共查询到20条相似文献,搜索用时 0 毫秒
1.
Soo Hwa Jang Seong-Geun Hong Young Min Bae Scott M. O’Grady Kyung-Sun Kang So Yeong Lee 《Biochemical and biophysical research communications》2009,384(2):180-32
Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation. 相似文献
2.
Da Hye Hong Youn Kyoung Son Hongliang Li In Duk Jung Yeong-Min Park Won-Kyo Jung Han Sol Kim Il-Whan Choi Won Sun Park 《Biochemical and biophysical research communications》2014
We investigated the effect of the calmodulin inhibitor and antipsychotic drug trifluoperazine on voltage-dependent K+ (Kv) channels. Kv currents were recorded by whole-cell configuration of patch clamp in freshly isolated rabbit coronary arterial smooth muscle cells. The amplitudes of Kv currents were reduced by trifluoperazine in a concentration-dependent manner, with an apparent IC50 value of 1.58 ± 0.48 μM. The rate constants of association and dissociation by trifluoperazine were 3.73 ± 0.33 μM−1 s−1 and 5.84 ± 1.41 s−1, respectively. Application of trifluoperazine caused a positive shift in the activation curve but had no significant effect on the inactivation curve. Furthermore, trifluoperazine provoked use-dependent inhibition of the Kv current under train pulses (1 or 2 Hz). These findings suggest that trifluoperazine interacts with Kv current in a closed state and inhibits Kv current in the open state in a time- and use-dependent manner, regardless of its function as a calmodulin inhibitor and antipsychotic drug. 相似文献
3.
Villalonga N Escalada A Vicente R Sánchez-Tilló E Celada A Solsona C Felipe A 《Biochemical and biophysical research communications》2007,352(4):913-918
Voltage-dependent K(+) (Kv) channels are involved in the immune response. Kv1.3 is highly expressed in activated macrophages and T-effector memory cells of autoimmune disease patients. Macrophages are actively involved in T-cell activation by cytokine production and antigen presentation. However, unlike T-cells, macrophages express Kv1.5, which is resistant to Kv1.3-drugs. We demonstrate that mononuclear phagocytes express different Kv1.3/Kv1.5 ratios, leading to biophysically and pharmacologically distinct channels. Therefore, Kv1.3-based treatments to alter physiological responses, such as proliferation and activation, are impaired by Kv1.5 expression. The presence of Kv1.5 in the macrophagic lineage should be taken into account when designing Kv1.3-based therapies. 相似文献
4.
Eun A. Ko Won Sun Park Amy L. Firth Nari Kim Jin Han 《Progress in biophysics and molecular biology》2010,103(1):95-101
In this review, the pathological alteration and clinical relevance of voltage-gated K+ (Kv) channels and their specific regulation by protein kinase-dependent signaling in vascular smooth muscle cells are described, particularly focusing on the pulmonary vasculature. The physiological relevance, channel characteristics, pharmacological modulation, and expression of Kv channels vary between different arterial beds and between subdivisions of arteries within those vascular beds. Although detailed signaling cascades regulating Kv channels are not clearly elucidated, it is known that the Kv channels in vascular smooth muscle cells can be tightly regulated by protein kinases C (PKC) and A (PKA). Alterations in Kv channel expression and function has been noted in pathological and pathophysiological conditions including hypertension (pulmonary and systemic), in diabetes and in individuals subjected to prolonged hypoxia (high altitude living). Vascular Kv channels are potential therapeutic targets in diseases such as pulmonary arterial hypertension and, therefore, it is important to understand the specific pharmacological modulation of Kv channel isoforms in different vascular beds. 相似文献
5.
Voltage-gated potassium (Kv) channels exist in the membranes of all living cells. Of the functional classes of Kv channels,
the Kv1 channels are the largest and the best studies and are known to play essential roles in excitable cell function, providing
an essential counterpoin to the various inward currents that trigger excitability. The serum potassium concentration [K
o
+
] is tightly regulated in mammals and disturbances can cause significant functional alterations in the electrical behavior
of excitable tissues in the nervous system and the heart. At least some of these changes may be mediated by Kv channels that
are regulated by changes in the extracellular K+ concentration. As well as changes in serum [K
o
+
], tissue acification is a frequent pathological condition known to inhibit Shaker and Kv1 voltage-gated potassium channels. In recent studies, it has become recognized that the acidification-induced inhibition
of some Kv1 channels is K
o
+
-dependent, and the suggestion has been made that pH and K
o
+
may regulate the channels via a common mechanism. Here we discuss P/C type inactivation as the common pathway by which some
Kv channels become unavailable at acid pH and lowered K
o
+
. It is suggested that binding of protons to a regulatory site in the outer pore mouth of some Kv channels favors transitions
to the inactivated state, whereas K+ ions exert countereffects. We suggest that modulation of the number of excitable voltage-gated K+ channels in the open vs inactivated states of the channels by physiological H+ and K+ concentrations represents an important pathway to control Kv channel function in health and disease. 相似文献
6.
Florian Lang Christos Stournaras 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1638)
Ion transport across the cell membrane mediated by channels and carriers participate in the regulation of tumour cell survival, death and motility. Moreover, the altered regulation of channels and carriers is part of neoplastic transformation. Experimental modification of channel and transporter activity impacts tumour cell survival, proliferation, malignant progression, invasive behaviour or therapy resistance of tumour cells. A wide variety of distinct Ca2+ permeable channels, K+ channels, Na+ channels and anion channels have been implicated in tumour growth and metastasis. Further experimental information is, however, needed to define the specific role of individual channel isoforms critically important for malignancy. Compelling experimental evidence supports the assumption that the pharmacological inhibition of ion channels or their regulators may be attractive targets to counteract tumour growth, prevent metastasis and overcome therapy resistance of tumour cells. This short review discusses the role of Ca2+ permeable channels, K+ channels, Na+ channels and anion channels in tumour growth and metastasis and the therapeutic potential of respective inhibitors. 相似文献
7.
Diclofenac-induced peripheral antinociception is associated with ATP-sensitive K+ channels activation 总被引:2,自引:0,他引:2
In order to investigate to the contribution of K+ channels on the peripheral antinociception induced by diclofenac, we evaluated the effect of several K+ channel blockers, using the rat paw pressure test, in which sensitivity is increased by intraplantar injection (2 microg) of prostaglandin E2. Diclofenac administered locally into the right hindpaw (25, 50, 100 and 200 microg) elicited a dose-dependent antinociceptive effect which was demonstrated to be local, since only higher doses produced an effect when injected in the contralateral paw. This blockade of PGE2 mechanical hyperalgesia induced by diclofenac (100 microg/paw) was antagonized in a dose-dependent manner by intraplantar administration of the sulphonylureas glibenclamide (40, 80 and 160 microg) and tolbutamide (80, 160 and 320 microg), specific blockers of ATP-sensitive K+ channels, and it was observed even when the hyperalgesic agent used was carrageenin, while the antinociceptive action of indomethacin (200 microg/paw), a typical cyclo-oxygenase inhibitor, over carrageenin-induced hyperalgesia was not affected by this treatment. Charybdotoxin (2 microg/paw), a blocker of large conductance Ca2+-activated K+ channels and dequalinium (50 microg/paw), a selective blocker of small conductance Ca2+-activated K+ channels, did not modify the effect of diclofenac. This effect was also unaffected by intraplantar administration of non-specific voltage-dependent K+ channel blockers tetraethylammonium (1700 microg) and 4-aminopyridine (100 microg) or cesium (500 microg), a non-specific K+ channel blocker. The peripheral antinociceptive effect induced by diclofenac was antagonized by NG-Nitro L-arginine (NOarg, 50 microg/paw), a NO synthase inhibitor and methylene blue (MB, 500 microg/paw), a guanylate cyclase inhibitor, and this antagonism was reversed by diazoxide (300 microg/paw), an ATP-sensitive K+ channel opener. We also suggest that an endogenous opioid system may not be involved since naloxone (50 microg/paw) did not affect diclofenac-induced antinociception in the PGE2-induced hyperalgesia model. This study provides evidence that the peripheral antinociceptive effect of diclofenac may result from activation of ATP-sensitive K+ channels, possible involving stimulation of L-arginine/NO/cGMP pathway, while Ca2+-activated K+ channels, voltage-dependent K+ channels as well as endogenous opioids appear not to be involved in the process. 相似文献
8.
Cristiana Picco Gerardo Corzo Lourival D. Possani Gianfranco Prestipino 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
The peptide discrepin from the α-KTx15 subfamily of scorpion toxins preferentially affects transient A-type potassium currents, which regulate many aspects of neuronal function in the central nervous system. However, the specific Kv channel targeted by discrepin and the molecular mechanism of interaction are still unknown.Methods
Different variant peptides of discrepin were chemically synthesized and their effects were studied using patch clamp technique on rat cerebellum granular cells (CGC) and HEK cells transiently expressing Kv4.3 channels.Results
Functional analysis indicated that nanomolar concentrations of native discrepin blocked Kv4.3 expressed channels, as previously observed in CGC. Similarly, the apparent affinities of all mutated peptides for Kv4.3 expressed channels were analogous to those found in CGC. In particular, in the double variant [V6K, D20K] the apparent affinity increased about 10-fold, whereas in variants carrying a deletion (ΔK13) or substitution (K13A) at position K13, the blockage was removed and the apparent affinity decreased more than 20-fold.Conclusion
These results indicate that Kv4.3 is likely the target of discrepin and highlight the importance of the basic residue K13, located in the α-helix of the toxin, for current blockage.General significance
We report the first example of a Kv4 subfamily potassium channel blocked by discrepin and identify the amino acid residues responsible for the blockage. The availability of discrepin variant peptides stimulates further research on the functions and pharmacology of neuronal Kv4 channels and on their possible roles in neurodegenerative disorders. 相似文献9.
Legros C Martin-Eauclaire MF Pongs O Bougis PE 《Biochemical and biophysical research communications》2007,353(4):1086-1090
In this work, we used a panel prokaryote/eukaryote K+ channel chimeras to generate K+ channel arrays. Their behaviour in solution was compared with that when spotted on a nitrocellulose-supported film and their responses to selective high affinity ligands, including polypeptide toxins and TEA, were studied. 相似文献
10.
Han X Xi L Wang H Huang X Ma X Han Z Wu P Ma X Lu Y Wang G Zhou J Ma D 《Biochemical and biophysical research communications》2008,375(2):205-209
Diverse types of voltage-gated potassium (K+) channels have been shown to be involved in regulation of cell proliferation. The maxi-conductance Ca2+-activated K+ channels (BK channels) may play an important role in the progression of human cancer. To explore the role of BK channels in regulation of apoptosis in human ovarian cancer cells, the effects of the specific BK channel activator NS1619 on induction of apoptosis in A2780 cells were observed. Following treatment with NS1619, cell proliferation was measured by MTT assay. Apoptosis of A2780 cells pretreated with NS1619 was detected by agarose gel electrophoresis of cellular DNA and flow cytometry. Our data demonstrate that NS1619 inhibits the proliferation of A2780 cells in a dosage and time dependent manner IC50 = 31.1 μM, for 48 h pretreatment and induces apoptosis. Western blot analyses showed that the anti-proliferation effect of NS1619 was associated with increased expression of p53, p21, and Bax. These results indicate that BK channels play an important role in regulating proliferation of human ovarian cancer cells and may induce apoptosis through induction of p21Cip1 expression in a p53-dependent manner. 相似文献
11.
Identification of two types of ATP-sensitive K+ channels in rat ventricular myocytes 总被引:2,自引:0,他引:2
The ATP-sensitive K(+) (K(ATP)) channels are known to provide a functional linkage between the electrical activity of the cell membrane and metabolism. Two types of inwardly rectifying K(+) channel subunits (i.e., Kir6.1 and Kir6.2) with which sulfonylurea receptors are associated were reported to constitute the K(ATP) channels. In this study, we provide evidence to show two types of K(ATP) channels with different biophysical properties functionally expressed in isolated rat ventricular myocytes. Using patch-clamp technique, we found that single-channel conductance for the different two types of K(ATP) channels in these cells was 57 and 21 pS. The kinetic properties, including mean open time and bursting kinetics, did not differ between these two types of K(ATP) channels. Diazoxide only activated the small-conductance K(ATP) channel, while pinacidil and dinitrophenol stimulated both channels. Both of these K(ATP) channels were sensitive to block by glibenclamide. Additionally, western blotting, immunochemistry, and RT-PCR revealed two types of Kir6.X channels, i.e., Kir6.1 and Kir6.2, in rat ventricular myocytes. Single-cell Ca(2+) imaging also revealed that similar to dinitrophenol, diazoxide reduced the concentration of intracellular Ca(2+). The present results suggest that these two types of K(ATP) channels may functionally be related to the activity of heart cells. 相似文献
12.
Accumulating evidence suggests that c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in renal ischemia/reperfusion injury. However, the downstream mechanism that accounts for the proapoptotic actions of JNK during renal ischemia/reperfusion has not been elucidated. We report that SP600125, a potent, cell-permeable, selective, and reversible inhibitor of c-Jun N-terminal kinase (JNK), potently decreased renal epithelial tubular cell apoptosis induced by renal ischemia/reperfusion via suppression of the extrinsic pathway. This corresponds to the decrease in JNK phosphorylation at 20 min and c-Jun phosphorylation (Ser63/73) at 3 h after renal ischemia. Additionally, SP600125 attenuated the increased expression of FasL induced by ischemia/reperfusion at 3 h. The administration of SP600125 prior to ischemia was also protective. Thus, our findings imply that SP600125 can inhibit the activation of the JNK-c-Jun-FasL pathway and protect renal tubular epithelial cells against ischemia/reperfusion-induced apoptosis. Taken together, these results indicate that targeting the JNK pathway provides a promising therapeutic approach for renal ischemia/reperfusion injury. 相似文献
13.
In the last 15 years, remarkable progress has been realized in identifying the genes that encode the ion-transporting proteins involved in exocrine gland function, including salivary glands. Among these proteins, Ca2+-dependent K+ channels take part in key functions including membrane potential regulation, fluid movement and K+ secretion in exocrine glands. Two K+ channels have been identified in exocrine salivary glands: (1) a Ca2+-activated K+ channel of intermediate single channel conductance encoded by the KCNN4 gene, and (2) a voltage- and Ca2+-dependent K+ channel of large single channel conductance encoded by the KCNMA1 gene. This review focuses on the physiological roles of Ca2+-dependent K+ channels in exocrine salivary glands. We also discuss interesting recent findings on the regulation of Ca2+-dependent K+ channels by protein–protein interactions that may significantly impact exocrine gland physiology. 相似文献
14.
Potassium channels 总被引:4,自引:0,他引:4
MacKinnon R 《FEBS letters》2003,555(1):62-65
The atomic structures of K+ channels have added a new dimension to our understanding of K+ channel function. I will briefly review how structures have influenced our views on ion conduction, gating of the pore, and voltage sensing. 相似文献
15.
Summary Voltage-clamped steps in the electric potential difference (PD) across the membrane in cells of the green alga,Chara inflata, cause voltage- and time-dependent current flows, interpreted to arise from opening and closing of various types of ion channel in the membrane. With cells in the light, these channels are normally closed, and the resting PD is probably determined by the operation of an H+ efflux pump. Positive steps in PD from the resting level often caused the opening of K+ channels with sigmoid kinetics. The channels began to show opening when the PD–120 mV for an external concentration of K+ of 1.0mm. Return of the PD to the resting level caused closing of the channels with complex kinetics. Various treatments of the cell could cause these K+ channels to open, and remain open continuously, with the PD then lying closer to the Nernst PD for K+. The K+ channels have been identified by the blocking effects of TEA+. Another group of channels, probably Cl– and Ca2+ associated with the action potential open when the PD is stepped to values less negative than –50 mV. Negative steps from the resting PD cause the slow opening, with a time course of seconds, of yet another type of channel, probably Cl–. 相似文献
16.
A family of auxiliary beta subunits coassemble with Slo alpha subunit to form Ca(2)+-regulated, voltage-activated BK-type K(+) channels. The beta subunits play an important role in regulating the functional properties of the resulting channel protein, including apparent Ca(2)+ dependence and inactivation. The beta3b auxiliary subunit, when coexpressed with the Slo alpha subunit, results in a particularly rapid ( approximately 1 ms), but incomplete inactivation, mediated by the cytosolic NH(2) terminus of the beta3b subunit (Xia et al. 2000). Here, we evaluate whether a simple block of the open channel by the NH(2)-terminal domain accounts for the inactivation mechanism. Analysis of the onset of block, recovery from block, time-dependent changes in the shape of instantaneous current-voltage curves, and properties of deactivation tails suggest that a simple, one step blocking reaction is insufficient to explain the observed currents. Rather, blockade can be largely accounted for by a two-step blocking mechanism (C(n) <---> O(n) <---> O(*)(n) <---> I(n)) in which preblocked open states (O*(n)) precede blocked states (I(n)). The transitions between O* and I are exceedingly rapid accounting for an almost instantaneous block or unblock of open channels observed with changes in potential. However, the macroscopic current relaxations are determined primarily by slower transitions between O and O*. We propose that the O to O* transition corresponds to binding of the NH(2)-terminal inactivation domain to a receptor site. Blockade of current subsequently reflects either additional movement of the NH(2)-terminal domain into a position that hinders ion permeation or a gating transition to a closed state induced by binding of the NH(2) terminus. 相似文献
17.
The K+ uptake pathways in yeast mitochondria are still undefined. Nonetheless, the K+-mediated mitochondrial swelling observed in the absence of phosphate (PO4) and in the presence of a respiratory substrate has led to propose that large K+ movements occur in yeast mitochondria. Thus, the uptake of K+ by isolated yeast mitochondria was evaluated. Two parallel experiments were conducted to evaluate K+ transport; these were mitochondrial swelling and the uptake of the radioactive K+ analog 86Rb+. The opening of the yeast mitochondrial unspecific channel (YMUC) was regulated by different PO4 concentrations. The high protein concentrations used to measure 86Rb+ uptake resulted in a slight stabilization of the transmembrane potential at 0.4 mM PO4 but not at 0 or 4 mM PO4. At 4 mM PO4 swelling was inhibited while, in contrast, 86Rb+ uptake was still observed. The results suggest that an energy-dependent K+ uptake mechanism was unmasked when the YMUC was closed. To further analyze the properties of this K+ uptake system, the Mg2+ and quinine sensitivity of both swelling and 86Rb+ uptake were evaluated. Under the conditions where the unspecific pore was closed, K+ transport sensitivity to Mg2+ and quinine increased. In addition, when Zn2+ was added as an antiport inhibitor, uptake of 86Rb+ increased. It is suggested that in yeast mitochondria, the K+ concentration is highly regulated by the equilibrium of uptake and exit of this cation through two specific transporters. 相似文献
18.
Son YK Park WS Kim SJ Earm YE Kim N Youm JB Warda M Kim E Han J 《Biochemical and biophysical research communications》2006,341(4):931-937
We examined the effects of the protein kinase A (PKA) inhibitor H-89 on voltage-dependent K(+) (K(V)) currents in freshly isolated rabbit coronary arterial smooth muscle cells, using a whole-cell patch clamp technique. H-89 inhibited the K(V) current in a concentration-dependent manner, with a K(d) value of 1.02 microM. However, the PKA inhibitors KT 5720 and Rp-8-CPT-cAMPS did not significantly alter the K(V) current or the inhibitory effects of H-89 on the K(V) current. Moreover, H-85, a structurally similar but inactive analog of H-89, showed similar inhibitory effects on the K(V) channel. H-89 had no effect on the voltage-dependency of activation or inactivation, or on recovery kinetics. These results suggest that in rabbit coronary arterial smooth muscle cells, H-89 inhibits the K(V) current directly by blocking the pore cavity, an effect independent of PKA inhibition. 相似文献
19.
Sun Park W Kyoung Son Y Kim N Boum Youm J Joo H Warda M Ko JH Earm YE Han J 《Biochemical and biophysical research communications》2006,340(4):1104-1110
The effects of the protein kinase A (PKA) inhibitor H-89 on ATP-sensitive K+ (KATP) and inward rectifier K+ (Kir) currents were examined in rabbit coronary arterial smooth muscle cells using the patch clamp technique. The H-89, in a dose-dependent manner, inhibited KATP and Kir currents with apparent Kd values of 1.19+/-0.18 and 3.78+/-0.37 microM, respectively. H-85, which is considered as an inactive form of H-89, inhibited KATP and Kir currents, similar to the result of H-89. KATP and Kir currents were not affected by either Rp-8-CPT-cAMPs, which is a membrane-permeable selective PKA inhibitor, or KT 5720, which is also known as a PKA inhibitor. Also, these two drugs did not significantly alter the effects of H-89 on the KATP and Kir currents. These results suggest that H-89 directly inhibits the KATP and Kir currents of rabbit coronary arterial smooth muscle cells independently of PKA inhibition. 相似文献
20.
A variety of extracellular stimuli regulate cellular responses via membrane receptors. A well-known group of seven-transmembrane domain-containing proteins referred to as G protein-coupled receptors, directly couple with the intracellular GTP-binding proteins (G proteins) across cell membranes and trigger various cellular responses by regulating the activity of several enzymes as well as ion channels. Many specific populations of ion channels are directly controlled by G proteins; however, indirect modulation of some channels by G protein-dependent phosphorylation events and lipid metabolism is also observed. G protein-mediated diverse modifications affect the ion channel activities and spatio-temporally regulate membrane potentials as well as of intracellular Ca2 + concentrations in both excitatory and non-excitatory cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé. 相似文献