首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
IgE, the antibody that mediates allergic responses, acts as part of a self-regulating protein network. Its unique effector functions are controlled through interactions of its Fc region with two cellular receptors, FcεRI on mast cells and basophils and CD23 on B cells. IgE cross-linked by allergen triggers mast cell activation via FcεRI, whereas IgE-CD23 interactions control IgE expression levels. We have determined the CD23 binding site on IgE, using a combination of NMR chemical shift mapping and site-directed mutagenesis. We show that the CD23 and FcεRI interaction sites are at opposite ends of the Cε3 domain of IgE, but that receptor binding is mutually inhibitory, mediated by an allosteric mechanism. This prevents CD23-mediated cross-linking of IgE bound to FcεRI on mast cells and resulting antigen-independent anaphylaxis. The mutually inhibitory nature of receptor binding provides a degree of autonomy for the individual activities mediated by IgE-FcεRI and IgE-CD23 interactions.  相似文献   

2.
Elevated IgE levels and increased IgE sensitization to allergens are central features of allergic asthma. IgE binds to the high-affinity Fcε receptor I (FcεRI) on mast cells, basophils, and dendritic cells and mediates the activation of these cells upon antigen-induced cross-linking of IgE-bound FcεRI. FcεRI activation proceeds through a network of signaling molecules and adaptor proteins and is negatively regulated by a number of cell surface and intracellular proteins. Therapeutic neutralization of serum IgE in moderate-to-severe allergic asthmatics reduces the frequency of asthma exacerbations through a reduction in cell surface FcεRI expression that results in decreased FcεRI activation, leading to improved asthma control. Our increasing understanding of IgE receptor signaling may lead to the development of novel therapeutics for the treatment of asthma.  相似文献   

3.
Mast cell activation by immunoglobulin E (IgE)-mediated stimuli is a central event in the pathogenesis of allergic disorders. The present report shows that treatment with pentagalloylglucose (PGG) resulted in a down-regulation of FcεRI surface expression on mucosal-type murine bone marrow-derived mast cells (mBMMCs), which correlated with a reduction in IgE-mediated activation of mBMMCs. Furthermore, PGG prevented development of allergic diarrhea in a food-allergy mouse model and suppressed the up-regulated FcεRI surface expression on mast cells derived from the food-allergy mouse colon. These findings on PGG suggest its therapeutic potential for allergic diseases through suppressing the FcεRI surface expression.  相似文献   

4.
Mast cells are critical effector cells in the pathophysiology of allergic asthma and other IgE-mediated diseases. The Tec family of tyrosine kinases Itk and Btk serve as critical signal amplifiers downstream of antigen receptors. Although both kinases are expressed and activated in mast cells following FcεRI stimulation, their individual contributions are not clear. To determine whether these kinases play unique and/or complementary roles in FcεRI signaling and mast cell function, we generated Itk and Btk double knock-out mice. Analyses of these mice show decreased mast cell granularity and impaired passive systemic anaphylaxis responses. This impaired response is accompanied by a significant elevation in serum IgE in Itk/Btk double knock-out mice. In vitro analyses of bone marrow-derived mast cells (BMMCs) indicated that Itk/Btk double knock-out BMMCs are defective in degranulation and cytokine secretion responses downstream to FcεRI activation. These responses were accompanied by a significant reduction in PLCγ2 phosphorylation and severely impaired calcium responses in these cells. This defect also results in altered NFAT1 nuclear localization in double knock-out BMMCs. Network analysis suggests that although they may share substrates, Itk plays both positive and negative roles, while Btk primarily plays a positive role in mast cell FcεRI-induced cytokine secretion.  相似文献   

5.
Mast cells are widely distributed in the body and affect their surrounding environment through degranulation and secretion of cytokines. Conversely, mast cells are influenced by environmental stimuli such as cyclical mechanical stretch (CMS), such as that induced by heartbeat and respiration. Peripherally distributed mast cells are surrounded by extracellular matrix, where they bind IgE on their surface by expressing the high‐affinity Fc receptor for IgE (FcεRI), and they release mediators after cross‐linking of surface‐bound IgE by allergen. To analyse how CMS affects mast cell responses, we examined the effect of applying CMS on the behaviour of IgE‐bound mast cells (RBL‐2H3 cell line) adhering to fibronectin as a substitute for extracellular matrix. We found that CMS enhanced FcεRI‐mediated secretion in the presence of antigen (2,4‐dinitrophenol–bovine serum albumin). CMS increased expression of IL‐4 mRNA and secretion of IL‐4 protein. Western blot analysis showed that CMS changes the signal transduction in mitogen‐activated protein kinases and AKT, which in turn alters the regulation of IL‐4 and increases the secretion of IL‐4. These results suggest that CMS modulates the effect of mast cells on inflammation and resultant tissue remodelling. Understanding how CMS affects mast cell responses is crucial for developing therapies to treat mast cell‐related diseases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Oxysterols activating liver X receptors (LXRs) repress expression of pro-inflammatory genes and have anti-inflammatory effects. Here, we show for the first time that bone marrow-derived murine mast cells (BMMCs) predominantly express LXRβ. 25-hydroxycholesterol, a representative LXR activating oxysterol, suppressed IL-6 production and degranulation response in BMMCs following engagement of high-affinity IgE receptor (FcεRI). Interestingly, 25-hydroxycholesterol reduced cell-surface FcεRI expression by inhibiting assembly of FcεRIα and FcεRIβ. We demonstrate that LXR activation was involved in the suppression of IL-6 production in BMMCs, but that reduced FcεRI expression and degranulation response was mediated in an LXR-independent manner.  相似文献   

7.
8.
Mast cells express the high-affinity receptor for IgE (FcεRI) and are key players in type I hypersensitivity reactions. They are critically involved in the development of allergic rhinitis, allergic asthma and systemic anaphylaxis, however, they also regulate normal physiological processes that link innate and adaptive immune responses. Thus, their activation has to be tightly controlled. One group of signaling molecules that are activated upon FcεRI stimulation is formed by Tec family kinases, and three members of this kinase family (Btk, Itk and Tec) are expressed in mast cells. Many studies have revealed important functions of Tec kinases in signaling pathways downstream of the antigen receptors in lymphocytes. This review summarizes the current knowledge about the function of Tec family kinases in FcεRI-mediated signaling pathways in mast cell.  相似文献   

9.
Bioassay-guided separation of the extract of the medicinal plant, Puerariae Flos, disclosed the two isoflavones tectorigenin (1) and genistein (2) as the inhibitors for expression of IgE receptor (FcεRI), the key molecule triggering the allergic reactions, on human mast cells. As a result of analysis of structure–activity relationship of the naturally occurring and synthesized isoflavones, 7-O-methyl glycitein (11) was disclosed as the more potent inhibitor than tectorigenin (1). These isoflavone ingredients suppressed expression of FcεRI more potently than the active flavonoids found previously. In addition, tectorigenin (1) was clarified to particularly reduce generation of γ-chain subunit to suppress expression of FcεRI among the three subunits.  相似文献   

10.
Feuser K  Thon KP  Bischoff SC  Lorentz A 《Cytokine》2012,58(2):178-185
Mast cells are key effector cells of immediate type allergic reactions. Upon activation they release a broad array of pre-stored and de novo synthesized mediators including immunoregulatory cytokines and chemokines. Here, we analyzed the chemokine profile expressed by mature human mast cells. Human mast cells were isolated from intestinal tissue and cultured with stem cell factor (SCF) in the presence or absence of IL-4 for 10d. Cells were stimulated by cross-linking of the high affinity IgE receptor (FcεRI) and/or by SCF. Chemokine and chemokine receptor mRNA expression was determined by real-time RT-PCR and chemokine release was measured by multiplex bead immunoassay. Out of 43 chemokines and 19 chemokine receptors human intestinal mast cells express 27 chemokines and nine chemokine receptors. Twelve chemokines (CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL18, CCL20, CXCL2, CXCL3, CXCL8, and XCL1) were more than four-fold up-regulated in response to FcεRI cross-linking. Combination of pre-culture with IL-4 and/or stimulation with SCF in addition to FcεRI cross-linking further increased the antigen-dependent expression of mRNA for most chemokines. In contrast, the expression of CCL20, CXCL2, and CXCL3 was strongly inhibited by IL-4 treatment. In conclusion, human intestinal mast cells express a broad spectrum of different chemokines underlining their important role as immunoregulatory cells. Furthermore, combined treatment with IL-4 and SCF increases the antigen-mediated expression and release of multiple chemokines, but IL-4 priming inhibits the expression of CCL20, CXCL2, and CXCL3.  相似文献   

11.
Binding of allergen-IgE complexes to the high affinity IgE receptor (FcεRI) on mast cells and basophils leads to the release of various mediaters such as histamine. Fab fragments prepared by the papain digestion of humanized antibody against human FcεRI inhibited the release of histamine from human basophils. Here we established an expression system to directly produce Fab fragments of the humanized anti-human FcεRI antibody in methylotropic yeast, P. pastoris. Fab fragments were efficiently secreted into the medium at a concentration of 10-40 mg/L using a signal sequence from the P. pastoris phosphatase gene. They were consisted of disulfide-linked light and heavy chains correctly starting from the first amino acid residues by proper cleavage of the signal peptides. The obtained Fab fragments inhibited the binding between IgE and FcεRI as efficiently as the counterpart prepared by papain digestion of the whole antibody.  相似文献   

12.
13.
Exploration for inhibitors against expression of IgE receptor (FcεRI) on human mast cell, a significant trigger to acute and chronic allergic symptoms, disclosed epigallocatechin gallate (EGCG), epicatechin gallate, and gallocatechin gallate as active principles. Additionally, the anthocyanidin, delphinidin, and the flavone, tricetinidin, possessing a pyrogallol function were also revealed to suppress expression of FcεRI. Structure–activity relationship analysis among catechins, anthocyanidins, and flavones revealed the pyrogallol moiety to be crucial for biological potency. Furthermore, EGCG was clarified to reduce generation of γ-chain subunit to suppress expression of FcεRI on human mast cells.  相似文献   

14.
Biologically relevant activation of human mast cells through Fc receptors is believed to occur primarily through the high-affinity IgE receptor Fc epsilon RI. However, the demonstration in animal models that allergic reactions do not necessarily require Ag-specific IgE, nor the presence of a functional IgE receptor, and the clinical occurrence of some allergic reactions in situations where Ag-specific IgE appears to be lacking, led us to examine the hypothesis that human mast cells might express the high-affinity IgG receptor Fc gamma RI and in turn be activated through aggregation of this receptor. We thus first determined by RT-PCR that resting human mast cells exhibit minimal message for Fc gamma RI. We next found that IFN-gamma up-regulated the expression of Fc gamma RI. This was confirmed by flow cytometry, where Fc gamma RI expression on human mast cells was increased from approximately 2 to 44% by IFN-gamma exposure. Fc epsilon RI, Fc gamma RII, and Fc gamma RIII expression was not affected. Scatchard plots were consisted with these data where the average binding sites for monomeric IgG1 (Ka = 4-5 x 108 M-1) increased from approximately 2,400 to 12,100-17,300 per cell. Aggregation of Fc gamma RI on human mast cells, and only after IFN-gamma exposure, led to significant degranulation as evidenced by histamine release (24.5 +/- 4.4%): and up-regulation of mRNA expression for specific cytokines including TNF-alpha, GM-CSF, IL-3 and IL-13. These findings thus suggest another mechanism by which human mast cells may be recruited into the inflammatory processes associated with some immunologic and infectious diseases.  相似文献   

15.
H. pylori infection shows an inverse relationship with allergies. Dendritic cells regulate mucosal immune responses including the induction of T regulatory cells which are fundamental in Helicobacter pylori-induced dampening of allergies. In this respect expression of high-affinity IgE receptor (FcεRI) has been associated with a regulatory dendritic cell profile. Therefore we aimed to evaluate possible mechanisms by which H. pylori infection might modify atopy in pediatric patients. Here we show that H. pylori-infected children exhibited both increased expression of FcεRI on peripheral myeloid and plasmacytoid dendritic cells and higher levels of Foxp3 and Latency Associated Peptide on T regulatory cells. Moreover, exposure to H. pylori drove increased FcεRI expression and IL-10 secretion by both pediatric H. pylori-exposed monocyte derived dendritic cells and T cells. Finally, we show a positive correlation between expression of FcεRI in circulating myeloid DCs and total Treg cells, suggesting that in children, H. pylori infection may have a modulating role in atopy, mediated by both altered surface expression of FcεRI on children's DC and an increased T regulatory cell profile.  相似文献   

16.
Previous studies suggested that Protein L (PpL), the bacterial Ig-binding protein, activates mast cells. PpL presumably performs the activation by interacting with membrane-bound IgEκ, but the underlying mechanisms behind the process remain unclear. In the current study, we found that cell-surface FcεRI expression is a critical factor participant in PpL-mediated full activation of murine mast cells, which includes cytokine production, the degranulation response, and leukotriene C(4) (LTC(4)) release, and that engagement of the FcεRI with IgEκ and PpL is enough to induce tyrosine phosphorylation of ITAM in the FcRβ- and γ-signaling subunits. Introduction of mutations in two canonical tyrosine residues (Y47F/Y58F) of the FcRγ-ITAM completely abolished the above-mentioned mast cell functions, with the exception of LTC(4) release. Importantly, the FcRβ-ITAM acts as a signal transducer that is responsible for LTC(4) release independently of the FcRγ-ITAM. Taken together, our results suggest crucial and distinct functions for the FcRβ- and γ-ITAMs in the FcεRI-dependent full activation of mast cells induced by IgEκ and PpL.  相似文献   

17.
Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed α, β, and γ subunits of high-affinity immunoglobulin E (IgE) receptor (FcεRI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesis and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-α, and cyclooxygenase 2, and production of prostaglandin D(2) and leukotriene C(4) in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-α expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on FcεRI- and TLR-mediated effector functions of mast cells.  相似文献   

18.
IgE-antigen-dependent crosslinking of the high affinity IgE receptor (FcεRI) on mast cells leads to degranulation, leukotriene synthesis and cytokine production. Calcium (Ca2+) mobilization is a sine qua non requisite for degranulation, allowing the rapid secretion of stored pro-inflammatory mediators responsible for allergy symptoms. Fyn is a Src-family kinase that positively controls FcεRI-induced mast cell degranulation. However, our understanding of the mechanism connecting Fyn activation to secretion of pre-synthesized mediators is very limited. We analyzed FcεRI-dependent Ca2+ mobilization in bone marrow-derived mast cells (BMMCs) differentiated from WT and Fyn −/− knock out mice. Fyn −/− BMMCs showed a marked defect in extracellular Ca2+ influx after FcεRI crosslinking but not after thapsigargin addition. High concentrations of Gadolinium (Gd3+) partially blocked FcεRI-induced Ca2+ influx in WT cells but, in contrast, completely inhibited Ca2+ mobilization in Fyn −/− cells. Low concentrations of an inhibitor of the canonical transient receptor potential (TRPC) Ca2+ channels (2-aminoethoxyphenyl-borane, 2-APB) blocked FcεRI-induced maximal Ca2+ rise in WT but not in Fyn −/− cells. Ca2+ entry through Fyn-controlled, 2-APB sensitive channels was found to be important for full degranulation and IL-2 mRNA accumulation in WT cells. Immunoprecipitation assays showed that Fyn kinase interacts with TRPC 3/6/7 channels after IgE-antigen stimulation, but its association is not related to protein tyrosine phosphorylation. Results indicate Fyn kinase mediates the receptor-dependent activation of TRPC channels that contribute to degranulation in FcεRI-stimulated mast cells.  相似文献   

19.
Members of the membrane spanning 4A (MS4A) gene family are clustered around 11q12-13, a region linked to allergy and asthma susceptibility. Other than the known functions of FcεRIβ (MS4A2) and CD20 (MS4A1) in mast cell and B cell signaling, respectively, functional studies for the remaining MS4A proteins are lacking. We thus explored whether MS4A4A, a mast cell expressed homologue of FcεRIβ, has related functions to FcεRIβ in FcεRI signaling. We establish in this study that MS4A4A promotes phosphorylation of PLCγ1, calcium flux and degranulation in response to IgE-mediated crosslinking of FcεRI. We previously demonstrated that MS4A4A promotes recruitment of KIT into caveolin-1-enriched microdomains and signaling through PLCγ1. Caveolin-1 itself is an important regulator of IgE-dependent store-operated Ca2+ entry (SOCE) and promotes expression of the store-operated Ca2+ channel pore-forming unit, Orai1. We thus further report that MS4A4A functions through interaction with caveolin-1 and recruitment of FcεRI and KIT into lipid rafts. In addition to proximal FcεRI signaling, we similarly show that MS4A4A regulates Orai1-mediated calcium entry downstream of calcium release from stores. Both MS4A4A and Orai1 had limited effects with compound 48/80 stimulation, demonstrating some degree of selectivity of both proteins to FcεRI receptor signaling over Mas-related G Protein coupled receptor X2 signaling. Overall, our data are consistent with the conclusion that MS4A4A performs a related function to the homologous FcεRIβ to promote PLCγ1 signaling, SOCE, and degranulation through FcεRI in human mast cells and thus represents a new target in the regulation of IgE-mediated mast cell activation.  相似文献   

20.
Soluble IgE receptors are potential in vivo modulators of IgE-mediated immune responses and are thus important for our basic understanding of allergic responses. We here characterize a novel soluble version of the IgE-binding alpha-chain of Fc-epsilon-RI (sFcεRI), the high affinity receptor for IgE. sFcεRI immunoprecipitates as a protein of ~40 kDa and contains an intact IgE-binding site. In human serum, sFcεRI is found as a soluble free IgE receptor as well as a complex with IgE. Using a newly established ELISA, we show that serum sFcεRI levels correlate with serum IgE in patients with elevated IgE. We also show that serum of individuals with normal IgE levels can be found to contain high levels of sFcεRI. After IgE-antigen-mediated crosslinking of surface FcεRI, we detect sFcεRI in the exosome-depleted, soluble fraction of cell culture supernatants. We further show that sFcεRI can block binding of IgE to FcεRI expressed at the cell surface. In summary, we here describe the alpha-chain of FcεRI as a circulating soluble IgE receptor isoform in human serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号