首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chivasa S  Simon WJ  Yu XL  Yalpani N  Slabas AR 《Proteomics》2005,5(18):4894-4904
The extracellular matrix is a vital compartment in plants with a prominent role in defence against pathogen attack. Using a maize cell suspension culture system and pathogen elicitors, responses to pathogen attack that are localised to the extracellular matrix were examined by a proteomic approach. Elicitor treatment of cell cultures induced a rapid change in the phosphorylation status of extracellular peroxidases, the apparent disappearance of a putative extracellular beta-N-acetylglucosamonidase, and accumulation of a secreted putative xylanase inhibitor protein. Onset of the defence response was attended by an accumulation of glyceraldehyde-3-phosphate dehydrogenase and a fragment of a putative heat shock protein. Several distinct spots of both proteins, which preferentially accumulated in cell wall protein fractions, were identified. These three novel observations, viz. (i) secretion of a new class of putative enzyme inhibitor, (ii) the apparent recruitment of classical cytosolic proteins into the cell wall and (ii) the change in phosphorylation status of extracellular matrix proteins, suggest that the extracellular matrix plays a complex role in defence. We discuss the role of the extracellular matrix in signal modulation during pathogen-induced defence responses.  相似文献   

3.
4.
Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces.  相似文献   

5.
CHRK1, a chitinase-related receptor-like kinase in tobacco   总被引:1,自引:0,他引:1  
Kim YS  Lee JH  Yoon GM  Cho HS  Park SW  Suh MC  Choi D  Ha HJ  Liu JR  Pai HS 《Plant physiology》2000,123(3):905-915
A cDNA encoding a chitinase-related receptor-like kinase, designated CHRK1, was isolated from tobacco (Nicotiana tabacum). The C-terminal kinase domain (KD) of CHRK1 contained all of the conserved amino acids of serine/threonine protein kinases. The putative extracellular domain was closely related to the class V chitinase of tobacco and to microbial chitinases. CHRK1 mRNA accumulation was strongly stimulated by infection with fungal pathogen and tobacco mosaic virus. Amino acid-sequence analysis revealed that the chitinase-like domain of CHRK1 lacked the essential glutamic acid residue required for chitinase activity. The recombinant chitinase-like domain did not show any catalytic activity for either oligomeric or polymeric chitin substrates. The recombinant KD of CHRK1 exhibited autophosphorylation, but the mutant KD with a mutation in the essential ATP-binding site did not, suggesting that CHRK1 encoded a functional kinase. CHRK1 was detected in membrane fractions of tobacco BY2 cells. Furthermore, CHRK1-GFP fusion protein was localized in plasma membranes when it was expressed in animal cells. This is the first report of a new type of receptor-like kinase containing a chitinase-like sequence in the putative extracellular domain.  相似文献   

6.
Esr proteins are secreted by the cells of the embryo surrounding region   总被引:5,自引:0,他引:5  
Three highly homologous Esr genes are expressed specifically in the embryo surrounding region at the micropylar end of the maize endosperm. The proteins belong to a family of small hydrophilic proteins that share a conserved motive with Clv3, the ligand of the receptor-like kinase Clv1. In this study, co-localization of Esr proteins with their mRNAs in the embryo surrounding region was shown with polyclonal antibodies recognizing all three Esr proteins. On a subcellular level the secretion of Esr proteins and their association with the cell wall was shown independently by cell fractionation, immunohistochemistry and transient expression of Gfp fusion proteins. Furthermore, a possible interaction of Esr proteins with a 35 kDa protein present in the lower half of maize kernels was suggested by in vitro affinity chromatography. Therefore Esr proteins share two characteristics with ligands of receptor-like kinases: they are released in the extracellular space and they have the capacity to form protein-protein interactions.  相似文献   

7.
Yu Y  Qiu L  Wu H  Tang Y  Yu Y  Li X  Liu D 《Biodegradation》2011,22(3):613-622
A bacterium (designated SM04) which can rapidly grow on zearalenone (ZEN) as sole carbon and energy source was isolated from agricultural soil. On the basis of 16S rDNA sequencing analysis, strain SM04 was classified as a bacterium belonging to the Acinetobacter genus. In this study, the biodegradation of ZEN by the extracellular extracts of strain SM04 liquid cultures in M1 medium and Nutrient Broth medium was examined using HPLC analysis, APCI-MS analysis, and MTT (tetrazolium salt) cell proliferation assay. Results showed no ZEN and other equally estrogenic metabolites were found after 12 h when ZEN was treated with the extracellular extracts of M1 cultures, but no significant (P < 0.01) reduction of ZEN was observed over the 12-h incubation period in the extracellular extracts of Nutrient Broth cultures. Results also indicated that some proteins in the extracellular extracts of M1 cultures were essential to ZEN degradation. The proteins in the extracellular extracts of M1 cultures and Nutrient Broth cultures were analyzed with SDS-PAGE, bands showing different intensities among the two extracellular extracts were processed for protein identification by MALDI-TOF/TOF/MS, and nine proteins from M1 cultures matched the database for Acinetobacter genus with great confidence. Furthermore, the function of some proteins identified is unknown or unconfirmed because of the lack of well-annotated genomic sequence data and protein data for Acinetobacter genus on the public database, but in further studies these data of proteins identified will be useful for screening the genes related to ZEN degradation.  相似文献   

8.
Fang X  Chen W  Xin Y  Zhang H  Yan C  Yu H  Liu H  Xiao W  Wang S  Zheng G  Liu H  Jin L  Ma H  Ruan S 《Journal of Proteomics》2012,75(13):4074-4090
  相似文献   

9.
Phee BK  Shin DH  Cho JH  Kim SH  Kim JI  Lee YH  Jeon JS  Bhoo SH  Hahn TR 《Proteomics》2006,6(12):3671-3680
Phytochrome-interacting proteins have been extensively studied to elucidate light-signaling pathway in plants. However, most of these proteins have been identified by yeast two-hybrid screening using the C-terminal domain of phytochromes. We used co-immunoprecipitation followed by proteomic analysis in plant cell extracts in an attempt to screen for proteins interacting either directly or indirectly with native holophytochromes including the N-terminal domain as well as C-terminal domain. A total of 16 protein candidates were identified, and were selected from 2-DE experiments. Using MALDI-TOF MS analysis, 7 of these candidates were predicted to be putative phytochrome A-interacting proteins and the remaining ones to be phytochrome B-interacting proteins. Among these putative interacting proteins, protein phosphatase type 2C (PP2C) and a 66-kDa protein were strong candidates as novel phytochrome-interacting proteins, as knockout mutants for the genes encoding these two proteins had impaired light-signaling functions. A transgenic knockout Arabidopsis study showed that a 66-kDa protein candidate regulates hypocotyl elongation in a light-specific manner, and altered cotyledon development under white light during early developmental stages. The PP2C knockout plants also displayed light-specific changes in hypocotyl elongation. These results suggest that co-immunoprecipitation, followed by proteomic analysis, is a useful method for identifying novel interacting proteins and determining real protein-protein interactions in the cell.  相似文献   

10.
11.
A basic, 51 kDa protein was purified from suspension-cultured tomato and shown to inhibit the hydrolytic activity of a xyloglucan-specific endoglucanase (XEG) from the fungus Aspergillus aculeatus. The tomato (Lycopersicon esculentum) protein, termed XEG inhibitor protein (XEGIP), inhibits XEG activity by forming a 1 : 1 protein:protein complex with a Ki approximately 0.5 nm. To our knowledge, XEGIP is the first reported proteinaceous inhibitor of any endo-beta-1,4-glucanase, including the cellulases. The cDNA encoding XEGIP was cloned and sequenced. Database analysis revealed homology with carrot extracellular dermal glycoprotein (EDGP), which has a putative role in plant defense. XEGIP also has sequence similarity to ESTs from a broad range of plant species, suggesting that XEGIP-like genes are widely distributed in the plant kingdom. Although Southern analysis detected only a single XEGIP gene in tomato, at least five other XEGIP-like tomato sequences have been identified. Similar small families of XEGIP-like sequences are present in other plants, including Arabidopsis. XEGIP also has some sequence similarity to two previously characterized proteins, basic globulin 7S protein from soybean and conglutin gamma from lupin. Several amino acids in the XEGIP sequence, notably 8 of the 12 cysteines, are generally conserved in all the XEGIP-like proteins we have encountered, suggesting a fundamental structural similarity. Northern analysis revealed that XEGIP is widely expressed in tomato vegetative tissues and is present in expanding and maturing fruit, but is downregulated during ripening.  相似文献   

12.
Microorganisms such as plant pathogens secrete glycoside hydrolases (GHs) to digest the polysaccharide chains of plant cell walls. The degradation of cell walls by these enzymes is a crucial step for nutrition and invasion. To protect the cell wall from these enzymes, plants secrete glycoside hydrolase inhibitor proteins (GHIPs). Xyloglucan-specific endo-β-1,4-glucanase (XEG), a member of GH family 12 (GH12), could be a great threat to many plants because xyloglucan is a major component of the cell wall in most plants. Understanding the inhibition mechanism of XEG by GHIP is therefore of great importance in the field of plant defense, but to date the mechanism and specificity of GHIPs remain unclear. We have determined the crystal structure of XEG in complex with extracellular dermal glycoprotein (EDGP), a carrot GHIP that inhibits XEG. The structure reveals that the conserved arginines of EDGP intrude into the active site of XEG and interact with the catalytic glutamates of the enzyme. We have also determined the crystal structure of the XEG-xyloglucan complex. These structures show that EDGP closely mimics the XEG-xyloglucan interaction. Although EDGP shares structural similarity to a wheat GHIP (Triticum aestivum xylanase inhibitor-IA (TAXI-IA)) that inhibits GH11 family xylanases, the arrangement of GH and GHIP in the XEG-EDGP complex is distinct from that in the xylanase-TAXI-IA complex. Our findings imply that plants have evolved structures of GHIPs to inhibit different GH family members that attack their cell walls.  相似文献   

13.
The changes in the protein profile in cultured human myoblasts after induction of differentiation were studied by proteomic techniques (a combination of O’Farrell two-dimensional electrophoresis and subsequent protein identification by MALDI-TOF MS and MS/MS analyses). Forty-one proteins have been identified, 25 of which were present in both proliferating and differentiating myoblasts, which allows them to be considered as myoblast housekeeping proteins. The changes in the distribution of some isoforms of tropomyosins, S100 proteins, cofilin, etc. have been revealed. The possible role of these changes in the cell protein profile in the realization of the program of skeletal muscle cell differentiation is discussed.  相似文献   

14.
Biotrophic filamentous plant pathogens frequently establish intimate contact with host cells through intracellular feeding structures called haustoria. To form and maintain these structures, pathogens must avoid or suppress defence responses and reprogramme the host cell. We used Arabidopsis whole-genome microarrays to characterize genetic programmes that are deregulated during infection by the biotrophic' oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis. Marked differences were observed between early and late stages of infection, but a gene encoding a putative leucine-rich repeat receptor-like kinase (LRR-RLK) was constantly up-regulated. We investigated the evolutionary history of this gene and noticed it being one of the first to have emerged from a common ancestral gene that gave rise to a cluster of 11 genes through duplications. The encoded LRR-RLKs harbour an extracellular malectin-like (ML) domain in addition to a short stretch of leucine-rich repeats, and are thus similar to proteins from the symbiosis receptor-like kinase family. Detailed expression analysis showed that the pathogen-responsive gene was locally expressed in cells surrounding the oomycete. A knockout mutant showed reduced downy mildew infection, but susceptibility was fully restored through complementation of the mutation, suggesting that the (ML-)LRR-RLK contributes to disease. According to the mutant phenotype, we denominated it Impaired Oomycete Susceptibility 1 (IOS1).  相似文献   

15.
16.
Euplotes encysticus is a species of Hypotrich ciliates, which form cyst wall by secreting the special substances on encounter of adverse environment. It has critical significance to study the component and mechanism underlying resting cyst, during resisting unfavorable conditions in dormancy induction. The present study was aimed to investigate the effects of cyst wall proteins of Euplotes encysticus by using biochemical methods. Therefore, protein extracts were separated by SDSPAGE, identified and analyzed by MALDI-TOF MS and Bioinformatics tools. We detected 42 cyst wall proteins, 26 were functional proteins and 16 proteins consist of unknown function; which is consistent with cyst wall specificity. These results partially revealed the components of resting cyst wall formed after the cells differentiation of Euplotes encysticus. In addition, our data suggested that the function of cyst wall proteins are more likely involved in the mechanical protection, signal transduction, material transport, protein degradation and energy metabolism to survival, with potentially importance implications in the molecular mechanism of eukaryocyte dormancy under stress condition.  相似文献   

17.
Shigella flexneri is an infectious pathogen that causes dysentery to human, which remains a serious threat to public health, particularly in developing countries. In this study, the global protein expression patterns of S. flexneri during transition from exponential growth to stationary phase in vitro were analyzed by using 2-D PAGE combined with MALDI-TOF MS. In a time-course experiment with five time points, the relative abundance of 49 protein spots varied significantly. Interestingly, a putative outer membrane protein YciD (OmpW) was almost not detected in the exponential growth phase but became one of the most abundant proteins in the whole stationary-phase proteome. Some proteins regulated by the global regulator FNR were also significantly induced (such as AnsB, AspA, FrdAB, and KatG) or repressed (such as AceEF, OmpX, SodA, and SucAB) during the growth phase transition. These proteins may be the key effectors of the bacterial cell cycle or play important roles in the cellular maintenance and stress responses. Our expression profile data provide valuable information for the study of bacterial physiology and form the basis for future proteomic analyses of this pathogen.  相似文献   

18.
Covalently linked cell wall proteins (CWPs) of the dimorphic fungus Candida albicans are implicated in virulence. We have carried out a comprehensive proteomic analysis of the covalently linked CWPs in exponential-phase yeast cells. Proteins were liberated from sodium dodecyl sulfate (SDS)-extracted cell walls and analyzed using immunological and advanced protein sequencing (liquid chromatography-tandem mass spectrometry [LC/MS/MS]) methods. HF-pyridine and NaOH were used to chemically release glycosylphosphatidylinositol-dependent proteins (GPI proteins) and mild alkali-sensitive proteins, respectively. In addition, to release both classes of CWPs simultaneously, cell walls were digested enzymatically with a recombinant beta-1,3-glucanase. Using LC/MS/MS, we identified 14 proteins, of which only 1 protein, Cht2p, has been previously identified in cell wall extracts by using protein sequencing methods. The 14 identified CWPs include 12 GPI proteins and 2 mild alkali-sensitive proteins. Nonsecretory proteins were absent in our cell wall preparations. The proteins identified included several functional categories: (i) five CWPs are predicted carbohydrate-active enzymes (Cht2p, Crh11p, Pga4p, Phr1p, and Scw1p); (ii) Als1p and Als4p are believed to be adhesion proteins. In addition, Pga24p shows similarity to the flocculins of baker's yeast. (iii) Sod4p/Pga2p is a putative superoxide dismutase and is possibly involved in counteracting host defense reactions. The precise roles of the other CWPs (Ecm33.3p, Pir1p, Pga29p, Rbt5p, and Ssr1p) are unknown. These results indicate that a substantial number of the covalently linked CWPs of C. albicans are actively involved in cell wall remodeling and expansion and in host-pathogen interactions.  相似文献   

19.
Articular cartilage is composed of cells and an extracellular matrix. The chondrocyte is the only cell type present in mature cartilage, and it is important in the control of cartilage integrity. There is currently a great lack of knowledge about the chondrocyte proteome. To solve this deficiency, we have obtained the first reference map of the human normal articular chondrocyte. Cells were isolated from cartilages obtained from autopsies without history of joint disease. Cultured cells were used to obtain protein extracts which were resolved by 2-DE and visualized by silver nitrate or CBB staining. Almost 200 spots were excised from the gels and analyzed using MALDI-TOF or MALDI-TOF/TOF MS. The analysis leads to the identification of 136 spots that represent 93 different proteins. A significant proportion of proteins are involved in cell organization (26%), energy (16%), protein fate (14%), metabolism (12%), and cell stress (12%). From all the identified proteins, annexins, vimentin, transgelin, destrin, cathepsin D, heat shock protein 47, and mitochondrial superoxide dismutase were more abundant in chondrocytes than in other types of mesenchymal cells such as Jurkat-T cells. As metabolic program of chondrocytes is altered in osteoarthritis and other rheumatic diseases, this proteomic map is an important tool for future studies on these pathologies.  相似文献   

20.
The wall-associated kinases (WAK), a family of five proteins that contain extracellular domains that can be linked to pectin molecules of the cell wall, span the plasma membrane and have a cytoplasmic serine/threonine kinase domain. Previous work has shown that a reduction in WAK protein levels leads to a loss of cell expansion, indicating that these receptor-like proteins have a role in cell shape formation. Here it is shown that a single wak2 mutation exhibits a dependence on sugars and salts for seedling growth. This mutation also reduces the expression and activity of vacuolar invertase, often a key factor in turgor and expansion. WAKs may thus provide a molecular mechanism linking cell wall sensing (via pectin attachment) to regulation of solute metabolism, which in turn is known to be involved in turgor maintenance in growing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号