The eye of Rhinomugil corsula has a duplex retina differentiated into dorsal and ventral halves, with the ventral retina 116·4 μm thicker than the dorsal retina. The rods of the ventral retina are relatively longer, with longer outer segments. The nuclei of the outer nuclear layer of the dorsal and ventral halves are in four and six to seven rows respectively. The rod outer segment bears a single incision. The mitochondria of cone and rod inner segments has a vitreal-scleral gradient. Single and double cones are present in both halves, with triple cones in the dorsal half only. The outer segments of double cones are equal and united. The single cones have two connecting cilia. The cone cells are arranged in a square mosaic with four double cones and five single cones to each unit in the dorsal half, and in a rhombic pattern in the ventral half. 相似文献
The outer retina of the smelt Osmerus eperlanus, a visually orientated plankton feeder, of Lake Hiidenvesi (Finland), was examined using both light and transmission electron microscopy. Apart from rods, six morphologically different cone photoreceptor types were identified: short single cones, long single cones, unequal/equal double cones and triple cones (triangular and linear variety). Additionally, in the dorsal region, multiple cone arrangements consisting of up to five members occur. Long single cones and triple cones were observed only sporadically throughout the retina. The incidence of short single cones as a regular element of the cone mosaic is restricted to the ventrotemporal area. The dominant pattern in the Osmerus retina is a pure or a twisted row pattern occurring in all regions. Ventrotemporally, however, square patterns were found as well. The highest cone densities occur in the peripheral ventrotemporal retina. These results indicate that the ventrotemporal region plays an important role in the vision of the smelt. The findings are discussed with respect to the photic habitat conditions and behavioural ecology of the smelt in Lake Hiidenvesi. 相似文献
Although several studies have shown that ultraviolet (UV) wavelengths are important in naturally occurring, visually guided behaviours of vertebrates, the function of the UV cone in such behaviours is unknown. Here, I used thyroid hormone to transform the UV cones of young rainbow trout into blue cones, a phenomenon that occurs naturally as the animal grows, to test whether the resulting loss of UV sensitivity affected the animal''s foraging performance on Daphnia magna, a prey zooplankton. The distances and angles at which prey were located (variables that are known indicators of foraging performance) were significantly reduced for UV knock-out fish compared with controls. Optical measurements and photon-catch calculations revealed that the contrast of Daphnia was greater when perceived by the visual system of control versus that of thyroid-hormone-treated fish, demonstrating that the UV cone enhanced the foraging performance of young rainbow trout. Because most juvenile fishes have UV cones and feed on zooplankton, this finding has wide implications for understanding the visual ecology of fishes. The enhanced target contrast provided by UV cones could be used by other vertebrates in various behaviours, including foraging, mate selection and communication. 相似文献
Nitric oxide (NO) plays an important role in phase‐shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light‐dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In this study, we demonstrate that NO is involved in the circadian phase‐dependent regulation of L‐type voltage‐gated calcium channels (L‐VGCCs). In chick cone photoreceptors, the L‐VGCCα1 subunit expression and the maximal L‐VGCC currents are higher at night, and both Ras‐mitogen‐activated protein kinase (MAPK)‐extracellular signal‐regulated kinase (Erk) and Ras‐phosphatidylinositol 3 kinase (PI3K)‐protein kinase B (Akt) are part of the circadian output pathways regulating L‐VGCCs. The NO‐cGMP‐protein kinase G (PKG) pathway decreases L‐VGCCα1 subunit expression and L‐VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L‐VGCCs in cone photoreceptors.
In the present EM study, we investigate the retina of Belone belone , a visually-orientated marine predator living close to the water surface. In the duplex retina, four morphologically different cone types are observed: unequal and equal double cones, long single cones and triple cones. In the light-adapted state, five different cone patterns occur: row, twisted row, square, pentagonal and hexagonal patterns. High double cone densities are found ventro-nasally, ventro-temporally and dorso-temporally. Throughout the retina the double cone/single cone ratio is 2 : 1, in the ventral part, however, a 1 : 1 ratio occurs. In the vitreous body we found a curtain-like intraocular septum dividing the retina into two morphologically different regions. In most areas of the dark-adapted retina the cone patterns are absent at the ellipsoid level, with long single cones standing more vitreally in the light path than double cones. The mosaics are retained, however, in the outer nuclear layer. Typical dark adaptation, i.e. the retinomotor movements of the retinal pigment epithelium and photoreceptors in response to the dark adaptation (light change) is not present in the peripheral ventral and parts of the central ventral area. In both regions we found a twisted row pattern of cones having a vitreal position. The findings are discussed with respect to the photic habitat and feeding habits of this species. 相似文献
The retina-specific G protein-coupled receptor kinases, GRK1 and GRK7, have been implicated in the shutoff of the photoresponse and adaptation to changing light conditions via rod and cone opsin phosphorylation. Recently, we have defined sites of phosphorylation by cAMP-dependent protein kinase (PKA) in the amino termini of both GRK1 and GRK7 in vitro. To determine the conditions under which GRK7 is phosphorylated in vivo, we have generated an antibody that recognizes GRK7 phosphorylated on Ser36, the PKA phosphorylation site. Using this phospho-specific antibody, we have shown that GRK7 is phosphorylated in vivo and is located in the cone inner and outer segments of mammalian, amphibian and fish retinas. Using Xenopus laevis as a model, GRK7 is phosphorylated under dark-adapted conditions, but becomes dephosphorylated when the animals are exposed to light. The conservation of phosphorylation at Ser36 in GRK7 in these different species (which span a 400 million-year evolutionary period), and its light-dependent regulation, indicates that phosphorylation plays an important role in the function of GRK7. Our work demonstrates for the first time that cAMP can regulate proteins involved in the photoresponse in cones and introduces a novel mode of regulation for the retinal GRKs by PKA. 相似文献
Photoreceptor degeneration (PD) refers to a group of heterogeneous outer retinal dystrophies characterized by the death of photoreceptors. Both oxidative stress and inflammation are involved in the pathogenesis of PD. We investigate whether vitamin D has a potential for the treatment of PD by evaluating the anti‐oxidative stress and anti‐inflammatory properties of the active form of vitamin D3, 1,α, 25‐dihydroxyvitamin D3, in a mouse cone cell line, 661W. Mouse cone cells were treated with H2O2 or a mixture of H2O2 and vitamin D; cell viability was determined. The production of reactive oxygen species (ROS) in treated and untreated cells was measured. The expression of key anti‐oxidative stress and inflammatory genes in treated and untreated cells was determined. Treatment with vitamin D significantly increased cell viability and decreased ROS production in 661W cells under oxidative stress induced by H2O2. H2O2 treatment in 661W cells can significantly down‐regulate the expression of antioxidant genes and up‐regulate the expression of neurotoxic cytokines. Vitamin D treatment significantly reversed these effects and restored the expression of antioxidant genes. Vitamin D treatment also can block H2O2 induced oxidative damages. The data suggested that vitamin D may offer a therapeutic potential for patients with PD. 相似文献
In the two studied subspecies of Coregonus lavaretus , the pollan ( C. l. wartmanni ) (which lives deep in the pelagial) and the gangfish ( C. l. macrophthalmus ) (which lives near the slope, closer to the bottom), duplex retinae containing rod and cone photoreceptors are found. Four morphologically different cone types were observed: unequal double cones, short single cones, long single cones and triple cones. The cones are arranged in a square pattern (four double cones around a central short single cone) in the ventral and ventrotemporal and in a row pattern in the nasal and dorsal areas of the retina. Moreover, intermediate patterns can be observed in several regions indicating that double cone twisting occurs, i.e. double cones twist about their longitudinal axis. The highest cone densities are found in the ventrotemporal area. Conversely, the rod photoreceptor density is the highest in the dorsal retina. While the basic morphology of the retina is the same in both subspecies, the distribution of long single and triple cones differs between the studied animals. While these cone types are very rare in the pollan, they are common in the gangfish, though not exhibiting a regular pattern. The findings are discussed with regard to the photic habitat conditions, the systematic position of coregonids and variation of retinal morphology in the two subspecies. 相似文献
Horizontal cells are among the first to mature in the neonatal mammalian retina and they are the first to establish the position of the outer synaptic layer which is subsequently formed by invading terminals of both rod and cone photoreceptors (1–5). During the period of cone synaptogenesis, horizontal cells transiently express the full complement of GABAergic properties (uptake, release, synthesis and storage of GABA); later during development of rod terminals, these properties are down-regulated (1,6–9_. Given the reports of GABA's role in other developing neuronal systems (for review: 10), we have examined the effect that GABA, produced from horizontal cells, might have on photoreceptor maturation in rabbit retina. Results from our previous studies show that lesioning the horizontal cell with kainic acid in vivo leads to a displacement of cone photoreceptor cells and a disappearance of their synaptic terminals, while rod cells maintain their normal position and produce an overabundance of terminals (11). Similar effects are seen with the GABA-A receptor antagonists, picrotoxin and bicucculine (11,12). New evidence from3H-thymidine studies suggests that the effects of kainic acid are specific and that cell division, migration and differentiation in other cell types do not appear to be affected. This body of work is summarized and possible mechanisms of action are suggested which could account for the apparent ability of GABA to help maintain the normal position of cone cell bodies and regulate cone synaptogenesis.Special issue dedicated to Dr. Claude Baxter 相似文献
Recent findings shed light on the steps underlying the evolution of vertebrate photoreceptors and retina. Vertebrate ciliary photoreceptors are not as wholly distinct from invertebrate rhabdomeric photoreceptors as is sometimes thought. Recent information on the phylogenies of ciliary and rhabdomeric opsins has helped in constructing the likely routes followed during evolution. Clues to the factors that led the early vertebrate retina to become invaginated can be obtained by combining recent knowledge about the origin of the pathway for dark re-isomerization of retinoids with knowledge of the inability of ciliary opsins to undergo photoreversal, along with consideration of the constraints imposed under the very low light levels in the deep ocean. Investigation of the origin of cell classes in the vertebrate retina provides support for the notion that cones, rods and bipolar cells all originated from a primordial ciliary photoreceptor, whereas ganglion cells, amacrine cells and horizontal cells all originated from rhabdomeric photoreceptors. Knowledge of the molecular differences between cones and rods, together with knowledge of the scotopic signalling pathway, provides an understanding of the evolution of rods and of the rods'' retinal circuitry. Accordingly, it has been possible to propose a plausible scenario for the sequence of evolutionary steps that led to the emergence of vertebrate photoreceptors and retina. 相似文献
To investigate modulation of the activation of cGMP-gated ion channels in cone photoreceptors, we measured currents in membrane patches detached from the outer segments of single cones isolated from striped bass retina. The sensitivity of these channels to activation by cGMP depends on the history of exposure to divalent cations of the membrane''s cytoplasmic surface. In patches maintained in 20 μM Ca++ and 100 μM Mg++ after excision, the current amplitude dependence on cGMP is well described by a Hill equation with average values of K1/2, the concentration necessary to activate half the maximal current, of 86 μM and a cooperativity index, n, of 2.57. Exposing the patch to a solution free of divalent cations irreversibly increases the cGMP sensitivity; the average value of K1/2 shifts to 58.8 μM and n shifts to 1.8. Changes in cGMP sensitivity do not affect other functional parameters of the ion channels, such as the interaction and permeation of mono- and divalent cations. Modulation of cGMP activation depends on the action of an endogenous factor that progressively dissociates from the channel as Ca++ concentration is lowered below 1 μM. The activity of the endogenous modulator is not well mimicked by exogenously added calmodulin, although this protein competes with the endogenous modulator for a common binding site. Thus, the modulation of cGMP affinity in cones depends on the activity of an unidentified molecule that may not be calmodulin. 相似文献
Previous studies have demonstrated that the mammalian retina contains a circadian clock system that controls several retinal functions. In mammals the location of the retinal circadian clock is unknown whereas, in non-mammalian vertebrates, earlier work has demonstrated that photoreceptor cells contain the circadian clock. New experimental evidence has suggested that in mammals the retinal circadian clock may be located outside the photoreceptor cells. In this study we report that circadian rhythms in Aa-nat mRNA (in vivo) and melatonin synthesis (in vitro) are still present in the retina of rats lacking photoreceptors. The circadian pacemaker(s) controlling such rhythms is probably located in kainic acid sensitive neurons in the inner retina since kainic acid injections abolished the rhythmicity. These data are the first direct demonstration that circadian rhythmicity in the mammalian retina can be generated independently from the photoreceptors and the suprachiasmatic nuclei of the hypothalamus. 相似文献
The neuronal Ca2+-binding protein Recoverin has been shown to regulate phototransduction termination in mammalian rods. Here we identify four recoverin genes in the zebrafish genome, rcv1a, rcv1b, rcv2a and rcv2b, and investigate their role in modulating the cone phototransduction cascade. While Recoverin-1b is only found in the adult retina, the other Recoverins are expressed throughout development in all four cone types, except Recoverin-1a, which is expressed only in rods and UV cones. Applying a double flash electroretinogram (ERG) paradigm, downregulation of Recoverin-2a or 2b accelerates cone photoresponse recovery, albeit at different light intensities. Exclusive recording from UV cones via spectral ERG reveals that knockdown of Recoverin-1a alone has no effect, but Recoverin-1a/2a double-knockdowns showed an even shorter recovery time than Recoverin-2a-deficient larvae. We also showed that UV cone photoresponse kinetics depend on Recoverin-2a function via cone-specific kinase Grk7a. This is the first in vivo study demonstrating that cone opsin deactivation kinetics determine overall photoresponse shut off kinetics. 相似文献