首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) guide catalytic sequence-specific cleavage of fully or nearly fully complementary target mRNAs or control translation and/or stability of many mRNAs that share 6-8 nucleotides (nt) of complementarity to the siRNA and miRNA 5' end. siRNA- and miRNA-containing ribonucleoprotein silencing complexes are assembled from double-stranded 21- to 23-nt RNase III processing intermediates that carry 5' phosphates and 2-nt overhangs with free 3' hydroxyl groups. Despite the structural symmetry of a duplex siRNA, the nucleotide sequence asymmetry can generate a bias for preferred loading of one of the two duplex-forming strands into the RNA-induced silencing complex (RISC). Here we show that the 5'-phosphorylation status of the siRNA strands also acts as an important determinant for strand selection. 5'-O-methylated siRNA duplexes refractory to 5' phosphorylation were examined for their biases in siRNA strand selection. Asymmetric, single methylation of siRNA duplexes reduced the occupancy of the silencing complex by the methylated strand with concomitant elimination of its off-targeting signature and enhanced off-targeting signature of the phosphorylated strand. Methylation of both siRNA strands reduced but did not completely abolish RNA silencing, without affecting strand selection relative to that of the unmodified siRNA. We conclude that asymmetric 5' modification of siRNA duplexes can be useful for controlling targeting specificity.  相似文献   

2.
Small interfering RNAs (siRNAs) specifically knock-down target mRNAs via RNA interference (RNAi) mechanism. During this process, introduction of excess amount of exogenous siRNAs could lead to the saturation of cellular RNAi machinery. One consequence of RNAi machinery saturation is the competition between two simultaneously introduced siRNAs, during which one siRNA loses gene silencing activity. Although competition phenomena have been well characterized, the molecular and sequence features of siRNAs that specify the competition potency remain poorly understood. Here, for the first time, we performed a large-scale siRNA competition potency analysis by measuring the competition potency of 56 different siRNAs and ranking them based on their competition potency. We have also established an algorithm to predict the competition potency of siRNAs based upon the conserved sequence features of strong and weak competitor siRNAs. The present study supports our hypothesis that the competition potency of siRNAs is specified by the 5′-half antisense sequence and provides a useful guideline to design siRNAs with minimal RNAi machinery saturation.  相似文献   

3.
4.
A comparison of siRNA efficacy predictors   总被引:8,自引:0,他引:8  
Short interfering RNA (siRNA) efficacy prediction algorithms aim to increase the probability of selecting target sites that are applicable for gene silencing by RNA interference. Many algorithms have been published recently, and they base their predictions on such different features as duplex stability, sequence characteristics, mRNA secondary structure, and target site uniqueness. We compare the performance of the algorithms on a collection of publicly available siRNAs. First, we show that our regularized genetic programming algorithm GPboost appears to have a higher and more stable performance than other algorithms on the collected datasets. Second, several algorithms gave close to random classification on unseen data, and only GPboost and three other algorithms have a reasonably high and stable performance on all parts of the dataset. Third, the results indicate that the siRNAs' sequence is sufficient input to siRNA efficacy algorithms, and that other features that have been suggested to be important may be indirectly captured by the sequence.  相似文献   

5.
Small interfering RNA (siRNA) enables efficient target gene silencing by employing a RNA interference (RNAi) mechanism, which can compromise gene expression and regulate gene activity by cleaving mRNA or repressing its translation. Twenty years after the discovery of RNAi in 1998, ONPATTRO? (patisiran) (Alnylam Pharmaceuticals, Inc.), a lipid formulated siRNA modality, was approved for the first time by United States Food and Drug Administration and the European Commission in 2018. With this milestone achievement, siRNA therapeutics will soar in the coming years. Here, we review the discovery and the mechanisms of RNAi, briefly describe the delivery technologies of siRNA, and summarize recent clinical advances of siRNA therapeutics.  相似文献   

6.
利用T7RNA聚合酶在体外转录合成针对端粒酶模板RNA(hTR)的两条互补单链RNA,经退火形成siRNA.采用TRAP法检测端粒酶活性,分析siRNA在肿瘤细胞裂解液的干扰作用.结果表明:T7RNA聚合酶可以高效地转录出短的单链RNA,制备的siRNA可明显地降低肿瘤端粒酶的活性,其降低肿瘤端粒酶活性的作用强于等量的反义链RNA.该法廉价、高效、简易,有可能为肿瘤的基因治疗提供一种新的探索途径.  相似文献   

7.
In recent years, researchers have expressed an ongoing interest in developing RNA interference (RNAi) technology for therapeutic gene suppression in various diseases. Preclinical studies in animal models and cultured cell studies indicated that RNAi technology was an effective experimental tool against a variety of ocular diseases, and some small interference RNA (siRNA) drugs have been entered into clinical trials in Stage I and Stage II. However, in these studies siRNAs were delivered into ocular tissues via either systemic or subconjunctival/intravitreous injection, which is invasive and harmful if repeated. Based on this evidence, we hypothesize that topical application of siRNA eye drops may be a safe and effective therapeutic option in ocular surface diseases with temporary changes of gene expression. Furthermore, siRNA eye drops targeting different genes may simultaneously treat several ocular surface diseases.  相似文献   

8.
Contradictory reports in the literature have emphasised either the sequence of small interfering RNAs (siRNA) or the structure of their target molecules to be the major determinant of the efficiency of RNA interference (RNAi) approaches. In the present study, we analyse systematically the contributions of these parameters to siRNA activity by using deliberately designed mRNA constructs. The siRNA target sites were included in well-defined structural elements rendering them either highly accessible or completely involved in stable base-pairing. Furthermore, complementary sequence elements and various hairpins with different stem lengths and designs were used as target sites. Only one of the strands of the siRNA duplex was found to be capable of silencing via its respective target site, indicating that thermodynamic characteristics intrinsic to the siRNA strands are a basic determinant of siRNA activity. A significant obstruction of gene silencing by the same siRNA, however, was observed to be caused by structural features of the substrate RNA. Bioinformatic analysis of the mRNA structures suggests a direct correlation between the extent of gene-knockdown and the local free energy in the target region. Our findings indicate that, although a favourable siRNA sequence is a necessary prerequisite for efficient RNAi, complex target structures may limit the applicability even of carefully chosen siRNAs.  相似文献   

9.
Jo SG  Hong SW  Yoo JW  Lee CH  Kim S  Kim S  Lee DK 《Molecules and cells》2011,32(6):543-548
The silencing of specific oncogenes via RNA interference (RNAi) holds great promise for the future of cancer therapy. RNAi is commonly carried out using small interfering RNA (siRNA) composed of a 19 bp duplex region with a 2-nucleotide overhang at each 3′ end. This classical siRNA structure, however, can trigger non-specific effects, which has hampered the development of specific and safe RNAi therapeutics. Previously, we developed a novel siRNA structure, called asymmetric shorter-duplex siRNA (asiRNA), which did not cause the non-specific effects triggered by conventional siRNA, such as off-target gene silencing mediated by the sense strand. In this study, we first screened potent asiRNA molecules targeting the human c-MET gene, a promising anticancer target. Next, the activity of a selected asiRNA was further optimized by introducing a locked nucleic acid (LNA) to maximize the gene silencing potency. The optimized asiRNA targeted to c-MET may have potential as a specific and safe anticancer RNAi therapeutic.  相似文献   

10.
小干扰RNA (small interfering RNA,siRNA)是RNA干扰的引发物,激发与之互补的目标mRNA沉默,对基因调控及疾病治疗有重要意义。siRNA作为药物需要克服血管屏障、实现细胞内吞及溶酶体逃逸,同时还需要避免核酸酶作用下发生降解。因此,设计合适的纳米载体以帮助siRNA成功递送进细胞并发挥作用是目前siRNA药物发展的重要目标。纳米载体的材料种类、尺寸、结构、表面修饰等精确设计是实现siRNA药物成功递送的重要因素。随着研究的深入和应用的发展,siRNA药物纳米载体的精确控制制备、精准靶向递送及多功能化取得了较好的成果。本文围绕siRNA药物纳米载体,对siRNA药物应用及其递送困难、siRNA药物纳米载体主要设计策略、目前siRNA药物上市情况进行介绍,同时对其未来发展方向进行展望。  相似文献   

11.
Abstract

Magnetic force combined with magnetic nanoparticles recently has shown potential for enhancing nucleic acid delivery. Achieving effective siRNA delivery into primary cultured cells is challenging. We compared the utility of magnetofection with lipofection procedures for siRNA delivery to primary and immortalized mammalian fibroblasts. Transfection efficiency and cell viability were analyzed by flow cytometry and effects of gene knockdown were quantified by real-time PCR. Lipofectamine 2000 and magnetofection achieved high transfection efficiencies comparable to similar gene silencing effects of about 80%; the cytotoxic effect of magnetofection, however, was significantly less. Magnetofection is a reliable and gentle alternative method with low cytotoxicity for siRNA delivery into difficult to transfect cells such as mammalian fibroblasts. These features are especially advantageous for functional end point analyses of gene silencing, e.g., on the metabolite level.  相似文献   

12.
RNA interference is expected to have considerable potential for the development of novel specific therapeutic strategies. However, successful application of RNA interference in vivo will depend on the availability of efficient delivery systems for the introduction of small-interfering RNA (siRNA) into the appropriate target cells. This paper focuses on the use of reconstituted viral envelopes (“virosomes”), derived from influenza virus, as a carrier system for cellular delivery of siRNA. Complexed to cationic lipid, siRNA molecules could be efficiently encapsulated in influenza virosomes. Delivery to cultured cells was assessed on the basis of flow cytometry analysis using fluorescently labeled siRNA. Virosome-encapsulated siRNA directed against Green Fluorescent Protein (GFP) inhibited GFP fluorescence in cells transfected with a plasmid encoding GFP or in cells constitutively expressing GFP. Delivery of siRNA was dependent on the low-pH-induced membrane fusion activity of the virosomal hemagglutinin, supporting the notion that virosomes introduce their encapsulated siRNA into the cell cytosol through fusion of the virosomal membrane with the limiting membrane of cellular endosomes, after internalization of the virosomes by receptor-mediated endocytosis. It is concluded that virosomes represent a promising carrier system for cellular delivery of siRNA in vitro as well as in vivo.  相似文献   

13.
Delivery of siRNA to immune cells has been one of the major obstacles to widespread application of RNAi in the immunology field. Here, we report that osmotic delivery of siRNA can be used to silence genes in macrophage RAW264.7 without incurring either cytotoxic or immunomodulatory activity. We also showed usefulness of the osmotic delivery in other types of cells including T cell DO11.10. By repeated osmotic delivery of siRNA, long-term gene silencing was readily achieved. When TLR4 was disrupted in RAW264.7 cells for 48 h and the cells were stimulated with the TLR4 ligand LPS, a significant decrease in TNFalpha production was observed. DNA microarray-based gene expression profile analysis showed that gene silencing by osmotic delivery of siRNA was target-specific and the delivery method itself had little influence on overall gene expression.  相似文献   

14.
BACKGROUND: RNA interference (RNAi) has become a powerful tool in silencing target genes in various organisms. In mammals, RNAi can be induced by using short interfering RNA (siRNA). The efficacy of inducing RNAi in mammalian cells by using siRNA depends very much on the selection of the target sequences. METHODS: We developed an siRNA target sequence selection system by first constructing parallel-type siRNA expression vector libraries carrying siRNA expression fragments originating from fragmentized target genes, and then using a group selection system. For a model system, we constructed parallel-type siRNA expression vector libraries against DsRed and GFP reporter genes. RESULTS: We carried out the first screening of groups containing more than 100 random siRNA expression plasmids in total for each target gene, and successfully obtained target sequences with very strong efficacy. Furthermore, we also obtained some clones that express dsRNAs of various lengths that might induce cytotoxicity. CONCLUSIONS: This system should allow us to perform screening for powerful target sequences, by including all possible target sequences for any gene, even without knowing the whole sequence of the target gene in advance. At the same time, target sequences that should be avoided due to cytotoxicity can be identified.  相似文献   

15.
Dinoflagellates are a major group of protists widely distributed in the aquatic environments. Many species in this lineage are able to form harmful algal blooms (HAB), some even producing toxins, making this phylum the most important contributors of HAB in the marine ecosystem. Despite the ecological importance, the molecular mechanisms underpinning the basic biology and HAB formation of dinoflagellates are poorly understood. While the high-throughput sequencing studies have documented a large and growing number of genes in dinoflagellates, their functions remained to be experimentally proven using a functional genetic tool. Unfortunately, no such tool is yet available. This study was aimed to adopt the RNA interference (RNAi) gene-silencing tool for dinoflagellate research, and to investigate the potential effects of RNAi-based silencing of proton-pump rhodopsin and CO2-fixing enzyme Rubisco encoding genes in dinoflagellates. It was found that RNAi treatment caused a significant decrease in growth rate in both species. Compared with the non- endogenous target (GFP-siRNA) and the blank control, RNAi treatments also suppressed the expression of the target genes. These results constitute the first experimental evidence of the existence and operation of siRNA in two species of dinoflagellates, present initial evidence that dinoflagellate rhodopsins are functional as a supplemental energy acquisition mechanism, and provide technical information for future functional genetic research on dinoflagellates.  相似文献   

16.
17.
Chemically synthesized small interfering RNAs (siRNAs) can specifically knock-down expression of target genes via RNA interference (RNAi) pathway. To date, the length of synthetic siRNA duplex has been strictly maintained less than 30 bp, because an early study suggested that double-stranded RNAs (dsRNAs) longer than 30 bp could not trigger specific gene silencing due to the induction of nonspecific antiviral interferon responses. Contrary to the current belief, here we show that synthetic dsRNA as long as 38 bp can result in specific target gene silencing without nonspecific antiviral responses. Using this longer duplex structure, we have generated dsRNAs, which can simultaneously knock-down expression of two target genes (termed as dual-target siRNAs or dsiRNAs). Our results thus demonstrate the structural flexibility of gene silencing siRNAs, and provide a starting point to construct multifunctional RNA structures. The dsiRNAs could be utilized to develop a novel therapeutic gene silencing strategy against diseases with multiple gene alternations such as viral infection and cancer.  相似文献   

18.
NA干涉 (RNAinterference ,RNAi)是一种特异性地导致转录后基因沉默的现象 ,在哺乳动物细胞中小分子干扰RNA双链体 (smallinterferingRNAduplexes ,siRNAduplexes)可以有效地诱导RNAi现象 ,为一些疾病的治疗开辟了新的途径 .针对SARS冠状病毒 (SARScoronavirus ,SARS CoV)中编码 5个主要蛋白质的基因 ,用生物信息学的方法设计了3 48条候选siRNA靶标 .在理论上 ,相应的siRNA双链体能特异地抑制SARS CoV靶基因的表达 ,同时不会影响人体细胞基因的正常表达 ,这为进一步siRNA类药物的实验研究提供了理论基础  相似文献   

19.
该研究在验证小鼠睾丸支持细胞TM4有内源性uPA基因表达的基础上,针对uPAmRNA靶序列设计三段不同的siRNA序列(si-uPA),通过瞬时转染TM4细胞,筛选确定uPA基因的有效干扰序列。将该有效干扰序列进行时效、量效实验,观察siRNA对TM4fi细胞uPAmRNA和蛋白表达的影响。结果显示,siRNA的最佳转染浓度为50nmol/L。三种si—uPA转染TM4细胞后,μPAmRNA和蛋白表达量均较空白对照组明显下降(P〈0.05),以si—μPAl作用最为明显。si—μPAl转染24h后,转染组细胞μPAmRNA的表达均较对照组显著降低,其中100nmol/L组抑制效果最为明显,抑制率达到70%;随转染时间的延长,μPAmRNA表达持续降低,转染72h后,三组转染细胞μPAmRNA表达量分别为对照组的153.9%、35.3%和27.7%(P〈0.05)。该研究成功筛选出针对μPAmRNA靶序列的有效干扰序列,抑制效应持续至72h;同一时间点内,抑制效应随转染浓度的增加而增强,表现出良好的量效关系。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号