首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Osteoblasts are specialized mesenchymal cells that are responsible for bone formation. In this study, we examine the role of GATA4 in osteoblast differentiation. GATA4 was abundantly expressed in preosteoblast cells and gradually down-regulated during osteoblast differentiation. Overexpression of GATA4 in osteoblastic cells inhibited alkaline phosphatase activity and nodule formation in osteogenic conditioned cell culture system. In addition, overexpression of GATA4 attenuated expression of osteogenic marker genes, including Runx2, alkaline phosphatase, bone sialoprotein, and osteocalcin, all of which are important for osteoblast differentiation and function. Overexpression of GATA4 attenuated Runx2 promoter activity, whereas silencing of GATA4 increased Runx2 induction. We found that GATA4 interacted with Dlx5 and subsequently decreased Dlx5 binding activity to Runx2 promoter region. Our data suggest that GATA4 acts as a negative regulator in osteoblast differentiation by downregulation of Runx2. [BMB Reports 2014; 47(8): 463-468]  相似文献   

3.
4.
5.
6.
7.
8.
9.
This study examined the role of AMPK activation in osteoblast differentiation and the underlining mechanism. An AMPK activator (AICAR or metformin) stimulated osteoblast differentiation with increases in ALP and OC protein production as well as the induction of AMPK phosphorylation in MC3T3E1 cells. In addition, metformin induced the phosphorylation of Smad1/5/8 and expression of Dlx5 and Runx2, whereas compound C or dominant negative AMPK inhibited these effects. Transient transfection studies also showed that metformin increased the BRE-Luc and Runx2-Luc activities, which were inhibited by DN-AMPK or compound C. Down-regulation of Dlx5 expression by siRNA suppressed metformin-induced Runx2 expression. These results suggest that the activation of AMPK stimulates osteoblast differentiation via the regulation of Smad1/5/8-Dlx5-Runx2 signaling pathway.  相似文献   

10.
11.
12.
13.
14.
Cbfa1/Runx2与成骨细胞分化调控   总被引:9,自引:0,他引:9  
成骨细胞是由间充质干细胞经骨原细胞和前成骨细胞分化而来的。近年来已鉴定转录因子Cbfal(core binding factor α1)是成骨细胞分化和骨形成的关键调控因子。在成骨细胞分化的过程中,Cbfal通过调控成骨细胞特异性细胞外基质蛋白基因的表达和成骨细胞周期参与成骨细胞的分化过程。新近发现Cbfal能通过自身的PST序列区域与Smads结合形成复合物共同参与成骨细胞的分化调控。  相似文献   

15.
16.
17.
18.
19.
We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号