首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ERK (extracellular signal-regulated kinase) MAPK (mitogen-activated protein kinase) cascade (Raf-MEK-ERK) mediates mitogenic signalling, and is frequently hyperactivated by Ras oncogenes in human cancer. The entire range of activities of multifunctional Ras in carcinogenesis remains elusive. Here we report that the ERK pathway is downregulated by MEK (MAPK-ERK kinase) SUMOylation, which is inhibited by oncogenic Ras. MEK SUMOylation blocked ERK activation by disrupting the specific docking interaction between MEK and ERK. Expression of un-SUMOylatable MEK enhanced ERK activation, cell differentiation, proliferation and malignant transformation by oncogenic ErbB2 or Raf, but not by active Ras. Interestingly, MEK SUMOylation was abrogated in cancer cells harbouring Ras mutations. Oncogenic Ras inhibits MEK SUMOylation by impairing the function of the MEKK1 MAPKKK as a SUMO-E3 ligase specific for MEK. Furthermore, forced enhancement of MEK SUMOylation suppressed Ras-induced cell transformation. Thus, oncogenic Ras efficiently activates the ERK pathway both by activating Raf and by inhibiting MEK SUMOylation, thereby inducing carcinogenesis.  相似文献   

3.
Cellular senescence is an irreversible state of terminal growth arrest that requires functional p53. Acting to block tumor formation, induction of senescence has also been demonstrated to contribute to tumor clearance via the immune system following p53 reactivation.1, 2 The Hdm2-antagonist, Nutlin-3a, has been shown to reactivate p53 and induce a quiescent state in various cancer cell lines,3, 4 similar to the G1 arrest observed upon RNAi targeting of Hdm2 in MCF7 breast cancer.5 In the present study we show that HdmX, a negative regulator of p53, impacts the senescence pathway. Specifically, overexpression of HdmX blocks Ras mediated senescence in primary human fibroblasts. The interaction of HdmX with p53 and the re-localization of HdmX to the nucleus through Hdm2 association appear to be required for this activity. Furthermore, inhibiting HdmX in prostate adenocarcinoma cells expressing wild-type p53, mutant Ras and high levels of HdmX induced cellular senescence as measured by an increase in irreversible b-galactosidase staining. Together these results suggest that HdmX overexpression may contribute to tumor formation by blocking senescence and that targeting HdmX may represent an attractive anti-cancer therapeutic approach.  相似文献   

4.
An HJ  Lee H  Paik SG 《Molecules and cells》2011,31(6):579-583
We have previously shown that Ras mediates NO-induced BNIP3 expression via the MEK-E RK-HIF-1 pathway i n mouse macrophages, and that NO-induced death results at least in part from the induction of BNIP3. In the present study, we describe another aspect of Ras regulation of BNIP3 expression in pancreatic cancer cells. Human BNIP3 promoter-driven luciferase activity was efficiently induced by activated Ras in AsPC-1, Miapaca-2, PK-1 and PANC-1 cells. However, expression of endogenous BNIP3 was not induced, and BNIP3 up-regulation by hypoxia was also inhibited. Treatment of the cells with the DNMT inhibitor, 5-aza-2-deoxycytidine, restored BNIP3 induction, indicating that DNA methylation of the BNIP3 promoter was responsible for the inhibition of BNIP3 induction. Furthermore, inhibition of the MEK pathway with U0126 reduced DNMT1 expression, but not that of DNMT3a and 3b, and restored the hypoxia-inducibility of BNIP3, suggesting that the DNA methylation of the BNIP3 promoter was mediated by DNMT1 via the MEK pathway.  相似文献   

5.
TC21 is a member of the Ras superfamily of small GTP-binding proteins and, like Ras, has been implicated in the regulation of growth-stimulating pathways. Point mutations introduced into TC21 based on equivalent H-Ras oncogenic mutations are transforming in cultured cells, and oncogenic mutations in TC21 have been isolated from several human tumours. The mechanism of TC21 signalling in transformation is poorly understood. While activation of the serine/threonine kinases Raf-1 and B-Raf has been implicated in signalling pathways leading to transformation by H-Ras, it has been argued that TC21 does not activate Raf-1 or B-Raf. Since the Raf-signalling pathway is important in transformation by other Ras proteins, we assessed whether the Raf pathway is important to transformation by TC21. Raf-1 and B-Raf are constitutively active in TC21-transformed cells and the ERK/MAPK cascade is required for the maintenance of the transformed state. We demonstrate that oncogenic V23 TC21, like Ras, interacts with Raf-1 and B-Raf (but not with A-Raf), resulting in the translocation of the Raf proteins to the plasma membrane and in their activation. Furthermore, using point mutations in the effector loop of TC21, we show that the interaction of TC21 with Raf-1 is crucial for transformation.  相似文献   

6.
7.
Most human cancers involve either mutational activation of the Ras oncogenic pathway and/or inactivation of the retinoblastoma tumor suppressor (RB) pathway. Paradoxically, tumors that harbor Ras mutations almost invariably retain expression of a wild-type pRB protein. We explain this phenomenon by demonstrating that Ras-induced oncogenic transformation surprisingly depends on functional pRB protein. Cells lacking pRB are less susceptible to the oncogenic actions of H-RasV12 than wild-type cells and activated Ras has an inhibitory effect on the proliferation of pRB-deficient human tumor cells. In addition, depletion of pRB from Ras-transformed murine cells or human tumor cells that harbor Ras pathway mutations inhibits their proliferation and anchorage-independent growth. In sharp contrast to pRB-/- 3T3 cells, fibroblasts deficient in other pRB family members (p107 and p130) are more susceptible to Ras-mediated transformation than wild-type 3T3 cells. Moreover, loss of pRB in tumor cells harboring a Ras mutation results in increased expression of p107, and overexpression of p107 but not pRB strongly inhibits proliferation of these tumor cells. Together, these findings suggest that pRB and p107 have distinct roles in Ras-mediated transformation and suggest a novel tumor-suppressive role for p107 in the context of activated Ras.  相似文献   

8.
9.
Ras-induced transformation and signaling pathway.   总被引:4,自引:0,他引:4  
Ras is a signal-transducing, guanine nucleotide-binding protein for various membrane receptors including tyrosine kinase receptors. Ras participates in the regulation of cell proliferation, differentiation, and morphology. Activated ras oncogenes have been identified in various forms of human cancer including epithelial carcinomas of the lung, colon, and pancreas. The cells of these cancers, as well as those that have been experimentally transformed by the activated ras gene, exhibit abnormal growth, morphological changes and alterations of cell adhesions. Although the main effector protein has been thought to be Raf serine/threonine kinase, research has revealed that the Ras-induced signaling pathway is mediated by multiple effector proteins and has the crosstalk with various factors containing other small GTPases. In this review, we summarize the involvement of each effector protein for Ras and the crosstalk with other small GTPases in Ras-induced transformation.  相似文献   

10.
11.
Growth factors and mitogens use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their receptors to regulate gene expression and prevent apoptosis. Some components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf). Mutations also occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. Even in the absence of obvious genetic mutations, this pathway has been reported to be activated in over 50% of acute myelogenous leukemia and acute lymphocytic leukemia and is also frequently activated in other cancer types (e.g., breast and prostate cancers). Importantly, this increased expression is associated with a poor prognosis. The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of activated Akt to phosphorylate and inactivate different Rafs. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell lineage specific effects. For example, Raf/MEK/ERK is usually associated with proliferation and drug resistance of hematopoietic cells, while activation of the Raf/MEK/ERK cascade is suppressed in some prostate cancer cell lines which have mutations at PTEN and express high levels of activated Akt. Furthermore the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways also interact with the p53 pathway. Some of these interactions can result in controlling the activity and subcellular localization of Bim, Bak, Bax, Puma and Noxa. Raf/MEK/ERK may promote cell cycle arrest in prostate cells and this may be regulated by p53 as restoration of wild-type p53 in p53 deficient prostate cancer cells results in their enhanced sensitivity to chemotherapeutic drugs and increased expression of Raf/MEK/ERK pathway. Thus in advanced prostate cancer, it may be advantageous to induce Raf/MEK/ERK expression to promote cell cycle arrest, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK induced proliferation and drug resistance. Thus the Raf/MEK/ERK pathway has different effects on growth, prevention of apoptosis, cell cycle arrest and induction of drug resistance in cells of various lineages which may be due to the presence of functional p53 and PTEN and the expression of lineage specific factors.  相似文献   

12.
Chung E  Hsu CL  Kondo M 《PloS one》2011,6(12):e28350
Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPNs) are a group of myeloid neoplasms in which abnormal activation of the Ras signaling pathway is commonly observed. The PI3K/Akt pathway is a known target of Ras; however, activation of the PI3K/Akt pathway has been shown to lead to neoplastic transformation of not only myeloid but also lymphoid cells, suggesting that pathways other than the PI3K/Akt pathway should play a central role in pathogenesis of Ras-mediated MDS/MPN. The MEK/ERK pathway is another downstream target of Ras, which is involved in regulation of cell survival and proliferation. However, the role of the MEK/ERK pathway in the pathogenesis of MDS/MPN remains unclear. Here, we show that introduction of a constitutively activated form of MEK into hematopoietic stem cells (HSCs) causes hematopoietic neoplasms that are limited to MDS/MPNs, despite the multipotent differentiation potential of HSCs. Active MEK-mediated MDS/MPNs are lethal, but are not considered a frank leukemia because it cannot be transplanted into naïve animals. However, transplantation of MDS/MPNs co-expressing active MEK and an anti-apoptotic molecule, Bcl-2, results in T-cell acute lymphocytic leukemia (T-ALL), suggesting that longevity of cells may impact transplantability and alter disease phenotype. Our results clearly demonstrate the proto-oncogenic property of the MEK/ERK pathway in hematopoietic cells, which manifest in MDS/MPN development.  相似文献   

13.
Rap在细胞内控制着许多重要的信号通路,这些通路与细胞极性的形成、细胞增殖、分化和癌变、细胞黏附和运动等重要的生物功能密切相关,并进一步在组织器官水平影响一些重要的生理功能,如神经极性的建立、神经突触生长、突触可塑性和神经元迁移等。Rap属于Ras家族,含有Rap1和Rap2两个亚类。Rap通过结合GTP或GDP,在激活与失活两种状态之间切换,从而发挥分子开关的功能。此外,Rap在癌症的发生和发展过程中也发挥着关键作用,它可抑制癌基因Ras诱导的细胞转化;还可通过与其下游靶分子的相互作用,作为细胞信号通路上的一个开关分子诱导细胞恶性转化。本文对上述Rap的生物学功能做了概括总结,并在此基础之上探究Rap及受其调控的蛋白质对肿瘤和神经系统疾病的药物开发和治疗的重要意义。  相似文献   

14.
15.
Although Src transformation of NIH3T3 mouse fibroblasts has been shown to be dependent on Ras function, the signaling mechanism whereby Src induces malignant transformation of human epithelial cells still remains unclear. In the present study, we analyzed the functional role of Ras, which acts downstream of Src in intracellular signaling, in the acquisition of fully neoplastic potentials by v-Src-transformed human gallbladder epithelial cells (HAG/src3-1) by infecting these cells with replication-defective adenovirus vector expressing dominant negative H-Ras (AdCARasY57). High efficiency of gene transduction was demonstrated with the adenovirus vector containing beta-gal gene insert (AdCALacZ). On infection with AdCARasY57, the activity of mitogen-activated protein (MAP) kinase, a major downstream event triggered by Ras, was markedly inhibited over 7 days, indicating that the inhibition of Ras function by AdCARasY57 remains active during this period. AdCARasY57 did not inhibit the monolayer growth of HAG-1 cells transfected with activated H-ras, but inhibited the HAG/src3-1 cells by 30%, as compared with cells infected with AdCALacZ as a control. This growth inhibition by AdCARasY57 was strengthened nearly twofold on surfaces coated with an antiadhesive polymer (poly 2-hydroxyethylmethacrylate) that can quantitate anchorage-independent growth, and was much more pronounced up to 95% when assayed in soft agar. The HAG/src3-1 cells transfected with beta-gal gene produced tumors in nude mice within 4 weeks after implantation, whereas cells infected with AdCARasY57 failed to form tumors during this period. These findings show that Ras function is essential for v-Src-induced anchorage-independent growth in vitro as well as tumorigenesis in vivo, and that mitogenic activity driven by v-Src is not solely dependent on MAP kinase pathway. Because anchorage-independent growth correlates with tumor growth in vivo as well as metastatic potential, targeting Ras would be potentially useful for the treatment of human tumors with elevated Src tyrosine kinase activity.  相似文献   

16.
Inhibition of apoptosis is an important characteristic of oncogenic transformation. The Par-4 gene product has recently been shown to be upregulated in cells undergoing apoptotic cell death, and its ectopic expression was shown to be critical in apoptosis. We demonstrate that expression of oncogenic Ras promotes a potent reduction of Par-4 protein and mRNA levels through a MEK-dependent pathway. In addition, the expression of permanently active mutants of MEK, Raf-1 or zetaprotein kinase C but not of phosphatidylinositol 3-kinase (PI 3-kinase) is sufficient to decrease Par-4 levels. These effects are independent of p53, p16 and p19, and were detected not only in fibroblast primary cultures but also in NIH 3T3 and HeLa cells, indicating that they are not secondary to Ras actions on cell cycle regulation. Importantly, restoration of Par-4 levels to normal in Ras-transformed cells makes these cells sensitive to the pro-apoptotic actions of tumor necrosis factor-alpha under conditions in which PI 3-kinase is inhibited and also severely impairs colony formation in soft agar and tumor development in nude mice, as well as increases the sensitivity of these tumors to camptothecin. This indicates that the downregulation of Par-4 by oncogenic Ras is a critical event in tumor progression.  相似文献   

17.
A series of pieces of evidence have shown that Ras protein acts as a transducer of the platelet-derived growth factor (PDGF) receptor-mediated signaling pathway: (i) formation of Ras.GTP is detected immediately on PDGF stimulation, and (ii) a dominant inhibitory mutant Ras, as well as a neutralizing anti-Ras antibody, can interfere with PDGF-induced responses. On the other hand, several signal transducing molecules including phosphatidylinositol 3-kinase (PI3-K), GTPase-activating protein (GAP), and phospholipase C gamma (PLC gamma) bind directly to the PDGF receptor and become tyrosine phosphorylated. Recently, it was shown that specific phosphorylated tyrosines of the PDGF receptor are responsible for interaction between the receptor and each signaling molecule. However, the roles of these signaling molecules have not been elucidated, and it remains unclear which molecules are implicated in the Ras pathway. In this study, we measured Ras activation in cell lines expressing mutant PDGF receptors that are deficient in coupling with specific molecules. In fibroblast CHO cells, a mutant receptor (Y708F/Y719F [PI3-K-binding sites]) was unable to stimulate Ras, whereas another mutant (Y739F [the GAP-binding site]) could do so, suggesting an indispensable role of PI3-K or a protein that binds to the same sites as PI3-K for PDGF-stimulated Ras activation. By contrast, both of the above mutants were capable of stimulating Ras protein in a pro-B-cell line, BaF3. Furthermore, a mutant receptor (Y977F/Y989F [PLC gamma-binding sites]) could fully activate Ras, and the direct activation of protein kinase C and calcium mobilization had almost no effect on the GDP/GTP state of Ras in this cell line. These results suggest that, in the pro-B-cell transfectants, each of the above pathways (PI3-K, GAP, and PLC gamma) can be eliminated without a loss of Ras activation. It remains unclear whether another unknown essential pathway which regulates Ras protein exists within BaF3 cells. Therefore, it is likely that several different PDGF receptor-mediated signaling pathways function upstream of Ras, and the extent of the contribution of each pathway for the regulation of Ras may differ among different cell types.  相似文献   

18.
Phosphorylation pathway has been identified as an important step in membrane trafficking for AQP5. We generated stably transfected BEAS-2B human bronchial epithelial cells with various over-expression constructs on permeable support. In stable cells with wild-type AQP5 and S156A (AQP5 mutant targeting PKA consensus sequence), AQP5 expression was predominantly polarized to the apical membrane, whereas stable cells with N185D (AQP5 mutant targeting second NPA motif), mainly localized to the cytoplasm. Treatment with H89 and/or chlorophenylthio-cAMP (cpt-cAMP) did not affect membrane expression of AQP5 in any of three stable cells. In cells with wild-type AQP5 and N185D, AQP5s were phosphorylated by PKA, while phosphorylation of AQP5 was not detected in cells with S156A. These results indicate that, in AQP5, serine156 may be phosphorylated by PKA, but membrane expression of AQP5 may not be regulated by PKA phosphorylation. We conclude that AQP5 membrane targeting can include more than one mechanism besides cAMP dependent phosphorylation.  相似文献   

19.
Ras genes are pre-eminent genes that are frequently linked with cancer biology. The functional loss of ras protein caused by various point mutations within the gene, is established as a prognostic factor for the genesis of a constitutively active Ras-MAPK pathway leading to cancer. Ras signaling circuit follows a complex pathway, which connects many signaling molecules and cells. Several strategies have come up for targeting mutant ras proteins for cancer therapy, however, the clinical benefits remain insignificant. Targeting the Ras-MAPK pathway is extremely complicated due its intricate networks involving several upstream and downstream regulators. Blocking oncogenic Ras is still in latent stage and requires alternative approaches to screen the genes involved in Ras transformation. Understanding the mechanism of Ras induced tumorigenesis in diverse cancers and signaling networks will open a path for drug development and other therapeutic approaches.  相似文献   

20.
Oxidized-low density lipoprotein (Ox-LDL) has been shown to play an important role in impaired surfactant metabolism and transforming growth factor-β1 (TGF-β1) is a critical mediator in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). In this study, we investigated whether Ox-LDL can induce TGF-β1 protein production, and if so, how it achieves this induction in human alveolar epithelial cells (A549). We show here that Ox-LDL not only caused a dose- and time-dependent up-regulation of TGF-β1 production, but also increased Smad3 phosphorylation, Ras/extracellular signal-regulated kinase (ERK) activity and phospholipid transfer protein (PLTP) expression in A549 cells. The inhibition of Ras/ERK activity with specific inhibitors significantly suppressed Ox-LDL-induced TGF-β1 production, Smad3 phosphorylation and PLTP expression. Furthermore, treatment of cells with PLTP siRNA suppressed both TGF-β1 release and Smad3 activation induced by Ox-LDL, but not the activation of Ras/ERK cascade. Taken together, we provide evidences that induction of TGF-β1 production and Smad3 phosphorylation by Ox-LDL is mediated by Ras/ERK/PLTP pathway in human alveolar epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号