首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Long-term depression at parallel fiber-Purkinje cell synapses (PF-PC LTD) has been proposed to be required for cerebellar motor learning. To date, tests of this hypothesis have sought to interfere with receptors (mGluR1) and enzymes (PKC, PKG, or αCamKII) necessary for induction of PF-PC LTD and thereby determine if cerebellar motor learning is impaired. Here, we tested three mutant mice that target the expression of PF-PC LTD by blocking internalization of AMPA receptors. Using three different cerebellar coordination tasks (adaptation of the vestibulo-ocular reflex, eyeblink conditioning, and locomotion learning on the Erasmus Ladder), we show that there is no motor learning impairment in these mutant mice that lack PF-PC LTD. These findings demonstrate that PF-PC LTD is not essential for cerebellar motor learning.  相似文献   

2.
In the cerebellum, Delphilin is expressed selectively in Purkinje cells (PCs) and is localized exclusively at parallel fiber (PF) synapses, where it interacts with glutamate receptor (GluR) delta2 that is essential for long-term depression (LTD), motor learning and cerebellar wiring. Delphilin ablation exerted little effect on the synaptic localization of GluRdelta2. There were no detectable abnormalities in cerebellar histology, PC cytology and PC synapse formation in contrast to GluRdelta2 mutant mice. However, LTD induction was facilitated at PF-PC synapses in Delphilin mutant mice. Intracellular Ca(2+) required for the induction of LTD appeared to be reduced in the mutant mice, while Ca(2+) influx through voltage-gated Ca(2+) channels and metabotropic GluR1-mediated slow synaptic response were similar between wild-type and mutant mice. We further showed that the gain-increase adaptation of the optokinetic response (OKR) was enhanced in the mutant mice. These findings are compatible with the idea that LTD induction at PF-PC synapses is a crucial rate-limiting step in OKR gain-increase adaptation, a simple form of motor learning. As exemplified in this study, enhancing synaptic plasticity at a specific synaptic site of a neural network is a useful approach to understanding the roles of multiple plasticity mechanisms at various cerebellar synapses in motor control and learning.  相似文献   

3.
Cerebellar long-term depression (LTD) is a major form of synaptic plasticity that is thought to be critical for certain types of motor learning. Phosphorylation of the AMPA receptor subunit GluR2 on serine-880 as well as interaction of GluR2 with PICK1 have been suggested to contribute to the endocytic removal of postsynaptic AMPA receptors during LTD. Here, we show that targeted mutation of PICK1, the GluR2 C-terminal PDZ ligand, or the GluR2 PKC phosphorylation site eliminates cerebellar LTD in mice. LTD can be rescued in cerebellar cultures from mice lacking PICK1 by transfection of wild-type PICK1 but not by a PDZ mutant or a BAR domain mutant deficient in lipid binding, indicating the importance of these domains in PICK1 function. These results demonstrate that PICK1-GluR2 PDZ-based interactions and GluR2 phosphorylation are required for LTD expression in the cerebellum.  相似文献   

4.
Synapses between parallel fibres and Purkinje cells in the cerebellum exhibit unique forms of synaptic plasticity thought to be associated with the refinement of motor skills. Since the discovery of Long Term Depression (LTD), more than twenty years ago, many molecular signalling pathways potentially underlying LTD have been explored. These have revealed a surprisingly diverse array of cellular and molecular mechanisms. Foremost has been the now well-established discovery that LTD is the electrophysiological manifestation of a reduced density of AMPA receptors at the synapse, following induction. Although LTD is primarily an electrophysiologically defined phenomenon, recent studies have increasingly combined electrophysiological, imaging, proteomic and biochemical approaches to probe its mechanisms. The challenge is now to integrate data from different modalities into a unified formalism that can deal with the complexity of the system, as well as generate experimental predictions. Here, we use particle-based stochastic modelling as a prototype to explore the feasibility of building realistic model of synaptic plasticity, at the molecular level.  相似文献   

5.
Hansel C  Linden DJ 《Neuron》2000,26(2):473-482
In classic Marr-Albus-Ito models of cerebellar function, coactivation of the climbing fiber (CF) synapse, which provides massive, invariant excitation of Purkinje neurons (coding the unconditioned stimulus), together with a graded parallel fiber synaptic array (coding the conditioned stimulus) leads to long-term depression (LTD) of parallel fiber-Purkinje neuron synapses, underlying production of a conditioned response. Here, we show that the supposedly invariant CF synapse can also express LTD. Brief 5 Hz stimulation of the CF resulted in a sustained depression of CF EPSCs that did not spread to neighboring parallel fiber synapses. Like parallel fiber LTD, CF LTD required postsynaptic Ca2+ elevation, activation of group 1 mGluRs, and activation of PKC. CF LTD is potentially relevant for models of cerebellar motor control and learning and the developmental conversion from multiple to single CF innervation of Purkinje neurons.  相似文献   

6.
Cerebellar long-term depression (LTD) is a model of synaptic plasticity in which conjunctive stimulation of parallel fiber and climbing fiber inputs to a Purkinje neuron induces a persistent depression of the parallel fiber-Purkinje neuron synapse. We report that an analogous phenomenon may be elicited in the cultured mouse Purkinje neuron when iontophoretic glutamate application and depolarization of the Purkinje neurons are substituted for parallel fiber and climbing fiber stimulation, respectively. The induction of LTD in these cerebellar cultures requires activation of both ionotropic (AMPA) and metabotropic quisqualate receptors, together with depolarization in the presence of external Ca2+. This postsynaptic alteration is manifest as a depression of glutamate or AMPA currents, but not aspartate or NMDA currents. These results strengthen the contention that the expression of cerebellar LTD is at least in part postsynaptic and provide evidence that activation of both ionotropic and metabotropic quisqualate receptors are necessary for LTD induction.  相似文献   

7.
Wang YT  Linden DJ 《Neuron》2000,25(3):635-647
Cerebellar long-term depression (LTD) is a cellular model system of information storage that may underlie certain forms of motor learning. While cerebellar LTD is expressed as a selective modification of postsynaptic AMPA receptors, this might involve changes in receptor number/distribution, unitary conductance, kinetics, or glutamate affinity. The observation that GluR2-containing synaptic AMPA receptors could be internalized by regulated clathrin-mediated endocytosis suggested that this process could underlie LTD expression. To test this hypothesis, we postsynaptically applied dynamin and amphiphysin peptides that interfere with the clathrin endocytotic complex and found that they blocked LTD expression in cultured Purkinje neurons. In addition, induction of LTD and attenuation of AMPA responses by stimulation of clathrin-mediated endocytosis occluded each other. These findings suggest that the expression of cerebellar LTD requires clathrin-mediated internalization of postsynaptic AMPA receptors.  相似文献   

8.
Synaptic pruning is a physiological event that eliminates excessive or inappropriate synapses to form proper synaptic connections during development of neurons. Appropriate synaptic pruning is required for normal neural development. However, the mechanism of synaptic pruning is not fully understood. Strength of synaptic activity under competitive circumstances is thought to act as a selective force for synaptic pruning. Long-term depression (LTD) is a synaptic plasticity showing persistent decreased synaptic efficacy, which is accompanied by morphological changes of dendritic spines including transient retraction. Repetitive induction of LTD has been shown to cause persistent loss of synapses in mature neurons. Here, we show that multiple, but not single, induction of LTD caused a persistent reduction in the number of dendritic synapses in cultured rat developing hippocampal neurons. When LTD was induced in 14 days in vitro cultures by application of (RS)-3,5-dihydroxyphenylglycine (DHPG), a group I metabotropic glutamate receptor (mGluR) agonist, and repeated three times with a one day interval, there was a significant decrease in the number of dendritic synapses. This effect continued up to at least two weeks after the triple LTD induction. The persistent reduction in synapse number occurred in the proximal dendrites, but not the distal dendrites, and was prevented by simultaneous application of the group I/II mGluR antagonist (S)-a-methyl-4-carboxyphenylglycine (MCPG). In conclusion, we found that repetitive LTD induction in developing neurons elicits synaptic pruning and contributes to activity-dependent regulation of synapse number in rat hippocampal neurons.  相似文献   

9.
Signal processing in cerebellar Purkinje cells   总被引:4,自引:0,他引:4  
Mechanisms and functional implications of signal processing in cerebellar Purkinje cells have been the subject of recent extensive investigations. Complex patterns of their planar dendritic arbor are analysed with computer-aided reconstructions and also topological analyses. Local computation may occur in Purkinje cell dendrites, but its extent is not clear at present. Synaptic transmission and electrical and ionic activity of Purkinje cell membrane have been revealed in detail, and related biochemical processes are being uncovered. A special type of synaptic plasticity is present in Purkinje cell dendrites; long-term depression (LTD) occurs in parallel fiber-Purkinje cell transmission when the parallel fibers are activated with a climbing fiber innervating that Purkinje cell. Evidence indicates that synaptic plasticity in Purkinje cells is due to sustained desensitization of Purkinje dendritic receptors to glutamate, which is a putative neurotransmitter of parallel fibers, and that conjunctive activation of a climbing fiber and parallel fibers leads to desensitization through enhanced intradendritic calcium concentration. A microzone of the cerebellar cortex is connected to an extracerebellar neural system through the inhibitory projection of Purkinje cells to a cerebellar or vestibular nuclear cell group. Climbing fiber afferents convey signals representing control errors in the performance of a neural system, and evoke complex spikes in Purkinje cells of the microzone connected to the neural system. Complex spikes would modify the performance of the microzone by producing LTD in parallel fiber-Purkinje cell synapses, and consequently would improve the overall performance of the neural system. The primary function of the cerebellum thus appears to be endowing adaptability to numerous neural control systems in the brain and spinal cord through error-triggered reorganization of the cerebellar cortical circuitry.  相似文献   

10.
Wang Z  Kai L  Day M  Ronesi J  Yin HH  Ding J  Tkatch T  Lovinger DM  Surmeier DJ 《Neuron》2006,50(3):443-452
Long-term depression (LTD) of the synapse formed between cortical pyramidal neurons and striatal medium spiny neurons is central to many theories of motor plasticity and associative learning. The induction of LTD at this synapse is thought to depend upon D(2) dopamine receptors localized in the postsynaptic membrane. If this were true, LTD should be inducible in neurons from only one of the two projection systems of the striatum. Using transgenic mice in which neurons that contribute to these two systems are labeled, we show that this is not the case. Rather, in both cell types, the D(2) receptor dependence of LTD induction reflects the need to lower M(1) muscarinic receptor activity-a goal accomplished by D(2) receptors on cholinergic interneurons. In addition to reconciling discordant tracts of the striatal literature, these findings point to cholinergic interneurons as key mediators of dopamine-dependent striatal plasticity and learning.  相似文献   

11.
Adducins are a family of proteins found in cytoskeleton junctional complexes, which bind and regulate actin filaments and actin-spectrin complexes. In brain, adducin is expressed at high levels and is identified as a constituent of synaptic structures, such as dendritic spines and growth cones of neurons. Adducin-induced changes in dendritic spines are involved in activity-dependent synaptic plasticity processes associated with learning and memory, but the mechanisms underlying these functions remain to be elucidated. Here, β-adducin knockout (KO) mice were used to obtain a deeper insight into the role of adducin in these processes. We showed that β-adducin KO mice showed behavioral, motor coordination and learning deficits together with an altered expression and/or phosphorylation levels of α-adducin and γ-adducin. We found that β-adducin KO mice exhibited deficits in learning and motor performances associated with an impairment of long-term potentiation (LTP) and long-term depression (LTD) in the hippocampus. These effects were accompanied by a decrease in phosphorylation of adducin, a reduction in α-adducin expression levels and upregulation of γ-adducin in hippocampus, cerebellum and neocortex of mutant mice. In addition, we found that the mRNA encoding β-adducin is also located in dendrites, where it may participate in the fine modulation of LTP and LTD. These results strongly suggest coordinated expression and phosphorylation of adducin subunits as a key mechanism underlying synaptic plasticity, motor coordination performance and learning behaviors.  相似文献   

12.
Activation of postsynaptic alpha-calcium/calmodulin-dependent protein kinase II (alphaCaMKII) by calcium influx is a prerequisite for the induction of long-term potentiation (LTP) at most excitatory synapses in the hippocampus and cortex. Here we show that postsynaptic LTP is unaffected at parallel fiber-Purkinje cell synapses in the cerebellum of alphaCaMKII(-/-) mice. In contrast, a long-term depression (LTD) protocol resulted in only transient depression in juvenile alphaCaMKII(-/-) mutants and in robust potentiation in adult mutants. This suggests that the function of alphaCaMKII in parallel fiber-Purkinje cell plasticity is opposite to its function at excitatory hippocampal and cortical synapses. Furthermore, alphaCaMKII(-/-) mice showed impaired gain-increase adaptation of both the vestibular ocular reflex and optokinetic reflex. Since Purkinje cells are the only cells in the cerebellum that express alphaCaMKII, our data suggest that an impairment of parallel fiber LTD, while leaving LTP intact, is sufficient to disrupt this form of cerebellar learning.  相似文献   

13.
The efficacy of excitatory synapses terminating on cortical and hippocampal pyramidal cells may be persistently depressed as well as potentiated. Homosynaptic long-term depression (LTD) seems to be triggered by an entry of calcium into a post-synaptic cell less than that needed to initiate long-term potentiation (LTP). Theoretical work predicted, and experimental studies confirmed, that moderate elevations of calcium initiate LTD via a cascade of biochemical interactions involving calcium-dependent phosphatases. Genetically modified animals confirmed the prediction of a sliding threshold that defines the limit between LTD and LTP. While mechanisms for the initiation of LTD are quite well established, it remains unclear whether pre- or postsynaptic mechanisms, or both, are involved in its maintenance. A role for LTD in processes of learning and forgetting in the adult animal remains to be firmly established. It seems probable, however, that a persistent reduction in synaptic weight is a basic process used in the establishment and refinement of neuronal circuirs during development.  相似文献   

14.
Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.  相似文献   

15.
Ogasawara H  Doi T  Kawato M 《Neuro-Signals》2008,16(4):300-317
Long-term depression (LTD) at parallel fiber-Purkinje cell (PF-PC) synapses is thought to be the cellular correlate of cerebellar associative learning. The molecular processes are, in brief, phosphorylation of AMPA-type glutamate receptors (AMPARs) and their subsequent removal from the surface of the PF-PC synapse. In order to elucidate the fundamental mechanisms for cerebellar LTD and further the understanding of its computational role, we have investigated its systems biology and proposed the following hypotheses, some of which have already been experimentally verified: (1) due to the mitogen-activated protein kinase (MAPK)-protein kinase C (PKC) positive feedback loop, phosphorylation of AMPARs is an all-or-none event; (2) the inositol 1,4,5-triphosphate receptor detects concurrent PF and climbing fiber inputs, forming the cellular basis for associative learning, and (3) the local concentration of nitric oxide in the PC dendrite reflects the relevance of a given context, enabling context-dependent selection of learning modules within the cerebellum. In this review, we first introduce theoretical studies on cerebellar LTD, mainly focusing on our own published work, followed by a discussion of the effects of stochasticity, localization, diffusion, and scaffolding. Neurons embody two features that are apparently contradictory, yet necessary for synaptic memory: stability and plasticity. We will also present models for explaining how neurons solve this dilemma. In the final section, we propose a conceptual model in which a cascade of excitable dynamics with different time scales, i.e., Ca(2+)-induced Ca(2+) release, the MAPK-PKC positive feedback loop, and protein kinase Mzeta (PKMzeta)-induced PKMzeta synthesis, provides a mechanism for stable memory that is still amenable to modifications.  相似文献   

16.
Plasticity at the cerebellar parallel fiber to Purkinje cell synapse may underlie information processing and motor learning. In vivo, parallel fibers appear to fire in short high frequency bursts likely to activate sparsely distributed synapses over the Purkinje cell dendritic tree. Here, we report that short parallel fiber tetanic stimulation evokes a ∼7–15% depression which develops over 2 min and lasts for at least 20 min. In contrast to the concomitantly evoked short-term endocannabinoid-mediated depression, this persistent posttetanic depression (PTD) does not exhibit a dependency on the spatial pattern of synapse activation and is not caused by any detectable change in presynaptic calcium signaling. This persistent PTD is however associated with increased paired-pulse facilitation and coefficient of variation of synaptic responses, suggesting that its expression is presynaptic. The chelation of postsynaptic calcium prevents its induction, suggesting that post- to presynaptic (retrograde) signaling is required. We rule out endocannabinoid signaling since the inhibition of type 1 cannabinoid receptors, monoacylglycerol lipase or vanilloid receptor 1, or incubation with anandamide had no detectable effect. The persistent PTD is maximal in pre-adolescent mice, abolished by adrenergic and dopaminergic receptors block, but unaffected by adrenergic and dopaminergic agonists. Our data unveils a novel form of plasticity at parallel fiber synapses: a persistent PTD induced by physiologically relevant input patterns, age-dependent, and strongly modulated by the monoaminergic system. We further provide evidence supporting that the plasticity mechanism involves retrograde signaling and presynaptic diacylglycerol.  相似文献   

17.
长时程抑制在学习记忆中的作用及其分子机制的研究进展   总被引:2,自引:0,他引:2  
长时程抑制(long term depression,LTD)是突触可塑性的重要形式之一,并且与学习记忆存在着密切的关系。近10年有关LTD的研究表明:LTD诱导和维持过程所必需的许多分子在进化上具有高度的保守性,多种细胞膜受体、细胞信号转导通路级联成分、基因表达的转录调节因子与学习记忆的调控有关,这些研究结果为我们阐明脑的正常功能,治疗中枢系统神经疾病,提供了新的线索。  相似文献   

18.
Recent studies have shown that multiple internal models are acquired in the cerebellum and that these can be switched under a given context of behavior. It has been proposed that long-term depression (LTD) of parallel fiber (PF)–Purkinje cell (PC) synapses forms the cellular basis of cerebellar learning, and that the presynaptically synthesized messenger nitric oxide (NO) is a crucial “gatekeeper” for LTD. Because NO diffuses freely to neighboring synapses, this volume learning is not input-specific and brings into question the biological significance of LTD as the basic mechanism for efficient supervised learning. To better characterize the role of NO in cerebellar learning, we simulated the sequence of electrophysiological and biochemical events in PF–PC LTD by combining established simulation models of the electrophysiology, calcium dynamics, and signaling pathways of the PC. The results demonstrate that the local NO concentration is critical for induction of LTD and for its input specificity. Pre- and postsynaptic coincident firing is not sufficient for a PF–PC synapse to undergo LTD, and LTD is induced only when a sufficient amount of NO is provided by activation of the surrounding PFs. On the other hand, above-adequate levels of activity in nearby PFs cause accumulation of NO, which also allows LTD in neighboring synapses that were not directly stimulated, ruining input specificity. These findings lead us to propose the hypothesis that NO represents the relevance of a given context and enables context-dependent selection of internal models to be updated. We also predict sparse PF activity in vivo because, otherwise, input specificity would be lost.  相似文献   

19.
Jin Y  Kim SJ  Kim J  Worley PF  Linden DJ 《Neuron》2007,55(2):277-287
Glutamate produces both fast excitation through activation of ionotropic receptors and slower actions through metabotropic receptors (mGluRs). To date, ionotropic but not metabotropic neurotransmission has been shown to undergo long-term synaptic potentiation and depression. Burst stimulation of parallel fibers releases glutamate, which activates perisynaptic mGluR1 in the dendritic spines of cerebellar Purkinje cells. Here, we show that the mGluR1-dependent slow EPSC and its coincident Ca transient were selectively and persistently depressed by repeated climbing fiber-evoked depolarization of Purkinje cells in brain slices. LTD(mGluR1) was also observed when slow synaptic current was evoked by exogenous application of a group I mGluR agonist, implying a postsynaptic expression mechanism. Ca imaging further revealed that LTD(mGluR1) was expressed as coincident attenuation of both limbs of mGluR1 signaling: the slow EPSC and PLC/IP3-mediated dendritic Ca mobilization. Thus, different patterns of neural activity can evoke LTD of either fast ionotropic or slow mGluR1-mediated synaptic signaling.  相似文献   

20.
Shen Y  Linden DJ 《Neuron》2005,46(5):715-722
Persistent, use-dependent modulation of synaptic strength has been demonstrated for fast synaptic transmission mediated by glutamate and has been hypothesized to underlie persistent behavioral changes ranging from memory to addiction. Glutamate released at synapses is sequestered by the action of excitatory amino acid transporters (EAATs) in glia and postsynaptic neurons. So, the efficacy of glutamate transporter function is crucial for regulating glutamate spillover to adjacent presynaptic and postsynaptic receptors and the consequent induction of plastic or excitotoxic processes. Here, we report that tetanic stimulation of cerebellar climbing fiber-Purkinje cell synapses results in long-term potentiation (LTP) of a climbing fiber-evoked glutamate transporter current recorded in Purkinje cells. This LTP is postsynaptically expressed and requires activation of an mGluR1/PKC cascade. Together with a simultaneously induced long-term depression (LTD) of postsynaptic AMPA receptors, this might reflect an integrated antiexcitotoxic cellular response to strong climbing fiber synaptic activation, as occurs following an ischemic episode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号