities according to the biological traits of organisms.  相似文献   

4.
Viruses are the most abundant living entities and probably had a major role in the evolution of life, but are still defined using negative criteria. Here, we propose to divide biological entities into two groups of organisms: ribosome-encoding organisms, which include eukaryotic, archaeal and bacterial organisms, and capsid-encoding organisms, which include viruses. Other replicons (for example, plasmids and viroids) can be termed 'orphan replicons'. Based on this suggested classification system, we propose a new definition for a virus--a capsid-encoding organism that is composed of proteins and nucleic acids, self-assembles in a nucleocapsid and uses a ribosome-encoding organism for the completion of its life cycle.  相似文献   

5.
In this paper we analyse extensive but previously unappreciated and scattered data on anomalous enzyme modulation by metabolite enantiomers for enzymes in the principle metabolic cycles and develop a coherent theory for their derivation from reciprocally coupled antipodal metabolisms in antecedent meso and racemic organisms. Structures for such chirally symmetric organisms are outlined, as is the gradual decoupling of their integrated antipodal metabolisms upon an evolutionary progression from meso organism to racemic organism to racemate of organisms. The driving forces and the dynamics for a transition to asymmetry are developed.  相似文献   

6.
In gram-positive organisms, glyceride-cysteine thioether lipoproteins are frequently associated with secretion. They constitute membrane-bound forms retained by the cell but releasable late in growth phase. Most gram-negative organisms secrete very few proteins to the culture fluid; thioether lipoproteins in such organisms, typified by the enteric bacterium Escherichia coli, are integral outer membrane components for the most part. Unusual among gram-negative organisms, however, are Pseudomonas strains, known for extracellular export of a number of proteins. To examine whether a fundamental difference exists between the processing of lipoproteins in Pseudomonas strains and in nonsecretory gram-negative organisms, we examined the fate in Pseudomonas aeruginosa and E. coli of a cloned gram-positive secretory lipoprotein, Bacillus licheniformis penicillinase. A nonlipoprotein deletion mutant of the same gene was also examined in P. aeruginosa, and its processing was compared with that in E. coli. No important differences were found between P. aeruginosa and E. coli for either the lipoprotein or its deletion mutant. Thus, the contrast in secretory abilities of the two organisms does not appear to result from a difference in their general secretory systems.  相似文献   

7.
The problems of selecting tests method and suitable challenge organisms for plastics materials are discussed. Enzyme activities of fungal strains employed in the testing of plastics have been investigated and compared with isolates of these organisms held elsewhere. The ability of organisms to clear a polycaprolactone diol medium has been assessed semiquantitatively and the results discussed in relation to the selection of organisms.  相似文献   

8.
The rates of synthesis and degradation of enolase and total soluble proteins slow with age in the free-living nematode, Turbatrix aceti. The half-lives are 73 and 58 h for soluble protein and enolase, respectively, in young organisms (5 days old). The respective figures are 163 and 161 h for old organisms (22–30 days old). Similar slowing of protein turnover occurs when the organisms are aged by a repeated screening procedure which avoids the use of fluorodeoxyuridine, an inhibitor of DNA synthesis normally added to aging cultures to obtain synchrony. The results support the idea that slowed protein turnover may be responsible for the formation of altered enzymes in old organisms.  相似文献   

9.
生命科学研究中常用模式生物   总被引:3,自引:0,他引:3  
王凯 《生命科学研究》2010,14(2):156-165
模式生物是生命科学研究的重要材料,目前公认的用于生命科学研究的常见模式生物有噬菌体、大肠杆菌、酵母、线虫、果蝇、斑马鱼、小鼠、拟南芥等.这8种常用模式生物对生命现象的揭密和人类疾病治疗的探索等都所做出了重大贡献,对其在生命科学研究中的历史轨迹、各自优势、技术手段、热点研究、发展前景等系统而又简要的了解,有助于具体而又生动地体察到模式生物在今天生命科学发展中的重要地位和推动生命科学及医学进步的不可替代的巨大潜力.  相似文献   

10.
Clustering of organisms under cold air temperature conditions is modelled with a finite-difference method. Metabolic functions of temperature are used to simulate completely ectothermic, completely endothermic, and other organisms. To adequately match real conditions, the core temperature is kept constant at a high level, while the periphery of the organism cluster is assigned a lower temperature representing the cold conditions under which clustering is observed for organisms. The numerical model reasonably predicts the observed temperature distribution in honeybee clusters. The results do not support suggestions that organisms could overheat in the core of a cluster if they do not use thermoregulatory mechanisms to cool down. Endothermic organisms are not as efficient as ectothermic ones in heating a cluster core temperature to a given level. The general ectothermic metabolic rate function exhibited one of the highest efficiencies for heating the cluster.  相似文献   

11.
Summary In this paper, a dissimilarity measure for artificial organisms is proposed. The organisms are simulated in the Framsticks system [10]. Properties of agents are enumerated formally, and the heuristic algorithm for estimating overall phenetic dissimilarity of two agents is described. An example of performance is shown on two selected organisms. Two clustering experiments with interesting results are presented using the UPGMA method. The properties of the measure are then discussed. Computer simulations of complex systems and their characteristics are compared to biological systems, which may bring up ideas for further experiments related to biology.  相似文献   

12.
13.
The recent advancements in genome sequencing make it possible for the comparative analyses of essential cellular processes like transport in organisms across the three domains of life. Membrane transporters play crucial roles in fundamental cellular processes and functions in prokaryotic systems. Between 3 and 16% of open reading frames in prokaryotic genomes were predicted to encode membrane transport proteins, emphasizing the importance of transporters in their lifestyles. Hierarchical clustering of phylogenetic profiles of transporter families, which are derived from the presence or absence of a certain transporter family, showed distinct clustering patterns for obligate intracellular organisms, plant/soil-associated microbes and autotrophs. Obligate intracellular organisms possess the fewest types and number of transporters presumably due to their relatively stable living environment, while plant/soil-associated organisms generally encode the largest variety and number of transporters. A group of autotrophs are clustered together largely due to their absence of transporters for carbohydrate and organic nutrients and the presence of transporters for inorganic nutrients. Inside of each group, organisms are further clustered by their phylogenetic properties. These findings strongly suggest the correlation of transporter profiles to both evolutionary history and the overall physiology and lifestyles of the organisms.  相似文献   

14.
Uptake and concentration of inorganic ions are part of the complex cellular processes required for cell homeostasis, as well as for mineral formation by organisms. These ion transport mechanisms include distinct cellular compartments and chemical phases that play various roles in the physiology of organisms. Here, the prominent cases of dense ion pools in unicellular organisms are briefly reviewed. The specific observations that were reported for different organisms are consolidated into a wide perspective that emphasizes general traits. It is suggested that the intracellular ion pools can be divided into three types: a high cytoplasmic concentration, a labile storage compartment that hosts dense ion-rich phases, and a mineral-forming compartment in which a stable long-lived structure is formed. Recently, many labile pools were identified in various organisms using advanced techniques, bringing many new questions about their possible roles in the formation of the stable mineralized structures.  相似文献   

15.
SUMMARY: Each organism has traits that are shared with some, but not all, organisms. Identification of genes needed for a particular trait can be accomplished by a comparative genomics approach using three or more organisms. Genes that occur in organisms without the trait are removed from the set of genes in common among organisms with the trait. To facilitate these comparisons, a web-based server, Procom, was developed to identify the subset of genes that may be needed for a trait. AVAILABILITY: The Procom program is freely available with documentation and examples at http://ural.wustl.edu/~billy/Procom/ CONTACT: billy@ural.wustl.edu.  相似文献   

16.
17.
18.
Gene transfer systems have proved effective for the transformation of a range of organisms for both fundamental and applied studies. Biolistic transformation is a powerful method for the gene transfer into various organisms and tissues that have proved recalcitrant to more conventional means. For fungi, the biolistic approach is particularly effective where protoplasts are difficult to obtain and/or the organisms are difficult to culture. This is particularly applicable to arbuscular mycorrhizal (AM) fungi, being as they are obligate symbionts that can only be propagated in association with intact plants or root explants. Furthermore, these fungi are aseptate and protoplasts cannot be released. Recent advancements in gene transformation systems have enabled the use of biolistic technology to introduce foreign DNA linked to molecular markers into these fungi. In this review we discuss the development of transformation strategies for AM fungi by biolistics and highlight the areas of this technology which require further development for the stable transformation of these elusive organisms.  相似文献   

19.
Specialized cells are the essence of complex multicellular life. Fossils allow us to study the modification of specialized, multicellular features such as jaws, scales, and muscular appendages. But it is still unclear what organismal properties contributed to the transition from undifferentiated organisms, which contain only a single cell type, to multicellular organisms with specialized cells. Using digital organisms I studied this transition. My simulations show that the transition to specialized cells happens faster in organism composed of many cells than in organisms composed of few cells. Large organisms suffer less from temporarily unsuccessful evolutionary experiments with individual cells, allowing them to evolve specialized cells via evolutionary trajectories that are unavailable to smaller organisms. This demonstrates that the evolution of simple multicellular organisms which are composed of many functionally identical cells accelerates the evolution of more complex organisms with specialized cells.  相似文献   

20.
Using stochastic simulations and elasticity analysis, we show that there are inherent differences in the risk of extinction between life histories with different demographies. Which life history is the most vulnerable depends on which vital rate varies. When juvenile survival varies semelparous organisms with delayed reproduction are the most vulnerable ones, while a varying developmental rate puts a greater threat to semelparous organisms with rapid development. Iteroparous organisms are the most vulnerable ones when adult survival varies. Generally, we do not expect to observe organisms in nature having variation in vital rates that produce a high risk of extinction. Given the results here we therefore predict that iteroparous organisms should show low variation in adult survival. Moreover, we predict that semelparous organisms should show low variation in juvenile survival and low variation in developmental rate. The effect of temporal correlation on extinction risk is most pronounced in organisms with semelparous life histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号