首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most cortical interneurons arise from the subcortical telencephalon, but the molecules that control their migration remain largely unidentified. Here, we show that different isoforms of Neuregulin-1 are expressed in the developing cortex and in the route that migrating interneurons follow toward the cortex, whereas a population of the migrating interneurons express ErbB4, a receptor for Neuregulin-1. The different isoforms of Neuregulin-1 act as short- and long-range attractants for migrating interneurons, and perturbing ErbB4 function in vitro decreases the number of interneurons that tangentially migrate to the cortex. In vivo, loss of Neuregulin-1/ErbB4 signaling causes an alteration in the tangential migration of cortical interneurons and a reduction in the number of GABAergic interneurons in the postnatal cortex. These observations provide evidence that Neuregulin-1 and its ErbB4 receptor directly control neuronal migration in the nervous system.  相似文献   

2.
Ketamine, a non-competitive N-methyl-D-aspartate (NMDA) antagonist, widely used as an anesthetic in neonatal pediatrics, is also an illicit drug named Super K or KitKat consumed by teens and young adults. In the immature brain, despite several studies indicating that NMDA antagonists are neuroprotective against excitotoxic injuries, there is more and more evidence indicating that these molecules exert a deleterious effect by suppressing a trophic function of glutamate. In the present study, we show using Gad67-GFP mice that prenatal exposure to ketamine during a time-window in which GABAergic precursors are migrating results in (i) strong apoptotic death in the ganglionic eminences and along the migratory routes of GABAergic interneurons; (ii) long-term deficits in interneuron density, dendrite numbers and spine morphology; (iii) a sex-dependent deregulation of γ-aminobutyric acid (GABA) levels and GABA transporter expression; (iv) sex-dependent changes in the response to glutamate-induced calcium mobilization; and (v) the long-term sex-dependent behavioral impairment of locomotor activity. In conclusion, using a preclinical approach, the present study shows that ketamine exposure during cortical maturation durably affects the integration of GABAergic interneurons by reducing their survival and differentiation. The resulting molecular, morphological and functional modifications are associated with sex-specific behavioral deficits in adults. In light of the present data, it appears that in humans, ketamine could be deleterious for the development of the brain of preterm neonates and fetuses of addicted pregnant women.Neonatal brain lesions, which affect both preterm and term infants, result in cerebral palsy and cognitive deficits.1 The main risks associated with these lesions are prematurity, hypoxia-ischemia, hemorrhages, fetal-placental infections and exposure to toxins.1, 2 Although the underlying neurochemical processes are complex and only partially elucidated, the production of pro-inflammatory cytokines, free-radical stress induced by both reactive oxygen and nitrogen species, and the massive release of glutamate at both synaptic and extrasynaptic sites, leading to an excitotoxic cell death, have been described.3, 4 In particular, because of its high permeability to calcium, the N-methyl-D-aspartate (NMDA) receptor has been shown to have a key role in excitotoxicity, and several studies reported that NMDA receptor antagonists exert a protective effect in both adults and neonates.4, 5, 6 However, the innocuousness of NMDA antagonists in the developing brain is debatable. Indeed, several research groups have described a deleterious effect of molecules such as MK801 or memantine in the immature neocortex.4, 7, 8, 9 In particular, it has been shown that MK801 exerts a dual effect in cultured cortical slices from mouse neonates; although it reduces excitotoxic death in the deep cortical layers V and VI, it has a pro-apoptotic effect on immature GABAergic interneurons present in the superficial layers II–IV.7Because of its short onset of action, rapid clearance and low influence on respiratory and cardiac functions, ketamine is an anesthetic widely used in neonatal pediatrics.10, 11 However, similar to MK801, ketamine is a non-competitive NMDA-receptor blocker, and even though its effects are less long-lasting than those of MK801, recent studies point to neurotoxic effects of ketamine in the immature brain of rats and non-human primates.12, 13 These reports raise the possibility that ketamine could also have deleterious effects in the developing human brain.14 Moreover, ketamine is also listed as an illicit drug (named Special K, KitKat or Super K) in most countries and is increasingly used by teens and young adults at raves, with the associated risk of addiction and consumption during pregnancy.15, 16 It appears, therefore, that the clinical use of ketamine in pediatrics as well as drug-abuse practices lead to a risk of perinatal exposure during a time-window in which GABAergic interneurons are still differentiating.17Based on our recent demonstration that MK801 affects the survival of GABAergic interneurons, we hypothesized that ketamine would also interfere with the GABAergic system and result in long-term deficits. Here we tested this hypothesis by using Gad67-GFP transgenic mice to investigate ex vivo and in vivo the effects of prenatal exposure to ketamine on (i) the survival of GABAergic precursors, (ii) the molecular and morphometric characteristics of GABAergic interneuron differentiation, (iii) glutamate-induced neuronal activation and (iv) the long-term impairment of motor activity.  相似文献   

3.
4.
Cortical GABAergic interneurons originate from ganglionic eminences and tangentially migrate into the cortical plate at early developmental stages. To elucidate the characteristics of this migration of GABAergic interneurons in living animals, we established an experimental design specialized for in vivo time-lapse imaging of the neocortex of neonate mice with two-photon laser-scanning microscopy. In vesicular GABA/glycine transporter (VGAT)-Venus transgenic mice from birth (P0) through P3, we observed multidirectional tangential migration of genetically-defined GABAergic interneurons in the neocortical marginal zone. The properties of this migration, such as the motility rate (distance/hr), the direction moved, and the proportion of migrating neurons to stationary neurons, did not change through P0 to P3, although the density of GABAergic neurons at the marginal zone decreased with age. Thus, the characteristics of the tangential motility of individual GABAergic neurons remained constant in development. Pharmacological block of GABAA receptors and of the Na+-K+-Cl cotransporters, and chelating intracellular Ca2+, all significantly reduced the motility rate in vivo. The motility rate and GABA content within the cortex of neonatal VGAT-Venus transgenic mice were significantly greater than those of GAD67-GFP knock-in mice, suggesting that extracellular GABA concentration could facilitate the multidirectional tangential migration. Indeed, diazepam applied to GAD67-GFP mice increased the motility rate substantially. In an in vitro neocortical slice preparation, we confirmed that GABA induced a NKCC sensitive depolarization of GABAergic interneurons in VGAT-Venus mice at P0-P3. Thus, activation of GABAAR by ambient GABA depolarizes GABAergic interneurons, leading to an acceleration of their multidirectional motility in vivo.  相似文献   

5.
6.
7.
8.
Down syndrome (DS) is caused by trisomy 21, and it is characterized by developmental brain disorders and neurological dysfunction. Clinical studies and basic research have revealed that defects in mitochondrial function contribute to the pathogenesis of DS. However, the underlying mechanisms of mitochondrial dysfunction in DS remain unclear. In this study, we first generated GABAergic interneurons and medial ganglionic eminence (MGE) organoids from DS patients and control induced pluripotent stem cells. The mitochondria were abnormally clustered in the perinuclear region of GABA neurons and cell in MGE organoids from DS patients, which exhibited impaired mitochondrial function as assessed by seahorse oxidative phosphorylation assay. Inhibition of the DSCAM-PAK1 pathway by gene editing or treatment with a small molecule corrected mitochondrial perinuclear aggregation in cells from DS patients. Therefore, our study provides insight into the potential mechanism of mitochondrial dysfunction in DS.  相似文献   

9.
10.
A most important component of the mammalian neocortex is the system of inhibitory interneurons. It is composed of cellular elements, which differ from each other in morphological, electrophysiological, and genetical features; these cells form a complex system of synaptic connections with glutamatergic cells and with each other. Some regularities that characterize the variety of types of cortical interneurons are discussed in our study. Neirofiziologiya/Neurophysiology, Vol. 39, No. 3, pp. 260–269, May–June, 2007.  相似文献   

11.
Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na(+), delayed-rectifier K(+), and slowly inactivating d-type K(+) conductances. The model is analyzed using nonlinear dynamical system theory. For small Na(+) window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, gd, and it is delayed for larger gd. As gd further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na(+) window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their gd and in the strength of their Na(+) window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction.  相似文献   

12.
Minhan Ka  Amanda L. Smith 《Autophagy》2017,13(8):1348-1363
Interneuron progenitors in the ganglionic eminence of the ventral telencephalon generate most cortical interneurons during brain development. However, the regulatory mechanism of interneuron progenitors remains poorly understood. Here, we show that MTOR (mechanistic target of rapamycin [serine/threonine kinase]) regulates proliferation and macroautophagy/autophagy of interneuron progenitors in the developing ventral telencephalon. To investigate the role of MTOR in interneuron progenitors, we conditionally deleted the Mtor gene in mouse interneuron progenitors and their progeny by using Tg(mI56i-cre,EGFP)1Kc/Dlx5/6-Cre-IRES-EGFP and Nkx2–1-Cre drivers. We found that Mtor deletion markedly reduced the number of interneurons in the cerebral cortex. However, relative positioning of cortical interneurons was normal, suggesting that disruption of progenitor self-renewal caused the decreased number of cortical interneurons in the Mtor-deleted brain. Indeed, Mtor-deleted interneuron progenitors showed abnormal proliferation and cell cycle progression. Additionally, we detected a significant activation of autophagy in Mtor-deleted brain. Our findings suggest that MTOR plays a critical role in the regulation of cortical interneuron number and autophagy in the developing brain.  相似文献   

13.
GABAergic interneurons make up about 20% of neurons in the cortex and are a heterogeneous group of cells. In recent years it has become clear that different populations of interneurons not only provide the balance of excitation and inhibition in neural networks but are also critically important for generation of rhythmic activity, successful processing of sensory information, implementation of synaptic plasticity and a number of other functions. We examine current approaches to classification of interneurons and review the properties and the functional role of basket cells, chandelier cells, neurogliaform interneurons, Martinotti cells, and some other classes of interneurons based on morphological, immunohistochemical, electrophysiological and optogenetic studies. Besides, we consider the opportunities of the selective impact on target population of interneurons and review the data on the role of different types of interneurons in the pathogenesis of epilepsy and schizophrenia.  相似文献   

14.
15.
Semyanov A  Kullmann DM 《Neuron》2000,25(3):663-672
Synapses between hippocampal interneurons are an important potential target for modulatory influences that could affect overall network behavior. We report that the selective group III metabotropic receptor agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) depresses GABAergic transmission to interneurons more than to pyramidal neurons. The L-AP4-induced depression is accompanied by changes in trial-to-trial variability and paired-pulse depression that imply a presynaptic site of action. Brief trains of stimuli in Schaffer collaterals also depress GABAergic transmission to interneurons. This depression persists when GABA(B) receptors are blocked, is enhanced by blocking glutamate uptake, and is abolished by the group III metabotropic receptor antagonist (alpha-methylserine-O-phosphate (MSOP). The results imply that GABAergic transmission among interneurons is modulated by glutamate spillover from excitatory afferent terminals.  相似文献   

16.
Most GABAergic interneurons originate from the basal forebrain and migrate tangentially into the cortex. The migratory pathways and mode of interneuron migration within the developing cerebral cortex, however, previously was largely unknown. Time-lapse imaging and in vivo labelling with glutamate decarboxylase (GAD)67-green fluorescence protein (GFP) knock-in embryonic mice with expression of GFP in gamma-aminobutyric acid (GABA)ergic neurons indicated that multidirectional tangential (MDT) migration of interneurons takes place in both the marginal zone (MZ) and the ventricular zone (VZ) of the cortex. Quantitative analysis of migrating interneurons showed that rostrocaudally migrating neurons outnumber those migrating mediolaterally in both of these zones. In vivo labelling with a lipophilic dye showed that the MDT migration in the MZ occurs throughout the cortex over distances of up to 3 mm during a period of a few days. These results indicate that MZ cortical interneurons undergo a second phase of tangential migration in all directions and over long distances, after reaching the cortex by dorsomedial tangential migration. The MDT migration in the MZ may disperse and intermix interneurons within the cortex, resulting in a balanced distribution of interneuron subtypes.  相似文献   

17.
Despite decades of evidence for functional plasticity in the adult brain, the role of structural plasticity in its manifestation remains unclear. To examine the extent of neuronal remodeling that occurs in the brain on a day-to-day basis, we used a multiphoton-based microscopy system for chronic in vivo imaging and reconstruction of entire neurons in the superficial layers of the rodent cerebral cortex. Here we show the first unambiguous evidence (to our knowledge) of dendrite growth and remodeling in adult neurons. Over a period of months, neurons could be seen extending and retracting existing branches, and in rare cases adding new branch tips. Neurons exhibiting dynamic arbor rearrangements were GABA-positive non-pyramidal interneurons, while pyramidal cells remained stable. These results are consistent with the idea that dendritic structural remodeling is a substrate for adult plasticity and they suggest that circuit rearrangement in the adult cortex is restricted by cell type–specific rules.  相似文献   

18.
GABAergic interneurons influence the development and function of the cerebral cortex through the actions of a variety of subtypes. Despite the relevance to cortical function and dysfunction, including seizure disorders and neuropsychiatric illnesses, the molecular determinants of interneuron fate remain largely unidentified. Challenges to this endeavor include the difficulty of studying fate determination of cells that even in rodents do not fully mature until weeks after their embryonic birth. However, in recent years a strong literature has grown on the temporal and spatial origins of distinct interneuron groups and types. Here we seek to highlight these findings, particularly in mice. Our goal is to lay the groundwork for future studies that use mouse genetics to study cortical interneuron fate determination and function.  相似文献   

19.
Zhao WQ  Lu B 《Journal of neurochemistry》2007,100(5):1211-1223
Expression of the Ca(2+)-dependent phospholipids binding protein annexin A2 (ANX2) in the brain is thought to be largely associated with brain pathological conditions such as tumor, inflammation, and neurodegeneration. The recent findings that ANX2 heterotetramer is involved in learning and neuronal activities necessitates a systematic investigation of the physiological expression of ANX2 in the brain. With combination of in situ hybridization and immunohistochemistry, ANX2 mRNA and protein were specifically detected in a group of GABAergic interneurons throughout the brain. Although ANX2 was absent from the interior of pyramidal neurons, it was found on the membrane and seemly the extracellular space of those neurons, where they closely co-localized with glutamate decarboxylase terminals. In cultured developing neurons, ANX2 was present at high concentrations in the growth cones co-distributing with several growth-associated proteins such as growth associated protein 43 (GAP43), turned on after division/Ulip/CRMP (TUC-4), tubulin, and tissue-plasminogen activator. It then became predominantly distributed on the membrane and mostly in axonal branches as neurons grew and extended synaptic networks. ANX2 was also secreted from cultured neurons, in a membrane-bound form that was Ca(2+)-dependent, which was significantly increased by neuronal depolarization. These results may have implications in the function and regulatory mechanism of ANX2 in the normal brain.  相似文献   

20.
Cortical interneurons are born in the proliferative zones of the ganglionic eminences in the subpallium and migrate to the developing cortex along well-defined tangential routes. The mechanisms regulating interneuron migration are not completely understood. Here we examine the role of class-A members of the Eph/ephrin system in directing the migration of interneurons. In situ hybridizations demonstrated that ephrin-A3 is expressed in the developing striatum, an area that is strictly avoided by migrating cortical interneurons in vivo, which express the EphA4 receptor. We then examined interneuron migration in grafting experiments, where explants of the medial ganglionic eminence (MGE) from enhanced green fluorescent protein-expressing transgenic mice were homotopically grafted into host slices from wild-type littermate embryos. After blocking ephrin-A ligands, many interneurons invaded the striatal anlage. Moreover, stripe assay experiments revealed that ephrin-A3 acts as a repellent cue for neurons from the medial ganglionic eminence. Downregulation of the EphA4 receptor via siRNA transfection reduced the repulsive effect of ephrin-A3, indicating that EphA4 mediates at least in part the repulsive effect of ephrin-A3 on these cells. Together, these results suggest that ephrin-A3 acts as a repulsive cue that restricts cortical interneurons from entering inappropriate regions and thus contributes to define the migratory route of cortical interneurons.Key words: interneuron migration, cortical development, neuronal guidance cues, ephrin, Eph receptors, organotypic slice cultures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号