共查询到20条相似文献,搜索用时 15 毫秒
1.
Horn J Lopez I Miller MW Gomez-Cambronero J 《Biochemical and biophysical research communications》2005,332(1):58-67
The regulation of PLD2 activation is poorly understood at present. Transient transfection of COS-7 with a mycPLD2 construct results in elevated levels of PLD2 enzymatic activity and tyrosyl phosphorylation. To investigate whether this phosphorylation affects PLD2 enzymatic activity, anti-myc immunoprecipitates were treated with recombinant protein tyrosine phosphatase PTP1B. Surprisingly, lipase activity and PY levels both increased over a range of PTP1B concentrations. These increases occurred in parallel to a measurable PTP1B-associated phosphatase activity. Inhibitor studies demonstrated that an EGF-receptor type kinase is involved in phosphorylation. In a COS-7 cell line created in the laboratory that stably expressed myc-PLD2, PTP1B induced a robust (>6-fold) augmentation of myc-PLD2 phosphotyrosine content. The addition of growth factor receptor-bound protein 2 (Grb2) to cell extracts also elevated PY levels of myc-PLD (>10-fold). Systematic co-immunoprecipitation-immunoblotting experiments pointed at a physical association between PLD2, Grb2, and PTP1B in both physiological conditions and in overexpressed cells. This is the first report of a demonstration of the mammalian isoform PLD2 existing in a ternary complex with a protein tyrosine phosphatase, PTP1b, and the docking protein Grb2 which greatly enhances tyrosyl phosphorylation of the lipase. 相似文献
2.
Lee YJ Cho HN Soh JW Jhon GJ Cho CK Chung HY Bae S Lee SJ Lee YS 《Experimental cell research》2003,291(1):251-266
Oxidative stress is known to induce apoptosis in a wide variety of cell types, apparently by modulating intracellular signaling pathways. High concentrations of H2O2 have been found to induce apoptosis in L929 mouse fibroblast cells. To elucidate the mechanisms of H2O2-mediated apoptosis, ERK1/2, p38-MAPK, and JNK1/2 phosphorylation was examined, and ERK1/2 and JNK1/2 were found to be activated by H2O2. Inhibition of ERK1/2 activation by treatment of L929 cells with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced apoptosis, while inhibition of JNK1/2 by dominant-negative JNK1 or JNK2 or MKK4 or MKK7 transfection did not affect H2O2-mediated apoptosis. H2O2-mediated ERK1/2 activation was not only Ras-Raf dependent, but also both tyrosine kinase (PDGFbeta receptor and Src) and PKCdelta dependent. H2O2-mediated PKCdelta-dependent and tyrosine kinase-dependent ERK1/2 activations were independent from each other. Based on the above results, we suggest for the first time that oxidative damage-induced apoptosis is mediated by ERK1/2 phosphorylation which is not only Ras-Raf dependent, but also both tyrosine kinase and PKCdelta dependent. 相似文献
3.
4.
Hiroaki Tanaka Ken-ichi Akagi Chitose Oneyama Masakazu Tanaka Yuichi Sasaki Takashi Kanou Young-Ho Lee Daisuke Yokogawa Marc-Werner Dobenecker Atsushi Nakagawa Masato Okada Takahisa Ikegami 《The Journal of biological chemistry》2013,288(21):15240-15254
Proteins with Src homology 2 (SH2) domains play major roles in tyrosine kinase signaling. Structures of many SH2 domains have been studied, and the regions involved in their interactions with ligands have been elucidated. However, these analyses have been performed using short peptides consisting of phosphotyrosine followed by a few amino acids, which are described as the canonical recognition sites. Here, we report the solution structure of the SH2 domain of C-terminal Src kinase (Csk) in complex with a longer phosphopeptide from the Csk-binding protein (Cbp). This structure, together with biochemical experiments, revealed the existence of a novel binding region in addition to the canonical phosphotyrosine 314-binding site of Cbp. Mutational analysis of this second region in cells showed that both canonical and novel binding sites are required for tumor suppression through the Cbp-Csk interaction. Furthermore, the data indicate an allosteric connection between Cbp binding and Csk activation that arises from residues in the βB/βC loop of the SH2 domain. 相似文献
5.
Ning Zhang Weihua Cai Guoyong Yin David J. Nagel Bradford C. Berk 《Cell biology international》2010,34(1):41-47
Cell polarity is critical for cell migration and requires localized signal transduction in subcellular domains. Recent evidence demonstrates that activation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) in focal adhesions is essential for cell migration. GIT1 (G‐protein‐coupled receptor kinase‐interacting protein 1) has been shown to bind paxillin and regulate focal‐adhesion disassembly. We have previously reported that GIT1 binds to MEK1 [MAPK (mitogen‐activated protein kinase)/ERK kinase 1] and acts as a scaffold to enhance ERK1/2 activation in response to EGF (epidermal growth factor). In the present study we show that GIT1 associates with ERK1/2 in focal adhesions and this association increases after EGF stimulation. The CC (coiled‐coil) domain of ERK1/2 is required for association with GIT1, translocation to focal adhesions, and cell spreading and migration. Immunofluorescent staining showed that, after EGF stimulation, GIT1 co‐localized with pERK1/2 (phosphorylated ERK1/2) in focal adhesions. The binding of GIT1 and ERK1/2 was functionally important, since transfecting an ERK2 mutant lacking the CC domain [ERK2(del CC)] significantly decreased pERK1/2 translocation to focal adhesions, cell spreading and migration induced by EGF. In summary, the CC domain of ERK1/2 is necessary for binding to GIT1, for ERK1/2 activation in focal adhesions, and for cell spreading and migration. 相似文献
6.
The most commonly used method for protein identification with two-dimensional (2D) online liquid chromatography-mass spectrometry (LC/MS) involves the elution of digest peptides from a strong cation exchange column by an injected salt step gradient of increasing salt concentration followed by reversed phase separation. However, in this approach ion exchange chromatography does not perform to its fullest extent, primarily because the injected volume of salt solution is not optimized to the SCX column. To improve the performance of strong cation exchange chromatography, we developed a new method for 2D online nano-LC/MS that replaces the injected salt step gradient with an optimized semicontinuous pumped salt gradient. The viability of this method is demonstrated in the results of a comparative analysis of a complex tryptic digest of the yeast proteome using the injected salt solution method and the semicontinuous pump salt method. The semicontinuous pump salt method compares favorably with the commonly used injection method and also with an offline 2D-LC method. 相似文献
7.
Gopinadh Bhyrapuneni Jagadeesh Babu Thentu Abdul Rasheed Mohammed Raghupathi Reddy Aleti Nagasurya Prakash Padala Devender Reddy Ajjala 《Journal of receptor and signal transduction research》2013,33(4):290-298
AbstractThe use of liquid chromatography coupled with mass spectrometry (LC-MS/MS) is advantageous in in-vivo receptor occupancy assays at pre-clinical drug developmental stages. Relatively, its application is effective in terms of high throughput, data reproducibility, sensitivity, and sample processing. In this perspective, we have evaluated the use of FTC-146 as a non-radiolabelled tracer to determine the sigma-1 receptor occupancy of test drugs in mice brain. Further, the brain and plasma exposures of test drug were determined at their corresponding occupancies. In this occupancy method, the optimized tracer treatment (sacrification) time after intravenous administration was 30?min. The tracer dose was 3?µg/kg and specific brain regions of interest were frontal cortex, pons and midbrain. Mice were pretreated orally with SA4503, fluspidine, haloperidol, and donepezil followed by tracer treatment. Among the test drugs, SA4503 was used as positive control group at its highest test dose (7?mg/kg, intraperitoneal). There was a dose-dependent decrease in brain regional FTC-146 binding in pretreated mice. From the occupancy curves of SA4503, fluspidine, haloperidol, and donepezil the effective dose (ED50) value ranges are 0.74–1.45, 0.09–0.11, 0.11–0.12, and 0.07–0.09?mg/kg, respectively. Their corresponding brain effective concentration (EC50) values are 74.3–132.5, 3.4–3.7, 122.5–139.5, and 8.8–11.0?ng/g and plasma EC50 values are 34.3–53.7, 0.08–0.10, 7.8–9.5, and 0.6–0.7?ng/mL. Brain regional distribution and binding inhibition upon pretreatment were comparable with data reported with labeled [18F]FTC-146. Drug exposures were simultaneously determined and correlated with sigma-1 occupancy from the same experiment. Wide category drugs can be assayed for sigma-1 receptor engagement and their correlation with exposures aid in clinical development. 相似文献
8.
DIDIER LEROY MARC MISSOTTEN CAROLINE WALTZINGER THIERRY MARTIN ALEXANDER SCHEER 《Journal of receptor and signal transduction research》2013,33(1):83-97
The development of new analytical methods, aimed at profiling G protein-coupled receptor (GPCR) ligands, regardless of the G protein-coupling pattern of their respective receptor, remains a key goal in drug discovery. Considerable evidence has recently revived the central role that could be played by extracellular-signal-regulated kinase (ERK), the cornerstone protein kinase of the first tyrosine kinase receptor-mediated pathway identified, in response to the activation of various types of GPCRs. Here we reveal a conceptual study in which the potential of ERK phosphorylation is evaluated as a generic readout in response to three different receptors activating three main classes of G proteins: Gαs, Gαi and Gα q. GPCR-mediated ERK phosphorylation was compared with different readouts such as GTPγ S, CAMP, or Ca2 +. We propose the measurement of GPCR-activated ERK phosphorylation as an alternative assay to better understand the molecular pharmacology of ligands of promiscuous GPCRs. 相似文献
9.
p53 regulates ERK1/2/CREB cascade via a novel SASH1/MAP2K2 crosstalk to induce hyperpigmentation 下载免费PDF全文
Ding'an Zhou Xing Zeng Ke Wang Jiangshu Ma Huangchao Luo Mei Chen Yan Li Jiawei Zeng Shu Li Fujun Luan Yong He Hongying Dai Beizhong Liu Hui Li Lin He Qinghe Xing 《Journal of cellular and molecular medicine》2017,21(10):2465-2480
We previously reported that three point mutations in SASH1 and mutated SASH1 promote melanocyte migration in dyschromatosis universalis hereditaria (DUH) and a novel p53/POMC/Gαs/SASH1 autoregulatory positive feedback loop is regulated by SASH1 mutations to induce pathological hyperpigmentation phenotype. However, the underlying mechanism of molecular regulation to cause this hyperpigmentation disorder still remains unclear. In this study, we aimed to investigate the molecular mechanism undergirding hyperpigmentation in the dyschromatosis disorder. Our results revealed that SASH1 binds with MAP2K2 and is induced by p53‐POMC‐MC1R signal cascade to enhance the phosphorylation level of ERK1/2 and CREB. Moreover, increase in phosphorylated ERK1/2 and CREB levels and melanogenesis‐specific molecules is induced by mutated SASH1 alleles. Together, our results suggest that a novel SASH1/MAP2K2 crosstalk connects ERK1/2/CREB cascade with p53‐POMC‐MC1R cascade to cause hyperpigmentation phenotype of DUH. 相似文献
10.
Renshuai Liu Lulu Liu Tingting Liu Xinying Yang Yichao Wan Hao Fang 《Bioorganic & medicinal chemistry》2018,26(17):4907-4915
Anti-apoptotic Bcl-2 family proteins are vital for cancer cells to escape apoptosis, which make them attractive targets for cancer therapy. Recently, a lead compound 1 was found to modestly inhibit the binding of BH3 peptide to Bcl-2 protein with a Ki value of 5.2?µM. Based on this, a series of substituted tyrosine derivatives were developed and tested for their binding affinities to Bcl-2 protein. Results indicated that these compounds exhibited potent binding affinities to Bcl-2 and Mcl-1 protein but not to Bcl-XL protein. Promisingly, compound 6i inhibited the binding of BH3 peptide to Bcl-2 and Mcl-1 protein with a Ki value of 450 and 190?nM respectively, and showed obvious anti-proliferative activities against tested cancer cells. 相似文献
11.
T Takadate T Onogawa K Fujii F Motoi S Mikami T Fukuda M Kihara T Suzuki T Takemura T Minowa N Hanagata K Kinoshita T Morikawa K Shirasaki T Rikiyama Y Katayose S Egawa T Nishimura M Unno 《Clinical proteomics》2012,9(1):8
Background
Pancreatic cancer is among the most lethal malignancies worldwide. This study aimed to identify a novel prognostic biomarker, facilitating treatment selection, using mass spectrometry (MS)-based proteomic analysis with formalin-fixed paraffin-embedded (FFPE) tissue.Results
The two groups with poor prognosis (n = 4) and with better prognosis (n = 4) had been carefully chosen among 96 resected cases of pancreatic cancer during 1998 to 2007 in Tohoku University Hospital. Although those 2 groups had adjusted background (UICC-Stage IIB, Grade2, R0, gemcitabine adjuvant), there was a significant difference in postoperative mean survival time (poor 21.0 months, better 58.1 months, P = 0.0067). Cancerous epithelial cells collected from FFPE tissue sections by laser micro-dissection (LMD) were processed for liquid chromatography-tandem mass spectrometry (LC-MS/MS). In total, 1099 unique proteins were identified and 6 proteins showed different expressions in the 2 groups by semi-quantitative comparison. Among these 6 proteins, we focused on Nm23/Nucleoside Diphosphate Kinase A (NDPK-A) and immunohistochemically confirmed its expression in the cohort of 96 cases. Kaplan-Meier analysis showed high Nm23/NDPK-A expression to correlate with significantly worse overall survival (P = 0.0103). Moreover, in the multivariate Cox regression model, Nm23/NDPK-A over-expression remained an independent predictor of poor survival with a hazard ratio of 1.97 (95% CI 1.16-3.56, P = 0.0110).Conclusions
We identified 6 candidate prognostic markers for postoperative pancreatic cancer using FFPE tissues and immunohistochemically demonstrated high Nm23/NDPK-A expression to be a useful prognostic marker for pancreatic cancer. 相似文献12.
Bansidhar Datta 《生物化学与生物物理学报:癌评论》2009,1796(2):281-292
A precise balance between growth promoting signals and growth inhibitory signals plays important roles in the maintenance of healthy mammalian cells. Any deregulation of this critical balance converts normal cells into abnormal or cancerous cells. Several macromolecules are being identified and characterized that are involved in the regulation of cell signaling pathways that connect to the cell cycle and thus they play roles as tumor promoters or tumor suppressors. In situ tumor formation needs active angiogenesis, a process that generates new blood vessels from existing ones either by splitting or sprouting. Several small molecule inhibitors and proteins have been identified as inhibitors of angiogenesis. One such protein, p67/MetAP2 also known as methionine aminopeptidase 2 (MetAP2), has been shown to bind covalently to fumagillin and its derivatives that have anti-angiogenic activity. In addition to fumagillin or its derivatives, several other small molecule inhibitors of p67/MetAP2 have been recently identified and some of these drugs are in phase III trials for cancer therapy. Although molecular details of actions toward tumor suppression by these drugs are largely unknown, a significant progress has been made to understand the structure–function relationship of p67/MetAP2 and its roles in the maintenance of the levels of phosphorylation of the ∝-subunit of eukaryotic initiation factor 2 (eIF2∝) and extracellular signal-regulated kinases 1 and 2 (ERK1/2). In this article, roles of p67/MetAP2 in the suppression of cancer development are also discussed. 相似文献
13.
《Bioorganic & medicinal chemistry letters》2020,30(14):127225
Small molecule JAK inhibitors have been demonstrated efficacy in rheumatoid arthritis, inflammatory bowel disease, and psoriasis with the approval of several drugs. Aiming to develop potent JAK1/2 inhibitors, two series of triazolo [1,5-a] pyridine derivatives were designed and synthesized by various strategies. The pharmacological results identified the optimized compounds J-4 and J-6, which exerted high potency against JAK1/2, and selectivity over JAK3 in enzyme assays. Furthermore, J-4 and J-6 effectively suppressed proliferation of JAK1/2 high-expression BaF3 cells accompanied with acceptable metabolic stability in liver microsomes. Therefore, J-4 and J-6 might serve as promising JAK1/2 inhibitors for further investigation. 相似文献
14.
Identification of TBC7 having TBC domain as a novel binding protein to TSC1-TSC2 complex 总被引:1,自引:0,他引:1
Nakashima A Yoshino K Miyamoto T Eguchi S Oshiro N Kikkawa U Yonezawa K 《Biochemical and biophysical research communications》2007,361(1):218-223
TBC7, a TBC (Tre-2/Bub2/Cdc16) 1 domain protein, was identified as a novel binding protein to the TSC1-TSC2 tumor suppressor complex by peptide mass fingerprinting analysis of the proteins immunoprecipitated with FLAG-epitope tagged TSC1 and TSC2 from the transfected mammalian cells. The in vivo and in vitro association of TBC7 and the TSC1-TSC2 complex was confirmed by the co-immunoprecipitation and pull-down analysis, respectively, and TBC7 was revealed to bind to the C-terminal half region of TSC1, which is distinct from the binding site with TSC2. The immunofluorescence microscopy and subcellular fractionation showed that TBC7 co-localizes with the tumor suppressor complex in the endomembrane. Overexpression of TBC7 enhanced ubiquitination of TSC1 and increased phosphorylation of S6 protein by S6 kinase, that is located in the mTOR-signaling pathway. These results indicate TBC7 could take a part in the negative regulation of the tumor suppressor complex through facilitating the downregulation of TSC1. 相似文献
15.
The ganglioside-activator protein is an essential cofactor for the lysosomal degradation of ganglioside GM2 (GM2) by beta-hexosaminidase A. It mediates the interaction between the water-soluble exohydrolase and its membrane-embedded glycolipid substrate at the lipid-water interphase. Mutations in the gene encoding this glycoprotein result in a fatal neurological storage disorder, the AB variant of GM2-gangliosidosis. In order to efficiently and sensitively probe the glycolipid binding and membrane activity of this cofactor, we synthesized two new fluorescent glycosphingolipid (GSL) probes, 2-NBD-GM1 and 2-NBD-GM2. Both compounds were synthesized in a convergent and multistep synthesis starting from the respective gangliosides isolated from natural sources. The added functionality of 2-aminogangliosides allowed us to introduce the chromophore into the region between the polar head group and the hydrophobic anchor of the lipid. Both fluorescent glycolipids exhibited an extremely low off-rate in model membranes and displayed very efficient resonance energy transfer to rhodamine-dioleoyl phosphoglycerol ethanolamine (rhodamine-PE) as acceptor. The binding to GM2-activator protein (GM2AP) and the degrading enzyme was shown to be unaltered compared to their natural analogues. A novel fluorescence-resonance energy transfer (FRET) assay was developed to monitor in real time the protein-mediated intervesicular transfer of these lipids from donor to acceptor liposomes. The data obtained indicate that this rapid and robust system presented here should serve as a valuable tool to probe quantitatively and comprehensively the membrane activity of GM2AP and other sphingolipid activator proteins and facilitate further structure-function studies aimed at delineating independently the lipid- and the enzyme-binding mode of these essential cofactors. 相似文献
16.
Andrea Erlbruch Chien‐Wen Hung Joerg Seidler Katrin Borrmann Frank Gesellchen Norbert König Dieter Kübler Friedrich W. Herberg Wolf D. Lehmann Dirk Bossemeyer 《Proteomics》2010,10(16):2890-2900
An expression‐uncoupled tandem affinity purification assay is introduced which differs from the standard TAP assay by uncoupling the expression of the TAP‐bait protein from the target cells. Here, the TAP‐tagged bait protein is expressed in Escherichia coli and purified. The two concatenated purification steps of the classical TAP are performed after addition of the purified bait to brain tissue homogenates, cell and nuclear extracts. Without prior genetic manipulation of the target, upscaling, free choice of cell compartments and avoidance of expression triggered heat shock responses could be achieved in one go. By the strategy of separating bait expression from the prey protein environment numerous established, mostly tissue‐specific binding partners of the protein kinase A catalytic subunit Cβ1 were identified, including interactions in binary, ternary and quaternary complexes. In addition, the previously unknown small molecule inhibitor‐dependent interaction of Cβ1 with the cell cycle and apoptosis regulatory protein‐1 was verified. The uncoupled tandem affinity purification procedure presented here expands the application range of the in vivo TAP assay and may serve as a simple strategy for identifying cell‐ and tissue‐specific protein complexes. 相似文献
17.
Xianxian Li Yuanyuan Ma Xiangnan Wu Zhichao Hao Jian Yin Jiefei Shen Xiaoyu Li Ping Zhang Hang Wang 《Biochemical and biophysical research communications》2013
Interleukin-6 (IL-6) is a potent stimulator of osteoclastic bone resorption. Osteocyte secretion of IL-6 plays an important role in bone metabolism. Serotonin (5-HT) has recently been reported to regulate bone metabolism. The aim of this study was to evaluate the effect of serotonin on osteocyte expression of IL-6. The requirement for the 5-HT receptor(s) and the role of the extracellular signal-regulated kinase 1/2 (ERK1/2) in serotonin-induced IL-6 synthesis were examined. In this study, real-time PCR and ELISA were used to analyse IL-6 gene and protein expression in serotonin-stimulated MLO-Y4 cells. ERK1/2 pathway activation was determined by Western blot. We found that serotonin significantly activated the ERK1/2 pathway and induced IL-6 mRNA expression and protein synthesis in cultured MLO-Y4 cells. However, these effects were abolished by pre-treatment of MLO-Y4 cells with a 5-HT2B receptor antagonist, RS127445 or the ERK1/2 inhibitor, PD98059. Our results indicate that serotonin stimulates osteocyte secretion of IL-6 and that this effect is associated with activation of 5-HT2B receptor and the ERK1/2 pathway. These findings provide support for a role of serotonin in bone metabolism by indicating serotonin regulates bone remodelling by mediating an inflammatory cytokine. 相似文献
18.
19.
A new sensitive and specific method using liquid chromatography/tandem mass spectrometry for determination of bryostatin 1 was developed and validated. Sample pretreatment involved a double liquid-liquid extraction step with a mixture of acetonitrile/n-butyl chloride (1/4, v/v). Separation of the compound of interest, including the internal standard paclitaxel, was achieved on a Waters X-Terra C18 (50 x 2.1 mm i.d., 3.5 microm) analytical column with acetonitrile/water mobile phase (80:20, v/v) containing 0.1% formic acid using isocratic flow at 0.15 mL/min for 13 min. The analytes of interest were monitored by tandem mass spectrometry with electrospray positive ionization. The linear calibration curves were generated over the range of 50-2000 pg/mL with values for the coefficient of determination of >0.99. The values for both within-day and between-day precision and accuracy were <15%. This method was used to characterize the plasma pharmacokinetics of bryostatin 1 at doses of 20 microg/m2) to optimize treatment with this agent. 相似文献
20.
Zlatina Tomova Desislav Tomov Angelina Vlahova Veneta Chaova-Gizdakova Lyubka Yoanidu Dobrin Svinarov 《Journal of Medical Biochemistry》2022,41(4):466
BackgroundIncreased formation of reactive oxygen species may be caused by the ion release of the metal alloys used in prosthetic dental restorations due to the corrosion process. As products of lipid peroxidation, isoprostanes can be used as a marker for oxidative stress in the body. There are two significant advantages of using isoprostanes as an oxidative stress marker - presence in all fluids in the body and low reactivity. Saliva provides noninvasive, painless, and cost-effective sample collection and can be used as an alternative testing medium of blood and urine.MethodsThis study presents the development and validation of a sample LC-MS/MS method to quantify 8-isoprostaglandin F2-a in human saliva using salt-out assisted liquid-liquid extraction (SALLE).ResultsThe selected sample preparation procedure optimized chromatographic separation and mass detection provided high recovery and sensitivity of the analysis. The calibration curve was obtained in the predefined range 25-329 ng/L with R2 larger than 0.995. Normalized matrix varied between 89.7 % and 113.5%. The method showed sufficient accuracy and precision - accuracy in the range 89.7 %-113.9 %, and precision between 2.3% and 5.4%.ConclusionsThe proposed method is validated according to current EMA/FDA industrial guidance for bioanalysis and offers an appropriate level of sensitivity and sufficient accuracy and precision. 相似文献