首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The outer retina of the smelt Osmerus eperlanus, a visually orientated plankton feeder, of Lake Hiidenvesi (Finland), was examined using both light and transmission electron microscopy. Apart from rods, six morphologically different cone photoreceptor types were identified: short single cones, long single cones, unequal/equal double cones and triple cones (triangular and linear variety). Additionally, in the dorsal region, multiple cone arrangements consisting of up to five members occur. Long single cones and triple cones were observed only sporadically throughout the retina. The incidence of short single cones as a regular element of the cone mosaic is restricted to the ventrotemporal area. The dominant pattern in the Osmerus retina is a pure or a twisted row pattern occurring in all regions. Ventrotemporally, however, square patterns were found as well. The highest cone densities occur in the peripheral ventrotemporal retina. These results indicate that the ventrotemporal region plays an important role in the vision of the smelt. The findings are discussed with respect to the photic habitat conditions and behavioural ecology of the smelt in Lake Hiidenvesi.  相似文献   

2.
In the present EM study, we investigate the retina of Belone belone , a visually-orientated marine predator living close to the water surface. In the duplex retina, four morphologically different cone types are observed: unequal and equal double cones, long single cones and triple cones. In the light-adapted state, five different cone patterns occur: row, twisted row, square, pentagonal and hexagonal patterns. High double cone densities are found ventro-nasally, ventro-temporally and dorso-temporally. Throughout the retina the double cone/single cone ratio is 2 : 1, in the ventral part, however, a 1 : 1 ratio occurs. In the vitreous body we found a curtain-like intraocular septum dividing the retina into two morphologically different regions. In most areas of the dark-adapted retina the cone patterns are absent at the ellipsoid level, with long single cones standing more vitreally in the light path than double cones. The mosaics are retained, however, in the outer nuclear layer. Typical dark adaptation, i.e. the retinomotor movements of the retinal pigment epithelium and photoreceptors in response to the dark adaptation (light change) is not present in the peripheral ventral and parts of the central ventral area. In both regions we found a twisted row pattern of cones having a vitreal position. The findings are discussed with respect to the photic habitat and feeding habits of this species.  相似文献   

3.
In the two studied subspecies of Coregonus lavaretus , the pollan ( C. l. wartmanni ) (which lives deep in the pelagial) and the gangfish ( C. l. macrophthalmus ) (which lives near the slope, closer to the bottom), duplex retinae containing rod and cone photoreceptors are found. Four morphologically different cone types were observed: unequal double cones, short single cones, long single cones and triple cones. The cones are arranged in a square pattern (four double cones around a central short single cone) in the ventral and ventrotemporal and in a row pattern in the nasal and dorsal areas of the retina. Moreover, intermediate patterns can be observed in several regions indicating that double cone twisting occurs, i.e. double cones twist about their longitudinal axis. The highest cone densities are found in the ventrotemporal area. Conversely, the rod photoreceptor density is the highest in the dorsal retina. While the basic morphology of the retina is the same in both subspecies, the distribution of long single and triple cones differs between the studied animals. While these cone types are very rare in the pollan, they are common in the gangfish, though not exhibiting a regular pattern. The findings are discussed with regard to the photic habitat conditions, the systematic position of coregonids and variation of retinal morphology in the two subspecies.  相似文献   

4.
Hess M  Melzer RR  Eser R  Smola U 《Journal of morphology》2006,267(11):1356-1380
The outer retinal architecture of Engraulididae is uncommon among vertebrates. In some anchovies, e.g., Anchoa, two cone types are arranged alternating in long photoreceptor chains, i.e., polycones. The cones have radially oriented outer segment lamellae in close contact with a complex guanine tapetum, most probably subserving polarization contrast vision. To clarify the distribution of the aberrant polycone architecture within the Engraulididae and to provide indications about polycone evolution, the outer retina morphology of 16 clupeoid species was investigated by light and electron microscopy, predominantly using museum-stored material. The outgroup representatives of four clupeid subfamilies (Clupeonella cultriventris, Dorosoma cepedianum, Ethmalosa fimbriata, Pellonula leonensis) show a row pattern of double cones, partially with single cones at defined positions and a pigment epithelium with lobopodial protrusions containing melanin. The pristigasterid Ilisha africana has double rows of single cones lying between linear curtains of pigment epithelium processes filled with minute crystallites and melanin concentrated near their vitreal tips. Within the Engraulididae, two main architectures are found: Coilia nasus and Thryssa setirostris have linear multiple cones or polycones separated by long pigment epithelium barriers containing tapetal crystallites and melanin in the tips (also found in Setipinna taty), whereas Anchoviella alleni, Encrasicholina heteroloba, Engraulis encrasicolus, Engraulis mordax, Lycengraulis batesii, and Stolephorus indicus exhibit the typical polycone architecture. Cetengraulis mysticetus and Lycothrissa crocodilus show cone patterns and pigment epithelium morphology differing from the other anchovy species. The sets of characters are compared, corroborated with the previous knowledge on clupeoid retinae and discussed in terms of functional morphology and visual ecology. A scenario on polycone evolution is developed that may serve as an aid for the reconstruction of engraulidid phylogeny. Furthermore, this study demonstrates the suitability of museum material for morphological studies, even at the electron microscopic level.  相似文献   

5.
Visual pigments, oil droplets and photoreceptor types in the retinas of four species of true chameleons have been examined by microspectrophotometry. The species occupy different photic environments: two species of Chamaeleo are from Madagascar and two species of Furcifer are from Africa and the Arabian Peninsula. In addition to double cones, four spectrally distinct classes of single cone were identified. No rod photoreceptors were observed. The visual pigments appear to be mixtures of rhodopsins and porphyropsins. Double cones contained a pale oil droplet in the principle member and both outer segments contained a long-wave-sensitive visual pigment with a spectral maximum between about 555 nm and 610 nm, depending on the rhodopsin/porphyropsin mixture. Long-wave-sensitive single cones contained a visual pigment spectrally identical to the double cones, but combined with a yellow oil droplet. The other three classes of single cone contained visual pigments with maxima at about 480–505, 440–450 and 375–385 nm, combined with yellow, clear and transparent oil droplets respectively. The latter two classes were sparsely distributed. The transmission of the lens and cornea of C. dilepis was measured and found to be transparent throughout the visible and near ultraviolet, with a cut off at about 350 nm.  相似文献   

6.
Phototransduction in vertebrate rod and cone photoreceptor cells involves G protein-mediated light stimulation of cGMP hydrolysis. Enzymes of the cGMP hydrolysis cascades of rods and cones are products of different genes. Three different classes of cones in the human retina are maximally sensitive to either blue, green, or red light. Distinct opsin genes are expressed in each type of cone. The distribution of cone types in human retina was determined using anti-peptide antibodies that recognize specific amino acid sequences in green/red opsin and blue opsin. These antibodies together with an anti-peptide antibody against Tc alpha were used in double labeling experiments to demonstrate the presence of the Tc alpha peptide in all types of cones. cDNA clones corresponding to human rod and cone transducin alpha subunit (Tr alpha and Tc alpha) genes were isolated. Southern blot analyses of human genomic DNA suggest that there is only one rod T alpha gene but more than one cone T alpha gene. The multiple Tc alpha genes could be closely related genes or different Tc alpha alleles, or one could be a pseudogene.  相似文献   

7.
The avian retina possesses one of the most sophisticated cone photoreceptor systems among vertebrates. Birds have five types of cones including four single cones, which support tetrachromatic color vision and a double cone, which is thought to mediate achromatic motion perception. Despite this richness, very little is known about the spatial organization of avian cones and its adaptive significance. Here we show that the five cone types of the chicken independently tile the retina as highly ordered mosaics with a characteristic spacing between cones of the same type. Measures of topological order indicate that double cones are more highly ordered than single cones, possibly reflecting their posited role in motion detection. Although cones show spacing interactions that are cell type-specific, all cone types use the same density-dependent yardstick to measure intercone distance. We propose a simple developmental model that can account for these observations. We also show that a single parameter, the global regularity index, defines the regularity of all five cone mosaics. Lastly, we demonstrate similar cone distributions in three additional avian species, suggesting that these patterning principles are universal among birds. Since regular photoreceptor spacing is critical for uniform sampling of visual space, the cone mosaics of the avian retina represent an elegant example of the emergence of adaptive global patterning secondary to simple local interactions between individual photoreceptors. Our results indicate that the evolutionary pressures that gave rise to the avian retina''s various adaptations for enhanced color discrimination also acted to fine-tune its spatial sampling of color and luminance.  相似文献   

8.
Variations in cone photoreceptor abundance and the visual ecology of birds   总被引:3,自引:0,他引:3  
The relative abundance and topographical distribution of retinal cone photoreceptors was measured in 19 bird species to identify possible correlations between photoreceptor complement and visual ecology. In contrast to previous studies, all five types of cone photoreceptor were distinguished, using bright field and epifluorescent light microscopy, in four retinal quadrants. Land birds tended to show either posterior dorsal to anterior ventral or anterior dorsal to posterior ventral gradients in cone photoreceptor distribution, fundus coloration and oil droplet pigmentation across the retina. Marine birds tended to show dorsal to ventral gradients instead. Statistical analyses showed that the proportions of the different cone types varied significantly across the retinae of all species investigated. Cluster analysis was performed on the data to identify groups or clusters of species on the basis of their oil droplet complement. Using the absolute percentages of each oil droplet type in each quadrant for the analysis produced clusters that tended to reflect phylogenetic relatedness between species rather than similarities in their visual ecology. Repeating the analysis after subtracting the mean percentage of a given oil droplet type across the whole retina (the 'eye mean') from the percentage of that oil droplet type in each quadrant, i.e. to give a measure of the variation about the mean, resulted in clusters that reflected diet, feeding behaviour and habitat to a greater extent than phylogeny.  相似文献   

9.
Light miscroscopy of the retina in the Atlantic stingray, Dasyatis sabina, reveal two distinct photoreceptor types. Histological criteria establish the two cell types as morphological rods and cones. The retina was studied through a sequential series of vertical sections in a protocol designed to evaluate the entire retina. By performing differential counts in multiple regions and expressing cones as a percent of the total photoreceptors in a domain, it was possible to determine relative cone density and distribution. Cone distribution varies throughout the retina in two patterns. First, relative cone density gradually decreases peripherally. Second, a cone-rich band occurs along the horizontal axis of the eye, extending from ora serrata to ora serrata. This structure appears to be a visual streak. Both distribution patterns are statistically significant and are consistent among animals regardless of age. © 1994 Wiley-Liss, Inc.  相似文献   

10.
In fish retina, four kinds of photoreceptor cells (or cones) are two-dimensionally arranged in a very regular manner, forming cone mosaics. Mosaic pattern differs between species--two typical patterns are "row mosaic" and "square mosaic", exemplified by the cone mosaics in zebrafish and in medaka, respectively. In this paper, we study a cell-rearrangement model. Cells with pre-fixed fate exchange their locations between nearest neighbors and form regular mosaic patterns spontaneously, if the adhesive force between nearest neighbors and between next-nearest neighbors depend on their cell types in an appropriate manner. The same model can produce both row and square mosaic patterns. However, if the cell-cell interaction is restricted to nearest neighbors only, the square mosaic (medaka pattern) cannot be generated, showing the importance of interaction between next-nearest neighbors. In determining whether row mosaic (zebrafish pattern) or square mosaic (medaka pattern) is to be formed, two shape factors are very important, which control the way adhesions in different geometric relations are combined. We also developed theoretical analysis of the parameter ranges for the row mosaic and the square mosaic to have higher total adhesion than alternative spatial patterns.  相似文献   

11.
The spectral absorption characteristics of the retinal photoreceptors of the blue tit (Parus caeruleus) and blackbird (Turdus merula) were investigated using microspectrophotometry. The retinae of both species contained rods, double cones and four spectrally distinct types of single cone. Whilst the visual pigments and cone oil droplets in the other receptor types are very similar in both species, the wavelength of maximum sensitivity (λmax) of long-wavelength-sensitive single and double cone visual pigment occurs at a shorter wavelength (557 nm) in the blackbird than in the blue tit (563 nm). Oil droplets located in the long-wavelength-sensitivesingle cones of both species cut off wavelengths below 570–573 nm, theoretically shifting cone peak spectral sensitivity some 40 nm towards the long-wavelength end of the spectrum. This raises the possibility that the precise λmax of the long-wavelength-sensitive visual pigment is optimised for the visual function of the double cones. The distribution of cone photoreceptors across the retina, determined using conventional light and fluorescence microscopy, also varies between the two species and may reflect differences in their visual ecology. Accepted: 8 January 2000  相似文献   

12.
The organization, morphological characteristics, and synaptic structure of photoreceptors in the adult zebrafish retina were studied using light and electron microscopy. Adult photoreceptors show a typical ordered tier arrangement with rods easily distinguished from cones based on outer segment (OS) morphology. Both rods and cones contain mitochondria within the inner segments (IS), including the large, electron-dense megamitochondria previously described (Kim et al.) Four major ultrastructural differences were observed between zebrafish rods and cones: (1) the membranes of cone lamellar disks showed a wider variety of relationships to the plasma membrane than those of rods, (2) cone pedicles typically had multiple synaptic ribbons, while rod spherules had 1-2 ribbons, (3) synaptic ribbons in rod spherules were ∼2 times longer than ribbons in cone pedicles, and (4) rod spherules had a more electron-dense cytoplasm than cone pedicles. Examination of photoreceptor terminals identified four synaptic relationships at cone pedicles: (1) invaginating contacts postsynaptic to cone ribbons forming dyad, triad, and quadrad synapses, (2) presumed gap junctions connecting adjacent postsynaptic processes invaginating into cone terminals, (3) basal junctions away from synaptic ribbons, and (4) gap junctions between adjacent photoreceptor terminals. More vitread and slightly farther removed from photoreceptor terminals, extracellular microtubule-like structures were identified in association with presumed horizontal cell processes in the OPL. These findings, the first to document the ultrastructure of the distal retina in adult zebrafish, indicate that zebrafish photoreceptors have many characteristics similar to other species, further supporting the use of zebrafish as a model for the vertebrate visual system.  相似文献   

13.
A quantitative analysis of photoreceptor properties was performed in the retina of the nocturnal deer mouse, Peromyscus maniculatus, using pigmented (wildtype) and albino animals. The aim was to establish whether the deer mouse is a more suitable model species than the house mouse for photoreceptor studies, and whether oculocutaneous albinism affects its photoreceptor properties. In retinal flatmounts, cone photoreceptors were identified by opsin immunostaining, and their numbers, spectral types, and distributions across the retina were determined. Rod photoreceptors were counted using differential interference contrast microscopy. Pigmented P. maniculatus have a rod-dominated retina with rod densities of about 450.000/mm2 and cone densities of 3000 - 6500/mm2. Two cone opsins, shortwave sensitive (S) and middle-to-longwave sensitive (M), are present and expressed in distinct cone types. Partial sequencing of the S opsin gene strongly supports UV sensitivity of the S cone visual pigment. The S cones constitute a 5-15% minority of the cones. Different from house mouse, S and M cone distributions do not have dorsoventral gradients, and coexpression of both opsins in single cones is exceptional (<2% of the cones). In albino P. maniculatus, rod densities are reduced by approximately 40% (270.000/mm2). Overall, cone density and the density of cones exclusively expressing S opsin are not significantly different from pigmented P. maniculatus. However, in albino retinas S opsin is coexpressed with M opsin in 60-90% of the cones and therefore the population of cones expressing only M opsin is significantly reduced to 5-25%. In conclusion, deer mouse cone properties largely conform to the general mammalian pattern, hence the deer mouse may be better suited than the house mouse for the study of certain basic cone properties, including the effects of albinism on cone opsin expression.  相似文献   

14.
We report the expression of three visual opsins in the retina of the little brown bat (Myotis lucifugus, Vespertilionidae). Gene sequences for a rod-specific opsin and two cone-specific opsins were cloned from cDNA derived from bat eyes. Comparative sequence analyses indicate that the two cone opsins correspond to an ultraviolet short-wavelength opsin (SWS1) and a long-wavelength opsin (LWS). Immunocytochemistry using antisera to visual opsins revealed that the little brown bat retina contains two types of cone photoreceptors within a rod-dominated background. However, unlike other mammalian photoreceptors, M. lucifugus cones and rods are morphologically indistinguishable by light microscopy. Both photoreceptor types have a thin, elongated outer segment. Using microspectrophotometry we classified the absorption spectrum for the ubiquitous rods. Similar to other mammals, bat rhodopsin has an absorption peak near 500 nm. Although we were unable to confirm a spectral range, cellular and molecular analyses indicate that M. lucifugus expresses two types of cone visual pigments located within the photoreceptor layer. This study provides important insights into the visual capacity of a nocturnal microchiropteran species.  相似文献   

15.
A study of the morphogenesis of the grenadier anchovy retina was undertaken using light and electron microscopy. Five developmental stages from prelarvae 3 days after fertilization to adult fish were studied. In addition to the general morphology of the eye and retina, special emphasis was given to the development of the photoreceptors and pigment epithelium (PE). The earliest retinae showing structural features indicative of a functioning eye are pure cone retinae composed of rows of alternating long and short cones forming a transient, tesselated pattern. At this stage there is a conventional PE containing melanin. In older stages cone rows are separated by the newly formed rods and by PE wedges filled with diffusely reflecting guanine crystallites. The findings are compared with the retinae of other engraulidids and with the development of teleost retinae in general. Moreover, the observed structural changes are discussed with respect to the photic habitat conditions of these anadromous fish that move between coastal waters, estuary, and river.  相似文献   

16.
The outer epithelial layer of zebrafish retinae contains a crystalline array of cone photoreceptors, called the cone mosaic. As this mosaic grows by mitotic addition of new photoreceptors at the rim of the hemispheric retina, topological defects, called “Y-Junctions”, form to maintain approximately constant cell spacing. The generation of topological defects due to growth on a curved surface is a distinct feature of the cone mosaic not seen in other well-studied biological patterns like the R8 photoreceptor array in the Drosophila compound eye. Since defects can provide insight into cell-cell interactions responsible for pattern formation, here we characterize the arrangement of cones in individual Y-Junction cores as well as the spatial distribution of Y-junctions across entire retinae. We find that for individual Y-junctions, the distribution of cones near the core corresponds closely to structures observed in physical crystals. In addition, Y-Junctions are organized into lines, called grain boundaries, from the retinal center to the periphery. In physical crystals, regardless of the initial distribution of defects, defects can coalesce into grain boundaries via the mobility of individual particles. By imaging in live fish, we demonstrate that grain boundaries in the cone mosaic instead appear during initial mosaic formation, without requiring defect motion. Motivated by this observation, we show that a computational model of repulsive cell-cell interactions generates a mosaic with grain boundaries. In contrast to paradigmatic models of fate specification in mostly motionless cell packings, this finding emphasizes the role of cell motion, guided by cell-cell interactions during differentiation, in forming biological crystals. Such a route to the formation of regular patterns may be especially valuable in situations, like growth on a curved surface, where the resulting long-ranged, elastic, effective interactions between defects can help to group them into grain boundaries.  相似文献   

17.
Photoreceptors of the larval tiger salamander retina   总被引:5,自引:0,他引:5  
Six morphological types of photoreceptor were identified with electron microscopy in radial sections of the retina of the larval tiger salamander, Ambystoma tigrinum. In order of predominance these six types are: red rods, large single cones, double cones composed of principal and accessory members, small single cones, and green rods. The different types of photoreceptor can be distinguished by a number of morphological and cytological characteristics. The identification of the small single cone type now provides evidence for more than one type of single cone in an amphibian retina. The interconnections of the different types of photoreceptor by gap junctions were studied in tangential sections. Rod-rod and rod-cone gap junctions occurred in all possible combinations, but no cone-cone junctions were found even between members of double cones.  相似文献   

18.
The structure of light- and dark-adapted retina of the black bass, Micropterus salmoides has been studied by light and electron microscopy. This retina lacks blood vessels at all levels. The optic fiber layer is divided into fascicles by the processes of Müller cells and the ganglion cell layer is represented by a single row of voluminous cells. The inner nuclear layer consists of two layers of horizontal cells and bipolar, amacrine and interplexiform cells. In the outer plexiform layer we observed the synaptic terminals of photoreceptor cells, rod spherules and cone pedicles and terminal processes of bipolar and horizontal cells. The spherules have a single synaptic ribbon and the pedicles possess multiple synaptic ribbons. Morphologically, we have identified three types of photoreceptors: rods, single cones and equal double cones which undergo retinomotor movements in response to changes in light conditions. The cones are arranged in a square mosaic whereas the rods are dispersed between the cones.  相似文献   

19.
In this study, we addressed the temporal sequence of photoreceptor fate determination in Xenopus laevis by examining a number of key events during early cone and rod development. We compared the relative timing and spatial pattern of cone and rod specification using a number of cell type-specific markers, including probes to a long wavelength-sensitive opsin which is expressed by the major cone subtype. Our results show that cones are initially more numerous, and can arise in less mature regions of the retina than rods, although both types of photoreceptors begin to express their respective opsins at about the same time. We applied these markers to an assay of cellular determination to identify the stages of embryonic development at which the earliest photoreceptor fates are induced in vivo. The relative birth order of the major cone and rod subtypes was revealed by simultaneous labeling with markers of cell proliferation and terminal differentiation. Although there is much temporal overlap between the periods of cone and rod genesis and determination in Xenopus, we could discern that the earliest cones are both born and determined before the first rods. Thus, even in the rapidly developing retina of Xenopus, photoreceptors achieve their identities in a sequential fashion, suggesting that the inductive cues which determine specific photoreceptor fates may also arise sequentially during development. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 227–244, 1998  相似文献   

20.
Development of therapies to treat visual system dystrophies resulting from the degeneration of rod and cone photoreceptors may directly benefit from studies of animal models, such as the zebrafish, that display continuous retinal neurogenesis and the capacity for injury-induced regeneration. Previous studies of retinal regeneration in fish have been conducted on adult animals and have relied on methods that cause acute damage to both rods and cones, as well as other retinal cell types. We report here the use of a genetic approach to study progenitor cell responses to photoreceptor degeneration in the larval and adult zebrafish retina. We have compared the responses to selective rod or cone degeneration using, respectively, the XOPS-mCFP transgenic line and zebrafish with a null mutation in the pde6c gene. Notably, rod degeneration induces increased proliferation of progenitors in the outer nuclear layer (ONL) and is not associated with proliferation or reactive gliosis in the inner nuclear layer (INL). Molecular characterization of the rod progenitor cells demonstrated that they are committed to the rod photoreceptor fate while they are still mitotic. In contrast, cone degeneration induces both Müller cell proliferation and reactive gliosis, with little change in proliferation in the ONL. We found that in both lines, proliferative responses to photoreceptor degeneration can be observed as 7 days post fertilization (dpf). These two genetic models therefore offer new opportunities for investigating the molecular mechanisms of selective degeneration and regeneration of rods and cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号