首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Synchrony provides a large number of cells at defined points of the cell cycle. Highly synchronised cells are powerful and effective tools for molecular analyses and for studying the biochemical events of the cell cycle in plants. Usually, plant cell suspensions can be synchronised by chemical agents, which arrest the cell cycle by acting on the driving forces of the cell cycle engine such as cyclin-dependent kinase activity, enzymes involved in DNA synthesis or proteolysis of cell cycle regulators or by acting on the cell cycle apparatus (mitotic spindle). The specificity, reversibility and efficiency of each type of cell cycle inhibitor are described and related to their mode of action.  相似文献   

2.
Checkpoints help ensure that cell cycle events occur in the correct order. Studies on mammalian cells identified inhibitors of complexes of cyclins and cyclin-dependent kinases as components of cell cycle checkpoints and provide the first glimpse of the molecular pathways that prevent cells with damaged DNA from replicating their DNA. In embryos, the extent to which checkpoints arrest the cell cycle reflects the relative strength of inhibitory checkpoints and the machinery driving the cell cycle forward.  相似文献   

3.
Chemical agents for cell cycle synchronization have greatly facilitated the study of biochemical events driving cell cycle progression. G1, S and M phase inhibitors have been developed and used widely in cell cycle research. However, currently there are no effective G2 phase inhibitors and synchronization of cultured cells in G2 phase has been challenging. Recently, a selective CDK1 inhibitor, RO-3306, has been identified that reversibly arrests proliferating human cells at the G2/M phase border and provides a novel means for cell cycle synchronization. A single-step protocol using RO-3306 permits the synchronization of >95% of cycling cancer cells in G2 phase. RO-3306 arrested cells enter mitosis rapidly after release from the G2 block thus allowing for isolation of mitotic cells without microtubule poisons. RO-3306 represents a new molecular tool for studying CDK1 function in human cells.  相似文献   

4.
5.
The molecular networks regulating basic physiological processes in a cell can be converted into mathematical equations (eg differential equations) and solved by a computer. The division cycle of eukaryotic cells is an important example of such a control system, and fission yeast is an excellent test organism for the computational modelling approach. The mathematical model is tested by simulating wild-type cells and many known cell cycle mutants. This paper describes an example where this approach is useful in understanding multiple rounds of DNA synthesis (endoreplication) in fission yeast cells that lack the main (B-type) mitotic cyclin, Cdc13. It is proposed that the key physiological variable driving progression through the cell cycle during balanced growth and division is the mass/DNA ratio, rather than the mass/nucleus ratio.  相似文献   

6.
The mechanism responsible for the accurate partitioning of newly replicated Escherichia coli chromosomes into daughter cells remains a mystery. In this article, we use automated cell cycle imaging to quantitatively analyse the cell cycle dynamics of the origin of replication (oriC) in hundreds of cells. We exploit the natural stochastic fluctuations of the chromosome structure to map both the spatial and temporal dependence of the motional bias segregating the chromosomes. The observed map is most consistent with force generation by an active mechanism, but one that generates much smaller forces than canonical molecular motors, including those driving eukaryotic chromosome segregation.  相似文献   

7.
8.
During Drosophila eye development, the posterior-to-anterior movement of the morphogenetic furrow coordinates cell cycle progression with the early events of pattern formation. The cdc25 phosphatase string (stg) has been proposed to contribute to the synchronization of retinal precursors anterior to the furrow by driving cells in G(2) through mitosis and into a subsequent G(1). Genetic and molecular analysis of Drop (Dr) mutations suggests that they represent novel cis-regulatory alleles of stg that inactivate expression in eye. Retinal precursors anterior to the furrow lacking stg arrest in G(2) and fail to enter mitosis, while cells within the furrow accumulate high levels of cyclins A and B. Although G(2)-arrested cells initiate normal pattern formation, the absence of stg results in retinal patterning defects due to the recruitment of extra photoreceptor cells. These results demonstrate a requirement for stg in cell cycle regulation and cell fate determination during eye development.  相似文献   

9.
10.
Cyclin-dependent kinase 6 (Cdk6) is a D-Cyclin-activated kinase that is directly involved in driving the cell cycle through inactivation of pRB in G1 phase. Increasingly, evidence suggests that CDK6, while directly driving the cell cycle, may only be essential for proliferation of specialized cell types, agreeing with the notion that CDK6 also plays an important role in differentiation. Here, evidence is presented that CDK6 binds to and promotes degradation of the EYA2 protein. The EYA proteins are a family of proteins that activate genes essential for the development of multiple organs, regulate cell proliferation, and are misregulated in several types of cancer. This interaction suggests that CDK6 regulates EYA2 activity, a mechanism that could be important in development and in cancer.  相似文献   

11.
When faced with DNA double-strand breaks (DSBs), vertebrate cells activate DNA damage response (DDR) programs that preserve genome integrity and suppress malignant transformation. Three established outcomes of the DDR include transient cell cycle arrest coupled with DNA repair, apoptosis, or senescence. However, recent studies in normal and cancer precursor or stem cells suggest that a fourth potential outcome, cell differentiation, is under the influence of DDR programs. Here we review and discuss the emerging evidence that supports the linkage of signaling from DSBs to the regulation of differentiation, including some of the molecular mechanisms driving this under-appreciated DDR outcome. We also consider the physiologic and pathologic consequences of defects in DDR signaling on cell differentiation and malignant transformation.  相似文献   

12.
Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin‐dependent kinase (cdk) family using cdk‐deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 660–670, 2018  相似文献   

13.
Eg5 is a plus end directed kinesin related motor protein (KRP) previously shown to be involved in the assembly and maintenance of the mitotic spindle. KRPs are molecular motors capable of generating forces upon microtubules (MTs) in dividing cells and driving structural rearrangements necessary in the developing spindle. In vitro experiments demonstrate that loss of Eg5 results in cell cycle arrest and defective centrosome separation resulting in the development of monopolar spindles. Here we describe mice with a genetrap insertion in Eg5. Heterozygous mutant mice appear phenotypically normal. In contrast, embryos homozygous for the Eg5 null allele recovered at embryonic days 2.5-3.5 display signs of a proliferation defect as reduced cell numbers and failure of compaction and progression to the blastocyst stage was observed. These data, in conjunction with previous in vitro data, suggest that loss of Eg5 results in abnormal spindle structure, cell cycle arrest and thereby reduced cell proliferation of early cleavage pre-implantation embryos. These observations further support the conclusion that Eg5 is essential for cell division early in mouse development, and that maternal contribution may sustain the embryo through the maternal to zygotic transition at which point supplies of functional Eg5 are exhausted, preventing further cell cleavage.  相似文献   

14.
Recent studies of aquatic and land plants show that similar phenomena determine intracellular transport of organelles and vesicles. This suggests that aspects of cell signaling involved in development and response to external stimuli are conserved across species. The movement of molecular motors along cytoskeletal filaments directly or indirectly entrains the fluid cytosol, driving cyclosis (i.e., cytoplasmic streaming) and affecting gradients of molecular species within the cell, with potentially important metabolic implications as a driving force for cell expansion. Research has shown that myosin XI functions in organelle movement driving cytoplasmic streaming in aquatic and land plants. Despite the conserved cytoskeletal machinery propelling organelle movement among aquatic and land plants, the velocities of cyclosis in plant cells varies according to cell types, developmental stage of the cell, and plant species. Here, we synthesize recent insights into cytoplasmic streaming, molecular gradients, cytoskeletal and membrane dynamics, and expand current cellular models to identify important gaps in current research.  相似文献   

15.
Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression.  相似文献   

16.
The flexibility displayed by apicomplexan parasites to vary their mode of replication has intrigued biologists since their discovery by electron microscopy in the 1960s and 1970s. Starting in the 1990s we began to understand the cell biology of the cytoskeleton elements driving cytokinesis. By contrast, the molecular mechanisms that regulate the various division modes and how they translate into the budding process that uniquely characterizes this parasite family are much less understood. Although growth mechanisms are a neglected area of study, it is an important pathogenic parameter as fast division rounds are associated with fulminant infection whereas slower growth attenuates virulence, as is exploited in some vaccine strains. In this review we summarize a recent body of cell biological experiments that are rapidly leading to an understanding of the events that yield successful mitosis and cytokinesis in Toxoplasma. We place these observations within a cell cycle context with comments on how these events may be regulated by known eukaryotic checkpoints active in fission and budding yeasts as well as mammalian cells. The presence of cell cycle control mechanisms in the Apicomplexa is supported by our findings that identify several cell cycle checkpoints in Toxoplasma. The progress of the cell cycle is ultimately controlled by cyclin-Cdk pair activities, which are present throughout the Apicomplexa. Although many of the known controllers of cyclin-Cdk activity are present, several key controls cannot readily be identified, suggesting that apicomplexan parasites deviate at these points from the higher eukaryotic models. Altogether, new insights in Toxoplasma replication are reciprocally applied to hypothesize how other division modes in the Toxoplasma life cycle and in other Apicomplexa species could be controlled in terms of cell cycle checkpoint regulation.  相似文献   

17.
18.
Melphalan has been a mainstay of multiple myeloma (MM) therapy for many years. However, following treatment with this alkylator, malignant plasma cells usually escape both apoptosis and cell cycle control, and acquire drug-resistance resulting in tumor progression. Bendamustine is being used in MM patients refractory to conventional DNA-damaging agents, although the mechanisms driving this lack of cross-resistance are still undefined. Here, we investigated the molecular pathway of bendamustine-induced cell death in melphalan-sensitive and melphalan-resistant MM cell lines. Bendamustine affected cell survival resulting in secondary necrosis, and prompted cell death primarily through caspase-2 activation. Also, bendamustine blocked the cell cycle in the G2/M phase and induced micronucleation, erratic chromosome spreading and mitotic spindle perturbations in melphalan-resistant MM cells. In these cells, both Aurora kinase A (AURKA) and Polo-like kinase-1 (PLK-1), key components of the spindle-assembly checkpoint, were down-regulated following incubation with bendamustine, whereas levels of Cyclin B1 increased as a consequence of the prolonged mitotic arrest induced by the drug. These findings indicate that, at least in vitro, bendamustine drives cell death by promoting mitotic catastrophe in melphalan-resistant MM cells. Hence, activation of this alternative pathway of cell death may be a novel approach to the treatment of apoptosis-resistant myelomas.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号