首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seventeen Sprague-Dawley rats had ischemic nonoliguric acute renal failure (ARF) induced by vascular clamping resulting in their preischemic blood urea nitrogen (BUN) and creatinine levels of 16 +/- 1 and 0.56 +/- 0.05 mg/dl to increase to 162 +/- 4 and 8.17 +/- 0.5 mg/dl, P < 0.001, respectively, at day 4 of postischemia. Vessel dilator, a 37-amino-acid cardiac peptide hormone (0.3 microg x kg(-1) x min(-1) ip), decreased the BUN and creatinine levels to 53 +/- 17 mg/dl and 0.98 +/- 0.12 mg/dl (P < 0.001) in another seven animals where ARF had been established for 2 days. Water excretion doubled with ARF and was further augmented by vessel dilator. Transthoracic echocardiography revealed left ventricular dilation as a probable cause of the increase in vessel dilator in the circulation with ARF, and vessel dilator infusion reversed this dilation. At day 6 of ARF, mortality decreased to 14% with vessel dilator from 88% without vessel dilator. Acute tubular necrosis was <5% in the vessel dilator-treated rats compared with 25% to >75% in the placebo-treated ARF animals. We conclude that vessel dilator improves acute tubular necrosis and renal function in established ARF.  相似文献   

2.
Beneficial effect of verapamil in ischemic acute renal failure in the rat   总被引:2,自引:0,他引:2  
To investigate the possible protective effect of Ca2+ blockers in ischemic acute renal failure (ARF), verapamil, in a dose of 10 micrograms/kg body wt/min was administered for 100 min, starting 15 min before the total occlusion of the left renal artery after right nephrectomy in rats. Mean 24-hr creatinine clearance, blood urea, and serum creatinine levels, 24 hr after declamping, were used as a measure of kidney function. These values which were 135 +/- 1.9 microliter/min, 231 +/- 22 mg%, and 2.25 +/- 0.22 mg%, respectively, in the untreated rats, were found to be significantly different, i.e., 326.3 +/- 33.2 microliter/min, P less than 0.001, 112 +/- 25 mg%, P less than 0.001, and 1.26 +/- 0.28 mg%, P less than 0.01, respectively, in the verapamil-treated animals. Increased 24-hr total urine creatinine, sodium, osmolality, and a lower fractional excretion of sodium were also observed in the verapamil-treated rats with ARF. The combination of propranolol 1 mg/kg body wt/min and verapamil 10 micrograms/kg body wt/min for 100 min had no additive effect on renal function. In another group of ARF rats in which verapamil was started after declamping, no alleviating effect was observed. It is concluded that verapamil, an inhibitor of cellular membrane transport, when given prior to the renal ischemia, offers a partial but significant protection in this model of ischemic ARF.  相似文献   

3.
Kang DG  Oh H  Sohn EJ  Hur TY  Lee KC  Kim KJ  Kim TY  Lee HS 《Life sciences》2004,75(15):1801-1816
The present study was designed to examine whether lithospermic acid B (LSB) isolated from Salvia miltiorrhiza has an ameliorative effect on renal functional parameters in association with the expression of aquaporin 2 (AQP 2) and Na,K-ATPase in the ischemia-reperfusion induced acute renal failure (ARF) rats. LSB showed strong antioxidant activity against production of reactive oxygen species (ROS), ROS-induced hemolysis, and production of lipid peroxide in a dose-dependent manner. Polyuria caused by down-regulation of renal AQP 2 in the ischemia-reperfusion induced ARF rats was partially restored by administration of LSB (40 mg/kg, i.p.), restoring expression of AQP 2, in renal inner and outer medulla. The expression of Na,K-ATPase alpha1 subunit in outer medulla of the ARF rats was also restored in the ARF rats by administration of LSB, while beta1 subunit level was not altered. The renal functional parameters including creatinine clearance, urinary sodium excretion, urinary osmolality, and solute-free reabsorption were also partially restored in ischemia-ARF rats by administration of LSB. Histological study also showed that renal damages in the ARF rats were abrogated by administration of LSB. Taken together, these data indicate that LSB ameliorates renal defects in rats with ischemia-reperfusion induced ARF, most likely via scavenging of ROS.  相似文献   

4.
Increasing renal pelvic pressure results in PGE(2)-mediated release of substance P. Substance P increases afferent renal nerve activity (ARNA), which leads to a reflex increase in urinary sodium excretion (U(Na)V). Endogenous ANG II modulates the responsiveness of renal mechanosensory nerves. The ARNA and U(Na)V responses are suppressed by low- and enhanced by high-sodium diet. We examined whether the ARNA responses are altered in rats with congestive heart failure (CHF), a condition characterized by increased ANG II and sodium retention. The ARNA responses to increasing renal pelvic pressure 相似文献   

5.
The mechanism by which blood pressure rises in the SHR strain remains to be elucidated. Since the long-term changes in renal sodium tubule handling associated with genetic hypertension have not been examined in detail, we hypothesized that SHR hypertension development may result from sustained renal sympathetic nerve overactivity and consequently decreased urinary sodium excretion. To test this hypothesis, we assessed renal sodium handling and cumulative sodium balance for 10 consecutive weeks in unanesthetized renal-denervated SHR, performed prior to the start of the entire 10-week metabolic studies, and their age-matched normotensive and hypertensive controls. The present investigation shows that SHR excreted less sodium than Wistar-Kyoto (WKy) rats during the initial 3-week observation period (p <0.05). This tendency was reversed when SHR were 10-wk old. Fractional urinary sodium excretion (FENa+) was significantly lower in 3 and 6-wk-old SHR when compared with the WKy age-matched group, as follows: SHR3-wk-old: 0.33 +/- 0.09% and WKy3-wk-old: 0.75 +/- 0.1% (P <0.05); SHR(6-wk-old): 0.52 +/- 0.12% and WKy6-wk-old: 0.83 +/- 0.11%. The decreased FENa+ in young SHR was accompanied by a significant increase in proximal sodium reabsorption (FEPNa+) compared with the normotensive age-matched control group (P <0.01). This increase occurred despite unchanged creatinine clearance (CCr) and fractional post-proximal sodium excretion (FEPPNa+)in all groups studied. The decreased urinary sodium excretion response in SHR up to the age of 6 weeks was significantly eradicated by bilateral renal denervation of SHR3-wk-old: 0.33 +/- 0.09% and SHR6-wk-old: 0.52 +/- 0.12% to DxSHR 3-wk-old: 1.02 +/- 0.2% and DxSHR 6-wk-old: 0.94 +/- 0.2% (P <0.01), in renal denervated rats. The current data suggest that neural pathways may play an instrumental role on renal sodium reabsorption as result of sustained sympathetic nervous system overexcitability.  相似文献   

6.
Rhabdomyolysis-induced myoglobinuric acute renal failure accounts for about 10-40% of all cases of acute renal failure (ARF). Nitric oxide and reactive oxygen intermediates play a crucial role in the pathogenesis of myoglobinuric acute renal failure (ARF). This study was designed to investigate the effect of molsidomine and L-arginine in glycerol induced ARF in rats. Six groups of rats were employed in this study, group I served as control, group II was given 50% glycerol (8 ml/kg, intramuscularly), groups III and IV were given glycerol plus molsidomine (5 mg/kg, and 10 mg/kg p.o. route respectively) 60 min prior to the glycerol injection, group V animals were given glycerol plus L-arginine (125 mg/kg, p.o.) 60 min prior to the glycerol injection, and group VI received L-NAME (10 mg/kg, i.p.) along with glycerol 30 min prior to glycerol administration. Renal injury was assessed by measuring plasma creatinine, blood urea nitrogen, creatinine and urea clearance. The oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels and by enzymatic activity of catalase, reduced glutathione and superoxide dismutase. Tissue and urine nitrite levels were measured as an index of total nitric oxide levels. Glycerol treatment resulted in a marked decrease in tissue and urine nitric oxide levels, renal oxidative stress and significantly deranged the renal functions along with deterioration of renal morphology. Pre-treatment of animals with molsidomine (10 mg/kg) and L-arginine 60 min prior to glycerol injection markedly attenuated fall in nitric oxide levels, renal dysfunction, morphological alterations, reduced elevated TBARS and restored the depleted renal antioxidant enzymes. The animals treated with L-NAME along with glycerol further worsened the renal damage observed with glycerol. As a result, our results indicate that molsidomine and L-arginine may have beneficial effects in myoglobinuric ARF.  相似文献   

7.
J. E. Fay  A. Travill 《CMAJ》1967,97(2):78-80
The urine/plasma creatinine ratio (U/P Cr), the urine sodium concentration (UNa), and the diuretic response to mannitol infusion in 23 patients were reviewed in an attempt to differentiate functional renal failure (FRF) from acute tubular necrosis (ATN). FRF was diagnosed if the plasma urea nitrogen (PUN) or serum creatinine stabilized within 72 hours. When renal failure persisted longer, patients had ATN. Subjects dying within 72 hours were excluded. Ten patients had ATN and five survived. The minimum duration of renal failure among survivors was 10 days. None responded to mannitol. Of 13 patients with FRF, 11 survived. Seven of 12 who received mannitol responded with a diuresis. The mean UNa in the patients with ATN was 51.4 mEq./1. ± 9.48 (SE). The mean U/P Cr was 11.2 ± 1.12. In patients with FRF, the mean UNa was 14.0 mEq./1. ± 4.2 and the mean U/P Cr was 42.5 ± 11.5. A significant overlap was present between the two groups. When UNa was factored by the U/P Cr, the resultant ratio was significantly different for the two groups of patients (P < 0.01), and this proved to be a useful clinical index with which to distinguish FRF from established ATN.  相似文献   

8.
To determine the role of superoxide (O(2)(-)) formation in the kidney during alterations in the renin-angiotensin system, we evaluated responses to the intra-arterial infusion of an O(2)(-) - scavenging agent, tempol, in the denervated kidney of anesthetized salt-depleted (SD, n=6) dogs and salt-replete (SR, n=6) dogs. As expected, basal plasma renin activity was higher in SD than in SR dogs (8.4 +/- 1.0 vs. 2.3 +/- 0.6 ng angiotensin 1/ml/hr). Interestingly, the basal level of urinary F(2)-isoprostanes excretion (marker for endogenous O(2)(-) activity) relative to creatinine (Cr) excretion was also significantly higher in SD compared to SR dogs (9.1 +/- 2.8 vs. 1.6 +/- 0.4 ng F(2)-isoprostanes/mg of Cr). There was a significant increase in renal blood flow (4.3 +/- 0.5 to 4.9 +/- 0.6 ml/min/g) and decreases in renal vascular resistance (38.2 +/- 5.8 to 33.2 +/- 4.7 mm Hg/ml/min/g) and mean systemic arterial pressure (148 +/- 6 to 112 +/- 10 mm Hg) in SD dogs but not in SR dogs during infusion of tempol at 1 mg/kg/min for 30 mins. Glomerular filtration rate and urinary sodium excretion (U(Na)V) did not change significantly during tempol infusion in both groups of dogs. Administration of the nitric oxide synthase inhibitor nitro-L-arginine (50 mug/kg/min) during tempol infusion caused a reduction in U(Na)V in SR dogs (47% +/- 12%) but did not cause a decrease in SD dogs. These data show that low salt intake enhances O(2)(-) activity that influences renal and systemic hemodynamics and thus may contribute to the regulation of arterial pressure in the salt-restricted state.  相似文献   

9.
The purpose of this study was to assess the participation of the atrial natriuretic peptide (ANP)-cGMP system in electrolyte and volume handling of cholestatic rats submitted to an acute oral sodium load. Cholestasis was induced by ligation and section of the common bile duct (n = 51). Control rats were sham operated (n = 56). Three weeks after surgery, 24-hr urinary volume, sodium, potassium, cGMP and creatinine excretion were measured. Three days later, animals received 10 mmol/kg NaCl (1 M) by gavage, and urinary excretion was measured for 6 hr. In parallel groups of rats, plasma volume, electrolytes and ANP concentration, extracellular fluid volume (ECFV), and renal medullary ANP-induced cGMP production were determined in basal conditions or 1 hr after oral sodium overload. As compared with controls, cholestatic rats had a larger ECFV and higher plasma ANP (67.2 +/- 5.2 vs 39.7 +/- 3.5 pg/ml), but lower hematocrit and blood volume, and were hyponatremic. Cholestatic rats showed higher basal excretion of sodium, potassium, and volume than controls, but equal urinary cGMP. After the NaCl overload, cholestatic rats showed a reduced sodium excretion but equal urinary cGMP. One hr after sodium overload, both groups showed hypernatremia, but whereas in control rats ECFV and ANP increased (50.7 +/- 4.1 pg/ml), in cholestatic rats ECFV was unchanged, and plasma volume and ANP were reduced (37.5 +/- 5.8 pg/ml). ANP-induced cGMP production in renal medulla was similar in cholestatic and control nonloaded rats (14.2 +/- 5.2 vs 13.4 +/- 2.6 fmol/min/mg). One hr after the load, medullary cGMP production rose significantly in both groups, without difference between them (20.6 +/- 3.1 vs 22.7 +/- 1. 7 fmol/min/mg). We conclude that the blunted excretion of an acute oral sodium load in cholestatic rats is associated with lower plasma ANP due to differences in body fluid distribution and cannot be explained by renal refractoriness to ANP.  相似文献   

10.
BACKGROUND: Damaged and/or dysfunctional microvascular endothelium has been implicated in the pathogenesis of ischemic acute renal failure (ARF). Rapidly occurring changes in the endothelial F-actin cytoskeleton as observed in vitro might be responsible, but have been proven difficult to measure accurately in situ. Therefore, the purpose of this study was to examine several methods of digital image analysis in order to quantify the alterations of endothelial F-actin after renal ischemia and reperfusion (I/R), and to relate these to deterioration of renal function. METHODS: Frozen sections of Sham and I/R rat kidneys were fixed in 4% formaldehyde and stained with rhodamine-phallo?din. Microvascular structures were captured using a 3i Marianastrade mark digital imaging fluorescence microscope workstation. Images were analyzed using 3i SlideBooktrade mark software, employing several masking techniques and line-scans. RESULTS: Digital image analysis demonstrated a decrease in the mean intensity of rhodamine-phallo?din fluorescence after I/R from 1030 +/- 187 to 735 +/- 121 a.u. (arbitrary units, mean +/- SD, n = 7). The number of F-actin fragments per pixel increased from (15.8 +/- 4.9) x 10(-5) to (20.7 +/- 3.5) x 10(-5) (n = 7), indicating cytoskeletal fragmentation. In addition, line-scan analysis demonstrated a disturbed spatial orientation of the F-actin cytoskeleton after I/R. Finally, the loss of F-actin correlated with a rise in plasma creatinine. CONCLUSIONS: The methods of digital image analysis described in the present study demonstrate that renal I/R induces profound changes in the F-actin cytoskeletal structure of microvascular endothelial cells, implicating an injured and dysfunctional microvascular endothelium, which may contribute to acute renal failure (ARF).  相似文献   

11.
Carvedilol (CAR) is a vasodilating beta-blocker which also has antioxidant properties. CAR produces dose-related reduction in mortality in patients with congestive heart failure. In the present study, we tested the hypothesis that CAR protects against doxorubicin (DOX)-induced cardiomyopathy in rats. Sprague-Dawley rats were treated with DOX, CAR, CAR+DOX, or atenolol (ATN)+DOX. DOX (cumulative dose, 15 mg/kg) was administered intraperitoneally, and CAR (30 mg/kg daily) or ATN (150 mg/kg daily) was administered orally. Three weeks after the completion of these treatments, cardiac performance and myocardial lipid peroxidation were assessed. Mortality was observed in the DOX (25%) and ATN+DOX (12.5%) groups. Compared with control rats, DOX significantly decreased systolic blood pressure (104+/-4 vs. 120+/-4 mmHg, P<0.05) and left ventricular fractional shortening (38.8+/-3.1 vs. 55.4+/-1.3%, P<0.01), and resulted in a significant accumulation of ascites (14.4+/-4.9 vs. 0 ml, P<0.01). CAR significantly prevented the cardiomyopathic changes caused by DOX, while ATN did not. The myocardial thiobarbituric acid reactive substances (TBARS) content was significantly higher in DOX-treated rats than in control rats (80.4+/-7.1 vs. 51.5+/-1.2 nmol/g heart, p<0.01). CAR prevented the increase in TBARS content (48.8+/-3.0 nmol/g heart, P<0.01 vs. DOX group), whereas ATN had no significant effect (74.3+/-5.2 nmol/g heart). CAR also significantly prevented the increase in both myocardial and plasma cholesterol concentrations caused by DOX. These data indicate that CAR protects against DOX-induced cardiomyopathy and that this effect may be attributed to the antioxidant and lipid-lowering properties of CAR, not to its beta-blocking property.  相似文献   

12.
Myoglobinuric acute renal failure (ARF) is a uremic syndrome caused by traumatic or non-traumatic skeletal muscle breakdown and intracellular elements that are released into the bloodstream. We hypothesized that hyperbaric oxygen (HBO) therapy could be beneficial in the treatment of myoglobinuric ARF caused by rhabdomyolysis. A total of 32 rats were used in the study. The rats were divided into four groups: control, control+hyperbaric oxygen (control+HBO), ARF, and ARF+hyperbaric oxygen (ARF+HBO). Glycerol (8 ml/kg) was injected into the hind legs of each of the rats in ARF and ARF+HBO groups. 2.5 atmospheric absolute HBO was applied to the rats in the control+HBO and ARF+HBO groups for 90 min on two consecutive days. Plasma urea, creatinine, sodium, potassium, calcium, aspartate aminotransferase, alanine aminotransferase, lactic dehydrogenase, creatinine kinase and urine creatinine and sodium were examined. Creatinine clearance and fractional sodium excretion could then be calculated. Superoxide dismutase, catalase, glutathione and malondialdehyde (MDA) levels were assessed in renal tissue. Tissue samples were evaluated by Hematoxylin-eosin, PCNA and TUNEL staining histopathologically. MDA levels were found to be significantly decreased whereas SOD and CAT were twofold higher in the ARF+HBO group compared to the ARF group. Renal function tests were ameliorated by HBO therapy. Semiquantitative evaluation of histopathological findings indicated that necrosis and cast formation was decreased by HBO therapy and TUNEL staining showed that apoptosis was inhibited. PCNA staining showed that HBO therapy did not increase regeneration. Ultimately, we conclude that, in accordance with our hypothesis, HBO could be beneficial in the treatment of myoglobinuric ARF.  相似文献   

13.
Role of Toll-like receptor 4 in endotoxin-induced acute renal failure   总被引:18,自引:0,他引:18  
Toll-like receptor 4 (TLR4) is present on monocytes and other cell types, and mediates inflammatory events such as the release of TNF after exposure to LPS. C3H/HeJ mice are resistant to LPS-induced mortality, due to a naturally occurring mutation in TLR4. We therefore hypothesized that LPS-induced acute renal failure (ARF) requires systemic TNF release triggered by LPS acting on extrarenal TLR4. We injected C3H/HeJ mice and C3H/HeOuJ controls with 0.25 mg of LPS, and sacrificed them 6 h later for analysis of blood urea nitrogen (BUN) and kidney tissue (n = 8 per group). In contrast to C3H/HeOuJ controls, C3H/HeJ mice were completely resistant to LPS-induced ARF (6-h BUN of 32.3 +/- 1.1 vs 61.7 +/- 5.6 mg/dl). C3H/HeJ mice released no TNF into the circulation at 2 h (0.00 vs 1.24 +/- 0.16 ng/ml), had less renal neutrophil infiltration (6.4 +/- 1.0 vs 11.4 +/- 1.3 neutrophils per high power field), and less renal apoptosis, as assessed by DNA laddering. Transplant studies showed that C3H/HeJ recipients of wild-type kidneys (n = 9) were protected from LPS-induced ARF, while wild-type recipients of C3H/HeJ kidneys (n = 11) developed severe LPS-induced ARF (24-h BUN 44.0 +/- 4.1 vs 112.1 +/- 20.0 mg/dl). These experiments support our hypothesis that LPS acts on extrarenal TLR4, thereby leading to systemic TNF release and subsequent ARF. Renal neutrophil infiltration and renal cell apoptosis are potential mechanisms by which endotoxemia leads to functional ARF.  相似文献   

14.
During 1993-1998, in winter time 14 elderly patients: 8 female and 6 male aged 65-88, were treated because of hypothermia. Rectal temperature on admission was 20-34.9 degrees C. Sopor was present in 2 and various grades of coma were present in 10 patients. Arterial hypotension was recorded in 5, and shock in 9 patients. Increased serum creatinine level was found in 8 patients. The mean rectal temperature in the whole group was 31.3 degrees C +/- 4.7, ranging from 20.0 to 34.9 degrees C, and the mean serum creatinine level was 172.2 +/- 93.5, in range of 66.0 to 360.0 mumol/L. Negative correlation between those two parameters was found: r = -0.572. In 2 of them parameters of renal failure were analyzed: urine sodium concentration, creatinine urine/plasma ratio, urine osmolality, urine/plasma osmolality ratio, renal failure index and fractional excretion of filtered sodium. In one of the patients all parameters were within the range of functional oliguria, in an other the urine sodium concentration serum showed acute renal failure, but all other findings showed borderline values between functional oliguria and acute renal failure. Twelve out of 14 patients died within 1-216 hours from admission.  相似文献   

15.
We have induced acute renal failure (ARF) in barbiturate anesthetized rabbits, through warm ischaemia of 30 or 60 min duration caused by transient bilateral occlusion of renal arteries. In this model we have monitored some renal performance parameters, before and 4 hours after reperfusion, aiming to characterize ARF in this animal species. Glomerular filtration rate (determined by the inulin clearance technique) was of 9.74 +/- 0.48 ml min-1 in 4 rabbits before injury and declined by 91% (60 min ischemia) during the first reperfusion hour. In 6 rabbits undergoing 30 min occlusion, pre-ARF values of 10.70 +/- 0.98 ml min-1 declined by 47%. In both groups no recovery was observed in the following hours. Tubular enzymes (alanine-amino-peptidase, AAP and N-acetyl-beta-glucosaminidase, NAG) were released into urines before injury at the rate of 1.11 +/- 0.18 and 1.32 +/- 0.41 mU min-1, respectively, in the 30 min model (3 animals/group). During ARF, maximal AAP output was five-fold increased (5.83 +/- 0.35 mU min-1), whereas NAG was unmodified. On the other hand, renal haemodynamics in 5 rabbits did not change after the ischaemic procedure: total renal blood flow (44 +/- 5 ml min-1) and renal vascular resistances (225 +/- 26 Pa ml-min) displayed less than 10% variations throughout the reperfusion period. We concluded that ARF in rabbits can be reliably and reproducibly monitored and that the pathogenesis of the disease, in our situation, is attributable mainly to tubular cell damage and not to impairment of the vascular component of renal performance.  相似文献   

16.
Direct effects of altered temperature on renal structure and function   总被引:2,自引:0,他引:2  
Although marked alterations in temperature often accompany ischemic, acute renal failure (ARF), the effects of altered temperature on renal structure and function have received little attention. In the present investigation, isolated rat kidneys perfused at 41 degrees C had extensive tubular damage and decreased function compared to kidneys perfused at 37 degrees C. In contrast, kidneys perfused at 30 degrees C had less tubular damage, and better function, than kidneys perfused at 37 degrees C. Increased temperature caused a 50% reduction in renal ATP (0.46 +/- 0.04 microM/100 mg tissue protein. 37 degrees C vs. 0.26 +/- 0.03 microM/100 mg tissue protein, 41 degrees C; p less than 0.05). The decreased ATP occurred despite reduced sodium reabsorption (129 +/- 8 microM/min/g, 37 degrees C vs. 65 +/- 12 microM/min/g, 41 degrees C, p less than 0.05) and normal renal oxygen consumption (QO2). These results suggest that increased temperature may cause an uncoupling of QO2 and sodium chloride transport, and an increase in nontransport mediated, basal metabolic rate may result in depleted cellular ATP levels and renal tubular cell death.  相似文献   

17.
Measurements of tissue immunoassayable clusterin, a protein associated with programmed cell death and tissue reorganization, were performed in rats treated with nephrotoxic doses of gentamicin sulfate. Adult Lewis rats were treated with 100 mg/kg/day of gentamicin sulfate for 12 days. Urine, serum, and tissue levels of clusterin protein were measured, as were urinary N-acetyl beta-glucosaminidase (NAG) and serum creatinine levels. Induction of renal injury by gentamicin was detectable within 4 days by increased levels of urinary N-acetyl beta-glucosaminidase (from 280 +/- 66 (mean +/- SD) to 910 +/- 210 nmol/mg creatinine), and within 9 days of initiating gentamicin treatment by increased serum creatinine (from 0.5 +/- 0.1 to 1.2 +/- 0.4 mg/dl). Paralleling these changes, renal, urinary, and serum levels of clusterin increased 10-, 116-, and 3-fold (P less than 0.05). Treatment with gentamicin sulfate did not increase clusterin levels in the seminal vesicle, ventral prostate, testis, or epididymis. The measurement of urinary or serum clusterin may play a role in the early detection of renal injury.  相似文献   

18.
This study examined the contribution of intrarenal alpha(2)-adrenoceptor mechanisms to the enhanced urine flow rate (V) and urinary sodium excretion (U(Na)V) responses in ketamine-xylazine-anesthetized rats. Ten minutes after left renal artery (LRA) injection, the alpha(2)-adrenoceptor antagonist yohimbine (5 microg) significantly decreased V from 58 +/- 8 to 35 +/- 7 microl. min(-1). g kidney wt(-1) and U(Na)V from 2.8 +/- 0.4 to 2.1 +/- 0.4 microeq. min(-1). g kidney wt(-1) without altering right kidney function. The renal effects of the LRA injection of yohimbine were completely abolished in chronic bilaterally renal-denervated (RDNX) rats. In RDNX rats, a higher LRA dose of yohimbine (15 microg) significantly reduced left and right kidney V, with no effects on U(Na)V. In separate bladder-catheterized rats, yohimbine (0.5 mg/kg), 20 min after intravenous injection, significantly decreased V from 63 +/- 9 to 13 +/- 2 microl. min(-1). g kidney wt(-1 )and U(Na)V from 4.5 +/- 0.5 to 1.1 +/- 0.1 microeq. min(-1). g kidney wt(-1). In RDNX rats, this dose of yohimbine reduced V and U(Na)V, but the magnitude was blunted compared with intact rats. In contrast, 0.1 mg/kg iv yohimbine significantly reduced V and U(Na)V to similar magnitudes in intact and RDNX groups. Together, these findings indicate that intravenous xylazine acts by renal nerve-dependent and -independent mechanisms to enhance renal excretory function in ketamine-anesthetized rats. Because the effects of the LRA dose of yohimbine were abolished in renal-denervated animals, it appears that xylazine has a direct renal action to augment the renal excretion of water and sodium via a presynaptic alpha(2)-adrenoceptor pathway that inhibits the release of neurotransmitters from renal sympathetic nerve terminals.  相似文献   

19.
The effect of streptozotocin-induced diabetes mellitus on two different models of acute tubular necrosis (ATN), was studied: (i) the nephrotoxic model of HgCl2-induced ATN and (ii) the ischemic model of renal artery clamping for 60 min. Induction of ATN with HgCl2 in normal rats decreased CrCl from 0.67 +/- 0.05 to 0.1 +/- 0.019 ml/min (P less than 0.001) after 24 hr, and it deteriorated further to 0.03 +/- 0.013 ml/min after 48 hr; whereas, in the diabetic rats, HgCl2 decreased CrCl from 0.98 +/- 0.11 only to 0.31 +/- 0.037 ml/min (P less than 0.0001), but CrCl recovered to 0.50 +/- 0.08 ml/min after 48 hr. Bilateral clamping of renal arteries for 60 min in control and diabetic rats extremely decreased CrCl in both groups. Twenty-four hours after clamping, two of nine rats from the diabetic group died, whereas none from the control group died. Forty-eight hours after clamping, all nine rats from the diabetic group died, whereas only two rats from the control group died, and in the four surviving rats CrCl recovered slightly. Our study shows that streptozotocin-induced diabetes could not confer a general protection against ATN. It was protective against a nephrotoxic insult but aggravated the ischemic insult. An attempt to reconcile these discrepant effects is made in the Discussion.  相似文献   

20.
Heart failure is associated with an increase in plasma nitrate and nitrite (NOx). To date there is still some controversy regarding the causes of nitrate accumulation during the development of heart failure. The goal of this study was to analyze the underlying mechanisms that cause accumulation of plasma nitrates during the development of heart failure in dogs. Dogs were chronically instrumented for measurement of hemodynamics and renal function. Hearts were paced initially at 210 bpm for 3 weeks and then at 240 until the development of heart failure. Hemodynamics, renal function, renal blood flow, arterial blood gases, hemoglobin, plasma and urine NOx levels, and creatinine levels were measured weekly. Heart failure was assessed by hemodynamic alterations, physical signs such as lethargy, ascites, cachexia, and postmortem evidence of cardiac hypertrophy. LVSP (from 127 +/- 3 to 106 +/- 3 mmHg), LV dP/dt (from 2658 +/- 173 to 1439 +/- 217 mmHg/s), MAP (from 101 +/- 1.9 to 83 +/- 1.8 mmHg) fell, whereas LVEDP tripled (from 6.4 +/- 0.9 to 20 +/- 2.6 mmHg), and heart rate rose (from 101 +/- 4.2 to 117 +/- 6.3 bpm), all changes P < 0.05. RBF (from 146 +/- 10 to 96 +/- 9.9 ml/min), urine output (V) (from 0.26 +/- 0.02 to 0.16 +/- 0.02 ml/min), GFR (from 63 +/- 1.8 to 49 +/- 2 ml/min), and Na excretion (from 45 +/- 4.5 to 14 +/- 4.6 microEq/min) all decreased (P < 0.05), whereas RVR increased (from 0.68 +/- 0.05 to 0.94 +/- 0.1 mmHg/ml/min). These changes took place during a rise in plasma NOx (from 3.7 +/- 0.5 to 16+/-3.3 microM), a decrease in urine NOx (from 33 +/- 9.9 to 8.1 +/- 4.9 microM), and a concurrent increase in NOx reabsorption (from 221 +/- 31 to 818 +/- 166 nmol/min). There was a direct correlation between the increase in plasma NOx levels and an increase in filtered load (r(2) = 0.97, P = 0.02), a negative correlation between NOx levels and NOx excretion (r(2) = 0.65 P < 0.09), and a direct correlation between plasma NOx levels and NOx reabsorption (r(2) = 0.97, P = 0.02). These results indicate that elevated plasma NOx during heart failure are most likely the result of an impairment of the renal function and not increased NOx production. Furthermore, without knowing changes in renal function the measurement of plasma NOx in and of itself is a meaningless index of NO formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号