首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrin alpha(IIb)beta(3) activation is critical for platelet physiology and is controlled by signal transduction through kinases and phosphatases. Compared with kinases, a role for phosphatases in platelet integrin alpha(IIb)beta(3) signaling is less understood. We report that the catalytic subunit of protein phosphatase 2A (PP2Ac) associates constitutively with the integrin alpha(IIb)beta(3) in resting platelets and in human embryonal kidney 293 cells expressing alpha(IIb)beta(3). The membrane proximal KVGFFKR sequence within the cytoplasmic domain of integrin alpha(IIb) is sufficient to support a direct interaction with PP2Ac. Fibrinogen binding to alpha(IIb)beta(3) during platelet adhesion decreased integrin-associated PP2A activity and increased the phosphorylation of a PP2A substrate, vasodilator associated phosphoprotein. Overexpression of PP2Ac(alpha) in 293 cells decreased alpha(IIb)beta(3)-mediated adhesion to immobilized fibrinogen. Conversely, small interference RNA mediated knockdown of endogenous PP2Ac(alpha) expression in 293 cells, enhanced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and accelerated alpha(IIb)beta(3) adhesion to fibrinogen and von Willebrand factor. Inhibition of ERK1/2, but not p38 activation, abolished the increased adhesiveness of PP2Ac (alpha)-depleted 293 cells to fibrinogen. Furthermore, knockdown of PP2A(calpha) expression in bone marrow-derived murine megakaryocytes increased soluble fibrinogen binding induced by protease-activated receptor 4-activating peptide. These studies demonstrate that PP2Ac (alpha) can negatively regulate integrin alpha(IIb)beta(3) signaling by suppressing the ERK1/2 signaling pathway.  相似文献   

2.
In metastatic cancer, high expression levels of vitronectin (VN) receptors (integrins), FAK, and ERK5 are reported. We hypothesized that integrin‐mediated ERK5 activation via FAK may play a pivotal role in cell adhesion, motility, and metastasis. ERK5 and FAK phosphorylation when metastatic MDA‐MB‐231 and PC‐3 cells were plated on VN was enhanced. Further experiments showed co‐immunoprecipitation of integrins β1, αVβ3, or αVβ5 with ERK5 and FAK. To gain better insight into the mechanism of ERK5, FAK, and VN receptors in cell adhesion and motility, we performed loss‐of‐function experiments using integrin blocking antibodies, and specific mutants of FAK and ERK5. Ectopic expression of dominant negative ERK5/AEF decreased ERK5 and FAK (Y397) phosphorylation, cell adhesion, and haptotactic motility (micromotion) on VN. Additionally, DN FAK expression attenuated ERK5 phosphorylation, cell adhesion, and motility. This study documents the novel finding that in breast and prostate cancer cells, ERK5 is a critical target of FAK in cell adhesion signaling. Using different cancer cells, our experiments unveil a novel mechanism by which VN receptors and FAK could promote cancer metastasis via ERK5 activation. J. Cell. Physiol. 219: 152–161, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Hematopoietic homeostasis depends on the maintenance of hematopoietic stem cells (HSCs), which are regulated within a specialized bone marrow (BM) niche. When HSC sense external stimuli, their adhesion status may be critical for determining HSC cell fate. The cell surface molecule, integrin αvβ3, is activated through HSC adhesion to extracellular matrix and niche cells. Integrin β3 signaling maintains HSCs within the niche. Here, we showed the synergistic negative regulation of the pro‐inflammatory cytokine interferon‐γ (IFNγ) and β3 integrin signaling in murine HSC function by a novel definitive phenotyping of HSCs. Integrin αvβ3 suppressed HSC function in the presence of IFNγ and impaired integrin β3 signaling mitigated IFNγ‐dependent negative action on HSCs. During IFNγ stimulation, integrin β3 signaling enhanced STAT1‐mediated gene expression via serine phosphorylation. These findings show that integrin β3 signaling intensifies the suppressive effect of IFNγ on HSCs, which indicates that cell adhesion via integrin αvβ3 within the BM niche acts as a context‐dependent signal modulator to regulate the HSC function under both steady‐state and inflammatory conditions.  相似文献   

4.
The β3 subunit of αIIbβ3 and αvβ3 integrins contains four epidermal growth factor (EGF)-like domains. Each domain harbors four disulfide bonds of which one is unique for integrins. We previously discerned a regulatory role of the EGF-4 Cys-560-Cys-583 unique bond for αIIbβ3 activation. In this study we further investigated the role of all four integrin unique bonds in both αIIbβ3 and αvβ3. We created β3 mutants harboring serine substitutions of each or both cysteines that disrupt the four unique bonds (Cys-437-Cys-457 in EGF-1, Cys-473-Cys-503 in EGF-2, Cys-523-Cys-544 in EGF-3, and Cys-560-Cys-583 in EGF-4) and transfected them into baby hamster kidney cells together with normal αv or αIIb. Flow cytometry was used to measure surface expression of αIIbβ3 and αvβ3 and their activity state by soluble fibrinogen binding. Most cysteine substitutions caused similarly reduced surface expression of both receptors. Disrupting all four unique disulfide bonds by single cysteine substitutions resulted in variable constitutive activation of αIIbβ3 and αvβ3. In contrast, whereas double C437S/C457S and C473S/C503S mutations yielded constitutively active αIIbβ3 and αvβ3, the C560S/C583S mutation did not, and the C523S/C544S mutation only yielded constitutively active αIIbβ3. Activation of C523S/C544S αvβ3 mutant by activating antibody and dithiothreitol was also impaired. Molecular dynamics of C523S/C544S β3 in αIIbβ3 but not in αvβ3 displayed an altered stable conformation. Our findings indicate that unique disulfide bonds in β3 differently affect the function of αIIbβ3 and αvβ3 and suggest a free sulfhydryl-dependent regulatory role for Cys-560-Cys-583 in both αIIbβ3 and αvβ3 and for Cys-523-Cys-544 only in αvβ3.  相似文献   

5.
Angiotensin II (AII) binds to G protein-coupled receptor AT(1) and stimulates extracellular signal-regulated kinase (ERK), leading to vascular smooth muscle cells (VSMC) proliferation. Proliferation of mammalian cells is tightly regulated by adhesion to the extracellular matrix, which occurs via integrins. To study cross-talk between G protein-coupled receptor- and integrin-induced signaling, we hypothesized that integrins are involved in AII-induced proliferation of VSMC. Using Oligo GEArray and quantitative RT-PCR, we established that messages for α(1)-, α(5)-, α(V)-, and β(1)-integrins are predominant in VSMC. VSMC were cultured on plastic dishes or on plates coated with either extracellular matrix or poly-d-lysine (which promotes electrostatic cell attachment independent of integrins). AII significantly induced proliferation in VSMC grown on collagen I or fibronectin, and this effect was blocked by the ERK inhibitor PD-98059, suggesting that AII-induced proliferation requires ERK activity. VSMC grown on collagen I or on fibronectin demonstrated approximately three- and approximately sixfold increases in ERK phosphorylation after stimulation with 100 nM AII, respectively, whereas VSMC grown on poly-d-lysine demonstrated no significant ERK activation, supporting the importance of integrin-mediated adhesion. AII-induced ERK activation was reduced by >65% by synthetic peptides containing an RGD (arginine-glycine-aspartic acid) sequence that inhibit α(5)β(1)-integrin, and by ~60% by the KTS (lysine-threonine-serine)-containing peptides specific for integrin-α(1)β(1). Furthermore, neutralizing antibody against β(1)-integrin and silencing of α(1), α(5), and β(1) expression by transfecting VSMC with short interfering RNAs resulted in decreased AII-induced ERK activation. This work demonstrates roles for specific integrins (most likely α(5)β(1) and α(1)β(1)) in AII-induced proliferation of VSMC.  相似文献   

6.
Fibronectin (FN) is the foremost proliferation‐associated extracellular matrix component promoting cell adhesion, migration, and survival. We examined the effect of FN on cell proliferation and the related signaling pathways in mouse embryonic stem (ES) cells. FN increased integrin β1, Src, focal adhesion kinase (FAK), and caveolin‐1 phosphorylation levels in a time‐dependent manner. Phosphorylation of Src, FAK, and caveolin‐1 was attenuated by integrin β1 neutralizing antibody. Integrin β1, Src, and FAK coimmunoprecipitated with caveolin‐1 in the presence of FN. In addition, FN increased RhoA and Rho kinase activation, which were completely blocked by PP2, FAK small interfering RNA (siRNA), caveolin‐1 siRNA, or the caveolar disruptor methyl‐β‐cyclodextrin (MβCD). FN also increased phosphorylation of Akt and ERK 1/2, which were significantly blocked by either FAK siRNA, caveolin‐1 siRNA, MβCD, GGTI‐286 (RhoA inhibitor), or Y‐27632 (Rho kinase inhibitor). FN‐induced increase of protooncogenes (c‐fos, c‐myc, and c‐Jun) and cell‐cycle regulatory proteins (cyclin D1/CDK4 and cyclin E/CDK2) expression levels were attenuated by FAK siRNA or caveolin‐1 siRNA. Furthermore, inhibition of each pathway such as integrin β1, Src, FAK, caveolin‐1, RhoA, Akt, and ERK 1/2 blocked FN‐induced [3H]‐thymidine incorporation. We conclude that FN stimulates mouse ES cell proliferation via RhoA‐PI3K/Akt‐ERK 1/2 pathway through caveolin‐1 phosphorylation. J. Cell. Physiol. 226: 267–275, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Products of prolidase [E.C. 3.4.13.9] activity, proline or hydroxyproline, contribute to up-regulation of hypoxia-inducible factor-1α (HIF-1α). Prolidase activity is regulated by β(1)-integrin signaling. We studied the effects of echistatin (a well-known disintegrin) and thrombin (a serine protease capable of activation of integrin α(2)β(1) receptor) on prolidase activity and expressions of prolidase, α(2)β(1)-integrin receptor, focal adhesion kinase (FAK), MAP-kinases (ERK(1) and ERK(2)), and nuclear HIF-1α in human colon adenocarcinoma (DLD-1) cells. It has been found that treatment of the cells with thrombin contributes to decrease in the expression of prolidase and simultaneously increase in its phosphorylation, resulting in maintenance of the enzyme activity. The phenomenon was accompanied by thrombin-dependent recovery of depressed autophosphorylation of FAK (pY(397)) under the effect of FAK inhibitor (1,2,4,5-benzenetetramine tetrahydrochloride). Although integrin α(2)β(1) receptor expression was not affected by thrombin, the signaling induced by thrombin up-regulated nuclear HIF-1α expression. It was accompanied by increase in the expression of MAP kinases, ERK1 and ERK2. It suggests that integrin-dependent signaling through p-FAK is up-regulated in DLD-1 cells and it may represent potential target for anti-cancer therapy.  相似文献   

8.
Deleted in Liver Cancer 1 (DLC1) is a RHO GTPase-activating protein (GAP) that negatively regulates RHO. Through its GAP activity, it modulates the actin cytoskeleton network and focal adhesion dynamics, ultimately leading to suppression of cell invasion and metastasis. Despite its presence in various structural and signaling components, little is known about how the activity of DLC1 is regulated at focal adhesions. Here we show that EGF stimulation activates the GAP activity of DLC1 through a concerted mechanism involving DLC1 phosphorylation by MEK/ERK and its subsequent dephosphorylation by protein phosphatase 2A (PP2A) and inhibition of focal adhesion kinase by MEK/ERK to allow the binding between DLC1 and PP2A. Phosphoproteomics and mutation studies revealed that threonine 301 and serine 308 on DLC1, known previously to be mutated in certain cancers, are required for DLC1-PP2A interaction and the subsequent activation of DLC1 upon their dephosphorylation. The intricate interplay of this “MEK/ERK-focal adhesion kinase-DLC1-PP2A” quartet provides a novel checkpoint in the spatiotemporal control of cell spreading and cell motility.  相似文献   

9.
The regulation of protein phosphorylation requires coordinated interaction between protein kinases and protein phosphatases (PPs). Recent evidence has shown that the Galphaq-protein-coupled metabotropic glutamate receptor (mGluR) 5 up-regulates phosphorylation of MAPK/ERK1/2. However, signaling mechanisms linking mGluR5 to ERK are poorly understood. In this study, roles of a major serine/threonine PP, PP2A, in this event were evaluated in cultured neurons. We found that the PP1/2A inhibitors okadaic acid and calyculin A mimicked the effect of the mGluR5 agonists (RS)-3,5-dihydroxyphenylglycine and (RS)-2-chloro-5-hydroxyphenylglycine in facilitating phosphorylation of ERK1/2 and its upstream kinase, MEK1/2, in a PP2A-dependent but not PP1-dependent manner. Co-administration of either inhibitor with an mGluR5 agonist produced additive phosphorylation of ERK1/2. Enzymatic assays showed a basal level of phosphatase activity of PP2A under normal conditions, and activation of mGluR5 selectively inhibited PP2A, but not PP1, activity. In addition, a physical association of the cytoplasmic C terminus of mGluR5 with PP2A was observed, and ligand activation of mGluR5 reduced mGluR5-PP2A binding. Additional mechanistic studies revealed that mGluR5 activation increased tyrosine (Tyr307) phosphorylation of PP2A, which was dependent on activation of a p60c-Src family tyrosine kinase, but not the epidermal growth factor receptor tyrosine kinase and resulted in dissociation of PP2A from mGluR5 and reduced PP2A activity. Together, we have identified a novel, mGluR5-triggered signaling mechanism involving use- and Src-dependent inactivation of PP2A, which contributes to mGluR5 activation of MEK1/2 and ERK1/2.  相似文献   

10.
Three divalent cation binding sites in the integrin β I domain have been shown to regulate ligand binding and adhesion. However, the degree of ligand binding and adhesion varies among integrins. The αLβ2 and α4β7 integrins show an increase in ligand binding affinity and adhesion when one of their ADMIDAS (adjacent to MIDAS, or the metal ion-dependent adhesion site) residues is mutated. By contrast, the α2β1, α5β1, and αIIbβ3 integrins show a decrease in binding affinity and adhesion when their ADMIDAS is mutated. Our study here indicated that integrin αVβ3 had lower affinity when the ADMIDAS was mutated. By comparing the primary sequences of these integrin subunits, we propose that one residue associated with the MIDAS (β3 Ala(252)) may account for these differences. In the β1 integrin subunit, the corresponding residue is also Ala, whereas in both β2 and β7 integrin subunits, it is Asp. We mutated the β3 residue Ala(252) to Asp and combined this mutant with mutations of one or two ADMIDAS residues. The mutant A252D showed reduced ligand binding affinity and adhesion. The ligand binding affinity and adhesion were increased when this A252D mutant was paired with mutations of one ADMIDAS residue. But when paired with mutations of two ADMIDAS residues the mutant nearly abolished ligand-binding ability, which was restored by the activating glycosylation mutation. Our study suggests that the variation of this residue contributes to the different ligand binding affinities and adhesion abilities among different integrin families.  相似文献   

11.
《Cellular signalling》2014,26(9):2008-2015
Integrin-mediated attachment to extracellular matrix (ECM) is crucial for cancer progression. Malignant T cells such as acute lymphoblastic leukemia (T-ALL) express β1 integrins, which mediate their interactions with ECM. However, the role of these interactions in T-ALL malignancy is still poorly explored. In the present study, we investigated the effect of collagen; an abundant ECM, on T-ALL survival and migration. We found that collagen through α2β1 integrin promotes the survival of T-ALL cell lines in the absence of growth factors. T-ALL cell survival by collagen is associated with reduced caspase activation and maintenance of Mcl-1 levels. Collagen activated both ERK and p38 MAPKs but only MAPK/ERK was required for collagen-induced T-ALL survival. However, we found that α2β1 integrin promoted T-ALL migration via both ERK and p38. Together these data indicate that α2β1 integrin signaling can represent an important signaling pathway in T-ALL pathogenesis and suggest that its blockade could be beneficial in T-ALL treatment.  相似文献   

12.
Crosstalk between integrins is involved in the regulation of various cell functions including cell migration. Here we identify the interplay between the integrins αvβ5/β6 and α2β1 during cell migration toward type I collagen. Human colon cancer cell lines HT29-D4 and SW480 were used as cell models. To improve our understanding of the consequences of αvβ5/β6 function on α2β1, we decreased the expression of αv integrins by either siRNA or lysosomal targeting strategies or inhibited their function using, as antagonists, blocking antibodies or disintegrins. In all cases, we observed a greatly enhanced α2β1 integrin-dependent cell migration associated with focal adhesion rearrangements and increased outside-in signaling as demonstrated by elevated phosphorylation of focal adhesion kinase and MAPKinase (ERK1 and ERK2). The αvβ5/β6-dependent limitation of α2β1 function could be overridden by TS2/16, an activating anti-β1 antibody. Interestingly, compared to control cells, the pharmacological inhibition of PI3Kinase or the siRNA-mediated knockdown of AKT had little effect on the high α2β1-mediated cell migration observed in the absence of αv integrins or following activation of α2β1 integrins by the TS2/16. These results suggest that integrins αvβ5/β6 repress α2β1 possibly by interfering with their activation process and thereby modify the cell signaling regulation of α2β1-mediated migration.  相似文献   

13.
GIT1 is an adaptor protein, which links signaling proteins to focal adhesion, thereby regulating cytoskeletal reorganization. Platelets undergo dynamic cytoskeletal reorganization during platelet activation, for which a large number of adaptor proteins are required. However, there has been no report of GIT1 in platelets. We found that GIT1 was abundantly expressed in platelets and underwent tyrosine phosphorylation downstream of integrin αIIbβ3, which was inhibited by the Src kinase inhibitor PP2. Furthermore, GIT1 constitutively associated with βPIX, a guanine nucleotide exchange factor (GEF) for Rac. The GIT1/βPIX complex associated with αIIbβ3, concomitantly with GIT1 tyrosine phosphorylation. Moreover, both GIT1 and αIIbβ3 rapidly translocated to the cytoskeletal fraction during platelet aggregation, which was not observed in the absence of aggregation. These results suggest that tyrosine phosphorylation of GIT1 by Src kinases may regulate cytoskeletal reorganization downstream of αIIbβ3 by bringing the Rac GEF βPIX to the vicinity of the integrin.  相似文献   

14.
Chen XQ  Wang B  Wu C  Pan J  Yuan B  Su YY  Jiang XY  Zhang X  Bao L 《Cell research》2012,22(4):677-696
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.  相似文献   

15.
Jeon KI  Jono H  Miller CL  Cai Y  Lim S  Liu X  Gao P  Abe J  Li JD  Yan C 《The FEBS journal》2010,277(24):5026-5039
The phenotypic change of vascular smooth muscle cells (VSMCs), from a 'contractile' phenotype to a 'synthetic' phenotype, is crucial for pathogenic vascular remodeling in vascular diseases such as atherosclerosis and restenosis. Ca(2+)/calmodulin-stimulated phosphodiesterase 1 (PDE1) isozymes, including PDE1A and PDE1C, play integral roles in regulating the proliferation of synthetic VSMCs. However, the underlying molecular mechanism(s) remain unknown. In this study, we explore the role and mechanism of PDE1 isoforms in regulating β-catenin/T-cell factor (TCF) signaling in VSMCs, a pathway important for vascular remodeling through promoting VSMC growth and survival. We found that inhibition of PDE1 activity markedly attenuated β-catenin/TCF signaling by downregulating β-catenin protein. The effect of PDE1 inhibition on β-catenin protein reduction is exerted via promoting glycogen synthase kinase 3 (GSK3)β activation, β-catenin phosphorylation and subsequent β-catenin protein degradation. Moreover, PDE1 inhibition specifically upregulated phosphatase protein phosphatase 2A (PP2A) B56γ subunit gene expression, which is responsible for the effects of PDE1 inhibition on GSK3β and β-catenin/TCF signaling. Furthermore, the effect of PDE1 inhibition on β-catenin was specifically mediated by PDE1A but not PDE1C isozyme. Interestingly, in synthetic VSMCs, PP2A B56γ, phospho-GSK3β and phospho-β-catenin were all found in the nucleus, suggesting that PDE1A regulates nuclear β-catenin protein stability through the nuclear PP2A-GSK3β-β-catenin signaling axis. Taken together, these findings provide direct evidence for the first time that PP2A B56γ is a critical mediator for PDE1A in the regulation of β-catenin signaling in proliferating VSMCs.  相似文献   

16.
Fibronectin receptor integrin-mediated cell adhesion triggers intracellular signaling events such as the activation of the Ras/mitogen-activated protein (MAP) kinase cascade. In this study, we show that the nonreceptor protein-tyrosine kinases (PTKs) c-Src and focal adhesion kinase (FAK) can be independently activated after fibronectin (FN) stimulation and that their combined activity promotes signaling to extracellular signal-regulated kinase 2 (ERK2)/MAP kinase through multiple pathways upstream of Ras. FN stimulation of NIH 3T3 fibroblasts promotes c-Src and FAK association in the Triton-insoluble cell fraction, and the time course of FN-stimulated ERK2 activation paralleled that of Grb2 binding to FAK at Tyr-925 and Grb2 binding to Shc. Cytochalasin D treatment of fibroblasts inhibited FN-induced FAK in vitro kinase activity and signaling to ERK2, but it only partially inhibited c-Src activation. Treatment of fibroblasts with protein kinase C inhibitors or with the PTK inhibitor herbimycin A or PP1 resulted in reduced Src PTK activity, no Grb2 binding to FAK, and lowered levels of ERK2 activation. FN-stimulated FAK PTK activity was not significantly affected by herbimycin A treatment and, under these conditions, FAK autophosphorylation promoted Shc binding to FAK. In vitro, FAK directly phosphorylated Shc Tyr-317 to promote Grb2 binding, and in vivo Grb2 binding to Shc was observed in herbimycin A-treated fibroblasts after FN stimulation. Interestingly, c-Src in vitro phosphorylation of Shc promoted Grb2 binding to both wild-type and Phe-317 Shc. In vivo, Phe-317 Shc was tyrosine phosphorylated after FN stimulation of human 293T cells and its expression did not inhibit signaling to ERK2. Surprisingly, expression of Phe-925 FAK with Phe-317 Shc also did not block signaling to ERK2, whereas FN-stimulated signaling to ERK2 was inhibited by coexpression of an SH3 domain-inactivated mutant of Grb2. Our studies show that FN receptor integrin signaling upstream of Ras and ERK2 does not follow a linear pathway but that, instead, multiple Grb2-mediated interactions with Shc, FAK, and perhaps other yet-to-be-determined phosphorylated targets represent parallel signaling pathways that cooperate to promote maximal ERK2 activation.  相似文献   

17.
The angiotensin II peptide analog [Sar(1),Ile(4),Ile(8)]AngII (SII) is a biased AT(1A) receptor agonist that stimulates receptor phosphorylation, β-arrestin recruitment, receptor internalization, and β-arrestin-dependent ERK1/2 activation without activating heterotrimeric G-proteins. To determine the scope of G-protein-independent AT(1A) receptor signaling, we performed a gel-based phosphoproteomic analysis of AngII and SII-induced signaling in HEK cells stably expressing AT(1A) receptors. A total of 34 differentially phosphorylated proteins were detected, of which 16 were unique to SII and eight to AngII stimulation. MALDI-TOF/TOF mass fingerprinting was employed to identify 24 SII-sensitive phosphoprotein spots, of which three (two peptide inhibitors of protein phosphatase 2A (I1PP2A and I2PP2A) and prostaglandin E synthase 3 (PGES3)) were selected for validation and further study. We found that phosphorylation of I2PP2A was associated with rapid and transient inhibition of a β-arrestin 2-associated pool of protein phosphatase 2A, leading to activation of Akt and increased phosphorylation of glycogen synthase kinase 3β in an arrestin signalsome complex. SII-stimulated PGES3 phosphorylation coincided with an increase in β-arrestin 1-associated PGES3 and an arrestin-dependent increase in cyclooxygenase 1-dependent prostaglandin E(2) synthesis. These findings suggest that AT(1A) receptors regulate a robust G protein-independent signaling network that affects protein phosphorylation and autocrine/paracrine prostaglandin production and that these pathways can be selectively modulated by biased ligands that antagonize G protein activation.  相似文献   

18.
Termination of signaling of activated G protein-coupled receptors (GPCRs) is essential for maintenance of cellular homeostasis. It is well established that β-arrestin redistributes to phosphorylated GPCRs and thereby facilitates desensitization of classical G protein-dependent signaling. β-Arrestin in turn serves as a scaffold to initiate a second wave of signaling. Here, we report a molecular mechanism that regulates the termination of unconventional β-arrestin-dependent GPCR signaling. We identify protein phosphatase 1β (PP1β) as a phosphatase for the cluster of phosphorylated threonines ((353)TTETQRT(359)) within the sst(2A) somatostatin receptor carboxyl terminus that mediates β-arrestin binding using siRNA knock-down screening. We show that PP1β-mediated sst(2A) dephosphorylation is initiated directly after receptor activation at or near the plasma membrane. As a functional consequence of diminished PP1β activity, we find that somatostatin- and substance P-induced but not epidermal growth factor-induced ERK activation was aberrantly enhanced and prolonged. Thus, we demonstrate a novel mechanism for fine tuning unconventional β-arrestin-dependent GPCR signaling in that recruitment of PP1β to activated GPCRs facilitates GPCR dephosphorylation and, hence, leads to disruption of the β-arrestin-GPCR complex.  相似文献   

19.
Although vinculin is used frequently as a marker for integrin-mediated focal adhesion complexes, how it regulates the activation of integrin is mostly unknown. In this study, we examined whether vinculin would activate integrin in Chinese hamster ovary (CHO) cells expressing human integrin αIIbβ3. Silencing of vinculin by lentiviral transduction with a short hairpin RNA sequence affected the binding of PAC-1 (an antibody recognizing activated human αIIbβ3) to a constitutively active form of αIIbβ3 (α6Bβ3) expressed on CHO cells, while its inhibitory effects were much weaker than those of talin-1. Overexpression of an active form of vinculin without intramolecular interactions, but not the full length one, induced PAC-1 binding to native αIIbβ3 expressed on CHO cells in a manner dependent on talin-1. On the other hand, silencing of talin-1, but not vinculin, failed to induce cell spreading of α6Bβ3-CHO cells on fibrinogen, even in the presence of PT 25-2, a monoclonal antibody that activates αIIbβ3. Thus, an active form of vinculin could induce αIIbβ3 inside-out signaling through the actions of talin-1, while vinculin was dispensable for outside-in signaling.  相似文献   

20.
《Cellular signalling》2014,26(3):594-602
Heat shock protein 27 (HSP27) regulates critical cellular functions such as development, differentiation, cell growth and apoptosis. A variety of stimuli induce the phosphorylation of HSP27, which affects its cellular functions. However, most previous studies focused on the role of HSP27 protein itself in apoptosis, the particular role of its phosphorylation state in signaling transduction remains largely unclear. In the present study, we reported that HSP27 phosphorylation modulated TRAIL-triggered pro-survival signaling transduction. In HeLa cells, suppression of HSP27 phosphorylation by specific inhibitor KRIBB3 or MAPKAPK2 (MK2) knockdown and by overexpression of non-phosphorylatable HSP27(3A) mutant demonstrated that hindered HSP27 phosphorylation enhanced the TRAIL-induced apoptosis. In addition, reduced HSP27 phosphorylation by KRIBB3 treatment or MK2 knockdown attenuated the TRAIL-induced activation of Akt and ERK survival signaling through suppressing the phosphorylation of Src. By overexpression of HSP27(15A) or HSP27(78/82A) phosphorylation mutant, we further showed that phosphorylation of HSP27 at serine 78/82 residues was essential to TRAIL-triggered Src-Akt/ERK signaling transduction. Co-immunoprecipitation and confocal microscopy showed that HSP27 interacted with Src and scaffolding protein β-arrestin2 in response of TRAIL stimulation and suppression of HSP27 phosphorylation apparently disrupted the TRAIL-induced interaction of HSP27 and Src or interaction of HSP27 and β-arrestin2. We further demonstrated that β-arrestin2 mediated HSP27 action on TRAIL-induced Src activation, which was achieved by recruiting signaling complex of HSP27/β-arrestin2/Src in response to TRAIL. Taken together, our study revealed that HSP27 phosphorylation modulates TRAIL-triggered activation of Src-Akt/ERK pro-survival signaling via interacting with β-arrestin2 in HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号