首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are clear sex differences in incidence and onset of stress-related and other psychiatric disorders in humans. Yet, rodent models for psychiatric disorders are predominantly based on male animals. The strongest argument for not using female rodents is their estrous cycle and the fluctuating sex hormones per phase which multiplies the number of animals to be tested. Here, we will discuss studies focused on sex differences in emotionality and cognitive abilities in experimental conditions with and without stress. First, female sex hormones such as estrogens and progesterone affect emotions and cognition, contributing to sex differences in behavior. Second, females respond differently to stress than males which might be related to the phase of the estrous cycle. For example, female rats and mice express less anxiety than males in a novel environment. Proestrus females are less anxious than females in the other estrous phases. Third, males perform in spatial tasks superior to females. However, while stress impairs spatial memory in males, females improve their spatial abilities, depending on the task and kind of stressor. We conclude that the differences in emotion, cognition and responses to stress between males and females over the different phases of the estrous cycle should be used in animal models for stress-related psychiatric disorders.  相似文献   

2.
Neuronal plasticity is now known to be very important in the adult, both in the formation of new synaptic connections and of new neurones (neurogenesis) and of glial cells. However, old age and stress can inhibit this plasticity and lead to cerebral atrophy. The time course of changes in neuronal plasticity involves, in the first milliseconds to seconds, changes in synaptic strength (long term potentialisation, LTP, or long term depression, LTD), then, over minutes to hours, changes in the number of synaptic connections (linked to changes in neurotrophic factors), and over weeks to months, to changes in neuronal reconfiguration. These changes in brain systems are particularly targeted in psychiatric disorders to the areas which are sensitive to stress and play roles in memory and emotion (hippocampus, amygdala and prefrontal cortex). The discovery and development of drugs modifying neuronal plasticity and neurotrophins production has been a priority for Servier research for the last ten years; Servier has a clinically effective antidepressant, tianeptine (Stablon), with a favourable side effect profile, but which does not inhibit the uptake of serotonin, or other monoamines. However, this drug can reverse the deleterious effects of stress on neuronal plasticity, thereby acting on the causes of psychiatric disorders. Furthermore, a new research area is being investigated - facilitation of AMPA receptors, favouring the production of neurotrophic factors.  相似文献   

3.
Social conflict models have been proposed as a powerful way to investigate basic questions of how brain and behavior are altered by social experience. Social defeat, in particular, appears to be a major stressor for most species, and in humans, this stressor is thought to play an important role in the onset of a variety of psychiatric disorders including depression and post-traumatic stress disorder. Aggressive experience, on the other hand, may promote disorders involving inappropriate aggression and violence. Current research using animal models of social conflict involves multiple levels of analysis from genetic and molecular to systems and overt behavior. This review briefly examines a variety of these animal models of social conflict in order to assess whether they are useful for advancing our understanding of how experience can shape brain and behavior and for translating this information so that we have the potential to improve the quality of life of individuals with mental illness and behavioral disorders.  相似文献   

4.
Arguello PA  Gogos JA 《Neuron》2006,52(1):179-196
Mouse models that recapitulate the full phenotypic spectrum of a psychiatric disorder, such as schizophrenia, are impossible. However, a more piecemeal recreation of phenotypic components is feasible and promises to harness the power of animal models using approaches that are either off limits or confounded by drug treatment in humans. In that context, animal models will have a central and indispensable role in the process of discovering the causes of psychiatric disorders and generating novel, mechanism-based treatments. Here, we discuss current approaches used to generate animal models of psychiatric disorders, address the different components of these disorders that can be modeled in animals, and describe currently available analytical tools. We also discuss accumulating empirical data and take an in-depth look at what we believe to be the future of animal models made possible by recent advances in psychiatric genetics.  相似文献   

5.
Prenatal stress is associated with altered behavioral, cognitive, and psychiatric outcomes in offspring. Due to the importance of GABAergic systems in normal development and in psychiatric disorders, prenatal stress effects on these neurons have been investigated in animal models. Prenatal stress delays GABAergic progenitor migration, but the significance of these early developmental disruptions for the continued development of GABAergic cells in the juvenile brain is unclear. Here, we examined effects of prenatal stress on populations of GABAergic neurons in juvenile and adult medial frontal cortex (mFC) and hippocampus through stereological counting, gene expression, and relevant anxiety‐like and social behaviors. Postnatally, the total GABAergic cell number that peaks in adolescence showed altered trajectories in mFC and hippocampus. Parvalbumin neuron proportion in juvenile brain was altered by prenatal stress, but parvalbumin gene expression showed no differences. In adult brain, parvalbumin neuron proportions were altered by prenatal stress with opposite gene expression changes. Adult prenatally stressed offspring showed a lack of social preference on a three‐chambered task, increased anxiety‐like behavior on the elevated plus maze, and reduced center time in an open field. Despite a lack of significant group differences in adult total GABAergic cell populations, performance of these tasks was correlated with GABAergic populations in mFC and hippocampus. In conclusion, prenatal stress resulted in a delay in GABAergic cell number and maturation of the parvalbumin subtype. Influences of prenatal stress on GABAergic populations during developmentally dynamic periods and during adulthood may be relevant to the anxiety‐like behaviors that occur after prenatal stress. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 1078–1091, 2016  相似文献   

6.
Cell death is the final common pathway of cognitive decline in Alzheimer's disease (AD). Nervous system growth factors, or neurotrophic factors, are substances naturally produced in the nervous system that support neuronal survival during development and influence neuronal function throughout adulthood. Notably, in animal models, including primates, neurotrophic factors prevent neuronal death after injury and can reverse spontaneous neuronal atrophy in aging. Thus, neurotrophic factor therapy has the potential to prevent or reduce ongoing cell loss in disorders such as AD. The main challenge in clinical testing of neurotrophic factors has been their delivery to the brain in sufficient doses to impact cell function, while restricting their delivery to specific sites to prevent adverse effects from broad distribution. This article reviews progress in evaluating the therapeutic potential of growth factors, from early animal models to human clinical trials currently underway in AD.  相似文献   

7.
Oxidative stress has long been associated with aging and has recently been linked to psychiatric disorders, including psychosis and depression. We identified multiple antipsychotics and antidepressants that extend Caenorhabditis elegans lifespan and protect the animal from oxidative stress. Here, we report that atypical antidepressants activate a neuronal mechanism that regulates the response to oxidative stress throughout the animal. While the activation of the oxidative stress response by atypical antidepressants depends on synaptic transmission, the activation by reactive oxygen species does not. Lifespan extension by atypical antidepressants depends on the neuronal oxidative stress response activation mechanism. Neuronal regulation of the oxidative stress response is likely to have evolved as a survival mechanism to protect the organism from oxidative stress, upon detection of adverse or dangerous conditions by the nervous system.  相似文献   

8.
9.
Mitochondrial Dysfunction and Psychiatric Disorders   总被引:1,自引:0,他引:1  
Mitochondrial oxidative phosphorylation is the major ATP-producing pathway, which supplies more than 95% of the total energy requirement in the cells. Damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of psychiatric disorders. Tissues with high energy demands, such as the brain, contain a large number of mitochondria, being therefore more susceptible to reduction of the aerobic metabolism. Mitochondrial dysfunction results from alterations in biochemical cascade and the damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of neuropsychiatric disorders, such as bipolar disorder, depression and schizophrenia. Bipolar disorder is a prevalent psychiatric disorder characterized by alternating episodes of mania and depression. Recent studies have demonstrated that important enzymes involved in brain energy are altered in bipolar disorder patients and after amphetamine administration, an animal model of mania. Depressive disorders, including major depression, are serious and disabling. However, the exact pathophysiology of depression is not clearly understood. Several works have demonstrated that metabolism is impaired in some animal models of depression, induced by chronic stress, especially the activities of the complexes of mitochondrial respiratory chain. Schizophrenia is a devastating mental disorder characterized by disturbed thoughts and perception, alongside cognitive and emotional decline associated with a severe reduction in occupational and social functioning, and in coping abilities. Alterations of mitochondrial oxidative phosphorylation in schizophrenia have been reported in several brain regions and also in platelets. Abnormal mitochondrial morphology, size and density have all been reported in the brains of schizophrenic individuals. Considering that several studies link energy impairment to neuronal death, neurodegeneration and disease, this review article discusses energy impairment as a mechanism underlying the pathophysiology of some psychiatric disorders, like bipolar disorder, depression and schizophrenia.  相似文献   

10.
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.  相似文献   

11.
Major depression (MD) is one of the most prevalent psychiatric disorders and a leading cause of loss in work productivity. A combination of genetic and environmental risk factors probably contributes to MD. We present data from a genome-wide association study revealing a neuron-specific neutral amino acid transporter (SLC6A15) as a susceptibility gene for MD. Risk allele carrier status in humans and chronic stress in mice were associated with a downregulation of the expression of this gene in the hippocampus, a brain region implicated in the pathophysiology of?MD. The same polymorphisms also showed associations with alterations in hippocampal volume and neuronal integrity. Thus, decreased SLC6A15 expression, due to genetic or environmental factors, might alter neuronal circuits related to the susceptibility for MD. Our convergent data from human genetics, expression studies, brain imaging, and animal models suggest a pathophysiological mechanism for MD that may be accessible to drug targeting.  相似文献   

12.
Optogenetics is the optical control of neuronal excitability by genetically delivered light-activated channels and pumps and represents a promising tool to fuel the study of circuit function in psychiatric animal models. This review highlights three developments. First, we examine the application of optogenetics in one of the neuromodulators central to the pathophysiology of many psychiatric disorders, the dopaminergic system. We then discuss recent work in translating functional magnetic resonance imaging in small animals (in which optogenetics can be employed to reveal physiological mechanisms underlying disease-related alterations in brain circuits) to patients. Finally, we describe emerging technological developments for circuit manipulation in freely behaving animals.  相似文献   

13.
Neuronal cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) play a crucial role in the formation of neural circuits at different levels: cell migration, axonal and dendritic targeting as well as synapse formation. Furthermore, in perinatal and adult life, neuronal IgCAMs are required for the formation and maintenance of specialized axonal membrane domains, synaptic plasticity and neurogenesis. Mutations in the corresponding human genes have been correlated to several human neuronal disorders. Perturbing neuronal IgCAMs in animal models provides powerful means to understand the molecular and cellular basis of such human disorders. In this review, we concentrate on the NCAM, L1 and contactin subfamilies of neuronal IgCAMs summarizing recent functional studies from model systems and highlighting their links to disease pathogenesis.  相似文献   

14.
Human epidemiological and animal laboratory studies show that suboptimal environments in the womb and during early neonatal life alter development and predispose the individual to lifelong health problems. The concept of the developmental origins of adult diseases has become well accepted because of the compelling animal studies that have precisely defined the outcomes of specific exposures such as nutrient restriction, overfeeding during pregnancy, maternal stress, and exogenously administered glucocorticoids. This review focuses on the use of animal models to evaluate exposures, mechanisms, and outcomes involved in developmental programming of hypertension, diabetes, obesity, and altered pituitary-adrenal function in offspring in later life. Ten principles of developmental programming are described as fundamental, regardless of the exposure during development and the physiological system involved in the altered outcome. The 10 principles are discussed in the context of the physiological systems involved and the animal model studies that have been conducted to evaluate exposures, mechanisms, and outcomes. For example, the fetus responds to challenges such as hypoxia and nutrient restriction in ways that help to ensure its survival, but this "developmental plasticity" may have long-term consequences that may not be beneficial in adult life. To understand developmental programming, which represents the interaction of nature and nurture, it is necessary to integrate whole animal systems physiology, in vitro cellular biology, and genomic and proteomic approaches, and to use animal models that are carefully characterized and appropriate for the questions under study. Animal models play an important role in this evaluation because they permit combined in vivo and in vitro study at different critical time windows during the exposure and the ensuing developmental responses.  相似文献   

15.
Embryonic stem (ES) cells have been successfully used over the past decade to generate specific types of neuronal cells. In addition to its value for regenerative medicine, ES cell culture also provides versatile experimental systems for analyzing early neural development. These systems are complimentary to conventional animal models, particularly because they allow unique constructive (synthetic) approaches, for example, step-wise addition of components. Here we review the ability of ES cells to generate not only specific neuronal populations but also functional neural tissues by recapitulating microenvironments in early mammalian development. In particular, we focus on cerebellar neurogenesis from mouse ES cells, and explain the basic ideas for positional information and self-formation of polarized neuroepithelium. Basic research on developmental signals has fundamentally contributed to substantial progress in stem cell technology. We also discuss how in vitro model systems using ES cells can shed new light on the mechanistic understanding of organogenesis, taking an example of recent progress in self-organizing histogenesis.  相似文献   

16.
Social hierarchy position in humans is negatively correlated with stress-related psychiatric disease risk. Animal models have largely corroborated human studies, showing that social rank can impact stress susceptibility and is considered to be a major risk factor in the development of psychiatric illness. Differences in stress coping style is one of several factors that mediate this relationship between social rank and stress susceptibility. Coping styles encompass correlated groupings of behaviors associated with differential physiological stress responses. Here, we discuss recent insights from animal models that highlight several neural circuits that can contribute to social rank–associated differences in coping style.  相似文献   

17.
Sensory stimulation has a critical role to play in the development of an individual. Environmental factors tend to modify the inputs received by the sensory pathway. The developing brain is most vulnerable to these alterations and interacts with the environment to modify its neural circuitry. In addition to other sensory stimuli, auditory stimulation can also act as external stimuli to provide enrichment during the perinatal period. There is evidence that suggests that enriched environment in the form of auditory stimulation can play a substantial role in modulating plasticity during the prenatal period. This review focuses on the emerging role of prenatal auditory stimulation in the development of higher brain functions such as learning and memory in birds and mammals. The molecular mechanisms of various changes in the hippocampus following sound stimulation to effect neurogenesis, learning and memory are described. Sound stimulation can also modify neural connectivity in the early postnatal life to enhance higher cognitive function or even repair the secondary damages in various neurological and psychiatric disorders. Thus, it becomes imperative to examine in detail the possible ameliorating effects of prenatal sound stimulation in existing animal models of various psychiatric disorders, such as autism.  相似文献   

18.
Modelling of complex psychiatric disorders, e.g., depression and schizophrenia, in animals is a major challenge, since they are characterized by certain disturbances in functions that are absolutely unique to humans. Furthermore, we still have not identified the genetic and neurobiological mechanisms, nor do we know precisely the circuits in the brain that function abnormally in mood and psychotic disorders. Consequently, the pharmacological treatments used are mostly variations on a theme that was started more than 50 years ago. Thus, progress in novel drug development with improved therapeutic efficacy would benefit greatly from improved animal models. Here, we review the available animal models of depression and schizophrenia and focus on the way that they respond to various types of potential candidate molecules, such as novel antidepressant or antipsychotic drugs, as an index of predictive validity. We conclude that the generation of convincing and useful animal models of mental illnesses could be a bridge to success in drug discovery.  相似文献   

19.
Numerous psychiatric disorders whose cognitive dysfunction links to functional outcome have neurodevelopmental origins including schizophrenia, autism and bipolar disorder. Treatments are needed for these cognitive deficits, which require development using animal models. Models of neurodevelopmental disorders are as varied and diverse as the disorders themselves, recreating some but not all aspects of the disorder. This variety may in part underlie why purported procognitive treatments translated from these models have failed to restore functioning in the targeted patient populations. Further complications arise from environmental factors used in these models that can contribute to numerous disorders, perhaps only impacting specific domains, while diagnostic boundaries define individual disorders, limiting translational efficacy. The Research Domain Criteria project seeks to ‘develop new ways to classify mental disorders based on behavioral dimensions and neurobiological measures’ in hopes of facilitating translational research by remaining agnostic toward diagnostic borders derived from clinical presentation in humans. Models could therefore recreate biosignatures of cognitive dysfunction irrespective of disease state. This review highlights work within the field of neurodevelopmental models of psychiatric disorders tested in cross‐species translational cognitive paradigms that directly inform this newly developing research strategy. By expounding on this approach, the hopes are that a fuller understanding of each model may be attainable in terms of the cognitive profile elicited by each manipulation. Hence, conclusions may begin to be drawn on the nature of cognitive neuropathology on neurodevelopmental and other disorders, increasing the chances of procognitive treatment development for individuals affected in specific cognitive domains.  相似文献   

20.
In aerobic organisms, oxygen is essential for efficient energy production but paradoxically, produces chronic toxic stress in cells. Diverse protective systems must exist to enable adaptation to oxidative environments. Oxidative stress (OS) results when production of reactive oxidative species (ROS) exceeds the capacity of cellular antioxidant defenses to remove these toxic species. Epidemiological and clinical studies have linked environmental factors such as diet and lifestyle to cancer, diabetes, atherosclerosis, and neurodegenerative disorders. All of these conditions, as well as the aging process, are associated with OS due to elevation of ROS or insufficient ROS detoxification. Many environmental pollutants engage signaling pathways that are activated in response to OS. The same sequences of events are also associated with the etiology and early pathology of many chronic diseases. Investigations of oxidative responses in different in vivo models suggest that, in complex organisms such as mammals, organs and tissues contain distinct antioxidant systems, and this may form the basis for differential susceptibility to environmental toxic agents Thus, understanding the pathways leading to the induction of antioxidant responses will enable development of strategies to protect against oxidative damage. We shall review evidence of organ-specific antioxidant responses elicited by environmental pollutants in humans and animal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号