首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ductus arteriosus is one of several shunts in the cardiovascular system. It is a small vessel connecting the aortic arch and pulmonary artery that allows blood to bypass the pulmonary circulation. It is open during foetal development because the foetal lungs cannot function and oxygenation of the blood occurs by exchange with the maternal blood in the placenta. Normally it closes a few days after birth; however, in a small number of people closure does not occur, leading to a condition known as patent ductus arteriosus. In this paper our aim is to investigate the resulting cardiovascular effects. We develop a mathematical model of the haemodynamics in three different idealised geometries by assuming that the entry flow is irrotational and remains so in the core until at least the shunt position. We argue that separation or diffusion of vorticity into the core flow is delayed due to the high frequency associated with the pulsatile component of the flow profile. The analysis uses complex potential theory, Schwarz–Christoffel transformations, conformal mappings and Fourier series. The main results are based on the assumption that the flow in patients with patent ductus arteriosus is similar to the flow in healthy adults, and we apply this assumption using boundary conditions that are representative of physiological values in healthy adults. The model suggests that the pressures in the aorta and pulmonary artery are likely to equalise, that the shear stress increases near the edges of the shunt and that backflow of large volumes may occur from the pulmonary artery into the aorta or towards the ventricles due to the presence of the patent shunt. Our results strongly suggest that an abnormal compensatory physiology develops in patients with patent ductus arteriosus.  相似文献   

2.
The presence of adrenergic innervation was investigated in four different vascular segments of the neotenic tiger salamander, Ambystoma tigrinum, by histofluorescent staining for catecholamines. The segments were the respiratory section of the gill, the branchial shunt vessels, a vascular plexus in the pulmonary artery, and the dorsal aorta. No adrenergic fibers were detected in the respiratory section of the gill or the pulmonary arterial plexus. In contrast, the branchial shunt vessels contained both adrenergic varicosities and catecholamine-containing cell bodies. These cells resemble Type I cells of the mammalian carotid body and amphibian carotid labyrinth. Adrenergic innervation of the dorsal aorta was sparse and restricted to the adventitia. The results suggest that adrenergic nerves may directly regulate blood flow in the gill, and thus gas exchange, by controlling vascular resistance of the branchial shunts. The contractile state of the dorsal aorta may also be under adrenergic control. In addition, it is suggested that the adrenergic cells of the branchial shunts may serve a receptor function in being sensitive to arterial blood gases.  相似文献   

3.
Optimal hemodynamics in aorta-pulmonary shunt reconstruction is essential for improved post-operative recovery of the newborn congenital heart disease patient. However, prior to in vivo execution, the prediction of post-operative hemodynamics is extremely challenging due to the interplay of multiple confounding physiological factors. It is hypothesized that the post-operative performance of the surgical shunt can be predicted through computational blood flow simulations that consider patient size, shunt configuration, cardiac output and the complex three-dimensional disease anatomy. Utilizing only the routine patient-specific pre-surgery clinical data sets, we demonstrated an intelligent decision-making process for a real patient having pulmonary artery atresia and ventricular septal defect. For this patient, a total of 12 customized candidate shunt configurations are contemplated and reconstructed virtually using a sketch-based computer-aided anatomical editing tool. Candidate shunt configurations are evaluated based on the parameters that are computed from the flow simulations, which include 3D flow complexity, outlet flow splits, shunt patency, coronary perfusion and energy loss. Our results showed that the modified Blalock-Taussig (mBT) shunt has 12% higher right pulmonary artery (RPA) and 40% lower left pulmonary artery (LPA) flow compared to the central shunt configuration. Also, the RPA flow regime is distinct from the LPA, creating an uneven flow split at the pulmonary arteries. For all three shunt sizes, right mBT innominate and central configurations cause higher pulmonary artery (PA) flow and lower coronary artery pressure than right and left mBT subclavian configurations. While there is a trade-off between energy loss, flow split and coronary artery pressure, overall, the mBT shunts provide sufficient PA perfusion with higher coronary artery pressures and could be preferred for similar patients having PA overflow risk. Central shunts would be preferred otherwise particularly for cases with very low PA overflow risk.  相似文献   

4.
Previously proposed formulae for the quantitative estimation of bidirectional shunts across ventricular septal defects require determination of the oxygen contents of mixed venous, pulmonary artery, pulmonary venous, and aortic blood. Because these formulae do not take into account the mixing of oxygenated with unoxygenated blood within the ventricles, their use must result in underestimation of shunt flows in each direction. A mathematical model for a ventricular defect is examined, in which it is assumed that mixing of blood occurs in each of six sites in the venae cavae or right atrium, right ventricle, pulmonary artery, left atrium, left ventricle, and aorta. A total of fourteen streams of blood can flow from one to another of these mixing sites. As long as complete mixing occurs in the six specified mixing sites, any degree of mixing or non-mixing of the various streams is permitted. From the equations characterizing the model, formulae are derived in which the shunt flow in each direction is expressed in terms of the oxygen contents in the six mixing sites and the fractions of blood which enter the shunt from either side without prior mixing in a ventricular mixing site. The previously reported formulae, which apply when no ventricular mixing is allowed to occur, lead to theoretical minimum values for the shunt flows in each direction. At the opposite extreme where all the shunting blood is required to mix in a ventricle before entering the shunt, formulae for maximum possible shunt flows are also obtained. The absolute values for the left-to-right and right-to-left shunt flows, which must lie somewhere between the theoretical maximum and minimum values, cannot be computed from blood gas data alone. This work was supported in part by grant HE-07563 from the National Heart Institute of the National Institutes of Health and grants-in-aid from the American and North Carolina Heart Associations and the Life Insurance Medical Research Fund. Work completed during tenure as U.S.P.H.S. post-doctoral fellow.  相似文献   

5.
Multiscale computing is a challenging area even in biomechanics. Application of such a methodology to quantitatively compare postoperative hemodynamics in congenital heart diseases is very promising. In the treatment of hypoplastic left heart syndrome, which is a congenital heart disease where the left ventricle is missing or very small, the necessity to feed the pulmonary and systemic circulations is obtained with an interposition shunt. Two main options are available and differ from the sites of anastomoses: (i) the systemic-to-pulmonary conduit (Blalock-Taussig shunt known as the Norwood Operation (NO)) connecting the innominate artery (NO-BT) or the aorta (NO-CS) to the right pulmonary artery and (ii) the right ventricle to pulmonary artery shunt (known as Sano operation (SO)). The proposition that the SO is superior to the NO remains controversial. 3-D computer models of the NO (NO-BT and NO-CS) and SO were developed and investigated using the finite volume method. Conduits of 3, 3.5 and 4 mm were used in the NO models, whereas conduits of 4, 5 and 6 mm were used in the SO model. The hydraulic nets (lumped resistances, compliances, inertances and elastances) which represent the systemic, coronary and pulmonary circulations and the heart were identical in the two models. A multiscale approach was adopted to couple the 3-D models with the circulation net. Computer simulation results were compared with post-operative catheterization data. Results showed that (i) there is a good correlation between predicted and observed data: higher aortic diastolic pressure, decreased pulmonary arterial pressure, lower pulmonary-to-systemic flow ratio and higher coronary perfusion pressure in SO; (ii) there is a minimal regurgitant flow in the SO conduit. The close correlation between predicted and observed clinical data supports the use of mathematical modelling, with a mandatory multiscale approach, in the design and assessment of surgical procedures.  相似文献   

6.
The ductus arteriosi (DA) are embryonic blood vessels found in amniotic vertebrates that shunt blood away from the pulmonary artery and lungs and toward the aorta. Here, we examine changes in morphology of the right and left DA (LDA), and right and left aorta (LAo) from embryonic and hatchling alligators. The developing alligator has two‐patent DA that join the right and LAo. Both DA exhibit a muscular phenotype composed of an internal smooth muscle layer (2–4 cells thick). At hatching, the lumen diameter of both DA decreases as the vessels begin to close within the first 12 h of posthatch life. Between day 1 and day 12 posthatching, the vessel becomes fully occluded with endothelial and smooth muscle cells filling the lumen. A number of DA from hatchlings contained blood clots along their length. The lumen of the full term alligator DA is reduced in comparison with the full term chicken DA. The developing alligator embryo has an additional right‐to‐left shunt pathway in the LAo arising from the right ventricle. The embryonic LAo diameter is twice the diameter of either the right DA or LDA, providing a lower resistance pathway for blood leaving the right ventricle. On the basis of these findings, we propose that the paired DA of the embryonic alligator have a reduced role in the embryonic right‐to‐left shunt of blood from the right ventricle when compared with the avian DA. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
Summary Pressure records from the heart and out-flow vessels of the heart ofCrocodylus porosus resolve previously conflicting results, showing that left aortic filling via the foramen of Panizza may occur during both cardiac diastole and systole. Filling of the left aorta during diastole, identified by the asynchrony and comparative shape of pressure events in the left and right aortae, is reconciled more easily with the anatomy, which suggests that the foramen would be occluded by opening of the pocket valves at the base of the right aorta during systole. Filling during systole, indicated when pressure traces in the left and right aortae could be superimposed, was associated with lower systemic pressures, which may occur at the end of a voluntary aerobic dive or can be induced by lowering water temperature or during a long forced dive. To explain this flexibility, we propose that the foramen of Panizza is of variable calibre. The presence of a right-left shunt, in which increased right ventricular pressure leads to blood being diverted from the lungs and exiting the right ventricle via the left aorta, was found to be a frequent though not obligate correlate of voluntary aerobic dives. This contrasts with the previous concept of the shunt as a correlate of diving bradycardia. The magnitude of the shunt is difficult to assess but is likely to be relatively small. This information has allowed some new insights into the functional significance of the complex anatomy of the crocodilian heart and major blood vessels.Abbreviations bpm beats per minute - LAo left aorta (aortic) - LV left ventricle (ventricular) - PA pulmonary artery - RAo right aorta (aortic) - RV right ventricle (ventricular) - SC subclavian artery Deceased  相似文献   

8.
The modified Blalock-Taussig shunt is a surgical procedure used as a palliation to treat complex congenital heart defects. It consists of an interposing prosthetic tube between the innominate/subclavian artery and the right pulmonary artery. Previous experience indicates that the pressure drop across the shunt is affected by the pulmonary pressure at the distal anastomosis combined with the distensibility of the anastomosis. In this study, a computational fluid-structure interaction approach is presented to investigate the haemodynamic behaviour. Steady-state fluid dynamics and structural analyses were carried out using commercial codes based on the finite element method (FIDAP and ABAQUS) coupled by means of a purposely-developed procedure to transfer boundary conditions. Both prosthetic tube and artery walls were characterised by non-linear material properties. Three different pulmonary pressures (2, 5 and 15 mmHg) and two volume flow rates (0.4 and 0.8 l/min) were investigated. Results indicate that the effects of distensibility at the distal anastomosis on the shunt pressure drop are relevant only when the distal anastomosis on the shunt pressure drop are relevant only when the distal anastomosis is not fully distended, which occurs when the pulmonary pressure is lower than 5 mmHg.  相似文献   

9.
用生物测定法观察了川芎嗪对慢性缺氧大鼠肺动脉和主动脉环的舒张效应,并与乙酰胆碱的舒血管作用进行了比较。结果表明:川芎嗪对慢性缺氧大鼠肺动脉和主动脉的舒张作用均与平原组无明显差异。慢性缺氧明显减低了乙酰胆碱诱发的肺动脉内皮依赖性舒张反应,但不影响川芎嗪对肺血管的舒张作用。提示川芎嗪对肺血管的舒张作用不依赖于内皮。川芎嗪对肺动脉的舒张作用明显大于体动脉。这些特性有利于川芎嗪对肺动脉高压的治疗。  相似文献   

10.
In this investigation we have studied the effect of increments of pulmonary edema on pulmonary hemodynamics, and physiological and hemodynamic shunt in an isolated lung preparation. Hemodynamic shunt was defined by the slope of the relationship between pulmonary arterial and airway pressures; when the slope decreases, there is a greater degree of shunt. Cardiovascular changes were analyzed using a Starling resistor model of the pulmonary circulation where the effective downstream pressure to flow as seen from the pulmonary artery exceeds the pulmonary venous outflow pressure. This effective downstream pressure is referred to as the critical pressure (Pc), and at low lung inflation the locus of this critical pressure is in extra-alveolar vessels. With 3-4 h of progressive edema to an average of 185% initial lobe weight we found a progressive rise in pulmonary arterial pressure (Ppa) from 12.1 to 21.5 cmH2O. About one-third of this increase in Ppa resulted from an increased Pc and the remainder resulted from an increased resistance upstream from the locus of Pc. These results are consistent with the hypothesis that the interstitial accumulation of fluid creates enough of an increase in interstitial pressure to compress extra-alveolar vessels. There was no significant correlation between the amount of edema and the measured physiologic shunt, but the hemodynamic shunt showed a highly significant correlation. The hemodynamic shunt theoretically measures the extent of obstructed airways and may be a useful index of the degree of pulmonary edema.  相似文献   

11.
To elucidate whether the accumulation of elements occurred simultaneously in the various arteries with aging, the authors investigated age-related changes of elements in the eight arteries, such as the thoracic and abdominal aortas and the coronary, common carotid, pulmonary, splenic, common iliac, and uterine arteries, and the relationships in the element contents among their arteries. After ordinary dissection by medical students was finished, the thoracic and abdominal aortas and the coronary, common carotid, pulmonary, splenic, common iliac, and uterine arteries were resected from the subjects, who ranged in age from 58 to 94 yr. The element contents were analyzed by inductively coupled plasma-atomic emission spectrometry. It was found that the accumulation of Ca was the highest in the common iliac artery and decreased in the order of the uterine artery, abdominal aorta, coronary artery, thoracic aorta, splenic artery, common carotid artery, and pulmonary artery. Regarding the relationships in the element contents among the eight arteries, it was found that there were significant direct correlations in the contents of Ca, P, Mg, Zn, Fe, and Na between the coronary and splenic arteries, and there were significant correlations in the contents of Ca, P, and Mg between the abdominal aorta and pulmonary artery.  相似文献   

12.

The modified Blalock-Taussig shunt is a surgical procedure used as a palliation to treat complex congenital heart defects. It consists of an interposing prosthetic tube between the innominate/subclavian artery and the right pulmonary artery. Previous experience indicates that the pressure drop across the shunt is affected by the pulmonary pressure at the distal anastomosis combined with the distensibility of the anastomosis. In this study, a computational fluid-structure interaction approach is presented to investigate the haemodynamic behaviour. Steady-state fluid dynamics and structural analyses were carried out using commercial codes based on the finite element method (FIDAP and ABAQUS) coupled by means of a purposely-developed procedure to transfer boundary conditions. Both prosthetic tube and artery walls were characterised by non-linear material properties. Three different pulmonary pressures (2, 5 and 15 mmHg) and two volume flow rates (0.4 and 0.8 l/min) were investigated. Results indicate that the effects of distensibility at the distal anastomosis on the shunt pressure drop are relevant only when the distal anastomosis on the shunt pressure drop are relevant only when the distal anastomosis is not fully distended, which occurs when the pulmonary pressure is lower than 5 mmHg.  相似文献   

13.
Cardiac defects associated with increased pulmonary blood flow result in pulmonary vascular dysfunction that may relate to a decrease in bioavailable nitric oxide (NO). An 8-mm graft (shunt) was placed between the aorta and pulmonary artery in 30 late gestation fetal lambs; 27 fetal lambs underwent a sham procedure. Hemodynamic responses to ACh (1 microg/kg) and inhaled NO (40 ppm) were assessed at 2, 4, and 8 wk of age. Lung tissue nitric oxide synthase (NOS) activity, endothelial NOS (eNOS), neuronal NOS (nNOS), inducible NOS (iNOS), and heat shock protein 90 (HSP90), lung tissue and plasma nitrate and nitrite (NO(x)), and lung tissue superoxide anion and nitrated eNOS levels were determined. In shunted lambs, ACh decreased pulmonary artery pressure at 2 wk (P < 0.05) but not at 4 and 8 wk. Inhaled NO decreased pulmonary artery pressure at each age (P < 0.05). In control lambs, ACh and inhaled NO decreased pulmonary artery pressure at each age (P < 0.05). Total NOS activity did not change from 2 to 8 wk in control lambs but increased in shunted lambs (ANOVA, P < 0.05). Conversely, NO(x) levels relative to NOS activity were lower in shunted lambs than controls at 4 and 8 wk (P < 0.05). eNOS protein levels were greater in shunted lambs than controls at 4 wk of age (P < 0.05). Superoxide levels increased from 2 to 8 wk in control and shunted lambs (ANOVA, P < 0.05) and were greater in shunted lambs than controls at all ages (P < 0.05). Nitrated eNOS levels were greater in shunted lambs than controls at each age (P < 0.05). We conclude that increased pulmonary blood flow results in progressive impairment of basal and agonist-induced NOS function, in part secondary to oxidative stress that decreases bioavailable NO.  相似文献   

14.
K+ channels play an important role in mediating pulmonary vasodilation caused by increased oxygen tension, nitric oxide, alkalosis, and shear stress. To test the hypothesis that lung K+ channel gene expression may be altered by chronic increases in pulmonary blood flow, we measured gene and protein expression of calcium-sensitive (K Ca ) and voltage-gated (Kv2.1) K+ channels, and a pH-sensitive K+ channel (TASK), in distal lung from fetal lambs in which an aortopulmonary shunt was placed at 139 days gestation. Under baseline conditions, animals with an aortopulmonary shunt showed elevated pulmonary artery pressure and pulmonary blood flow compared with twin controls. Hypoxia caused a greater increase in pulmonary vascular tone in shunt animals compared with controls. Alkalosis caused pulmonary vasodilation in control but not shunt animals. To determine lung K+ channel mRNA levels, we performed quantitative RT-PCR. In comparison with control animals, lung K Ca channel mRNA content was increased in shunt animals, whereas TASK mRNA levels were decreased. There was no difference in Kv2.1 mRNA levels. Channel protein expression was consistent with these findings. We conclude that, in the presence of elevated pulmonary blood flow, K Ca channel expression is increased and TASK is decreased.  相似文献   

15.
The purpose of this work was to develop and characterize an aortopulmonary shunt model of chronic pulmonary hypertension in swine and provide sequential hemodynamic, angiographic, and histologic data by using an experimental endoarterial biopsy catheter. Nine Yucatan female microswine (Sus scrofa domestica) underwent surgical anastomosis of the left pulmonary artery to the descending aorta. Sequential hemodynamic, angiographic, and pulmonary vascular samples were obtained. Six pigs (mean weight, 22.4±5.3 kg; mean age, 7.3±2.7 mo at surgery) survived long-term (6 mo) and consistently developed marked pulmonary arterial hypertension. Angiography showed characteristic central pulmonary arterial enlargement and peripheral tortuosity and pruning. The biopsy catheter was safe and effective in obtaining pulmonary endoarterial samples for histologic studies, which showed neointimal and medial changes. Autopsy confirmed severe pulmonary vascular changes, including concentric obstructive neointimal and plexiform-like lesions. This swine model showed hemodynamic, angiographic, and histologic characteristics of chronic pulmonary arterial hypertension that mimicked the arterial pulmonary hypertension of systemic-to-pulmonary arterial shunts in humans. Experimental data obtained using this and other models and application of an in vivo endoarterial biopsy technique may aid in understanding mechanisms and developing therapies for experimental and human pulmonary arterial hypertension.  相似文献   

16.
低氧对兔主动脉和肺动脉损伤差异的探讨   总被引:3,自引:0,他引:3  
陈灵红  周兆年 《生理学报》1997,49(5):521-525
将兔置于模拟海拔5km(PO2=10.8kPa)低氧舱内24h,观察和比较低氧对主动脉和肺动脉形态学损伤的差异,结果显示5km低氧24h,兔主动脉和肺动脉出现内膜下水肿,空泡增加,胞内线粒体和内质网不同程度损伤。但低氧对肺动脉的损伤明显重于主动脉,甚至已殃及平滑肌细胞。扫描电镜观察也显示模拟海拔5km低氧24h,肺动脉内皮细胞出现损伤脱落,甚至出现断裂带,而在主动脉仅见内皮细胞轻微损伤。另又将离体  相似文献   

17.
Anomalous origin of the left coronary artery from the pulmonary artery was diagnosed in an infant girl who had evidence of transmural myocardial infarction of the free wall of the left ventricle. At age 13 months, she underwent a palliative left Vineberg implant, and remained asymptomatic until she was 8 years of age. At that time, she underwent suturing of the left coronary ostium for obliteration of the left coronary shunt at the pulmonary artery. At age 13, she underwent aortocoronary bypass to the left main coronary artery, with end-to-end anastomosis. The patient remains asymptomatic to date. We believe that this is the first reported case of a Vineberg operation performed in an infant for palliation of an anomalous left coronary artery originating from the pulmonary artery. This method allows time for the development of collateral circulation to the left coronary artery before definitive surgery is performed.  相似文献   

18.
The purpose of this study was to determine the effect of acute increases in pulmonary vascular pressures, caused by the application of lower-body positive pressure (LBPP), on exercise alveolar-to-arterial PO2 difference (A-aDO2), anatomical intrapulmonary (IP) shunt recruitment, and ventilation. Eight healthy men performed graded upright cycling to 90% maximal oxygen uptake under normal conditions and with 52 Torr (1 psi) of LBPP. Pulmonary arterial (PAP) and pulmonary artery wedge pressures (PAWP) were measured with a Swan-Ganz catheter. Arterial blood samples were obtained from a radial artery catheter, cardiac output was calculated by the direct Fick method, and anatomical IP shunt was determined by administering agitated saline during continuous two-dimensional echocardiography. LBPP increased both PAP and PAWP while upright at rest, and at all points during exercise (mean increase in PAP and PAWP 3.7 and 4.0 mmHg, respectively, P<0.05). There were no differences in exercise oxygen uptake or cardiac output between control and LBPP. Despite the increased PAP and PAWP with LBPP, A-aDO2 was not affected. In the upright resting position, there was no evidence of shunt in the control condition, whereas LBPP caused shunt in one subject. At the lowest exercise workload (75 W), shunt occurred in three subjects during control and in four subjects with LBPP. LBPP did not affect IP shunt recruitment during subsequent higher workloads. Minute ventilation and arterial PcO2 were not consistently affected by LBPP. Therefore, small acute increases in pulmonary vascular pressures do not widen exercise A-aDO2 or consistently affect IP shunt recruitment or ventilation.  相似文献   

19.
A 62-year-old man was admitted to the coronary care unit due to anginal pain and palpitations--coronary angiography revealed three-vessel coronary artery disease. The unexpected finding was the presence of coronary to pulmonary artery fistulae bilaterally, from both the proximal RCA and the proximal LAD. Right heart catheterization revealed normal right ventricular and pulmonary artery pressure and absence of hemodynamically significant left to right shunt. The patient underwent a triple coronary bypass including the closure of bilateral fistulae, which were draining into the left sinus of the pulmonary valve. One month after the operation he was in good health and had no complaints. Bilateral coronary artery fistulae is a rare anomaly diagnosed in 0.002-0.0013% of adult coronary angiograms. (Int J Cardiovasc Intervent 1999; 2: 249-251).  相似文献   

20.
The present study was designed to evaluate the expression of dopamine D1 and D2 receptor mRNAs in systemic and pulmonary vasculatures. Using specific antisense riboprobes for dopamine D1 and D2 receptor cDNAs, in situ hybridization histochemistry was performed in the aorta, common carotid artery, vertebral artery, pulmonary artery, and superior vena cava of the adult male Sprague Dawley rat. In the case of the aorta, common carotid artery, and vertebral artery, dopamine D1 receptor mRNAs localized mainly in the smooth muscle cells of the tunica media. However, the signals of dopamine D2 receptor mRNAs were found in the endothelium and subendothelial layer of tunica intima, and interstitial cells of tunica adventitia. In the case of the pulmonary artery, signals of dopamine D1 receptor mRNAs were detected within the tunica intima, media, and adventitia. Expression of D2 receptor mRNAs was detected in the walls of small blood vessels within the tunica adventitia of the pulmonary artery. There were no detectable signals of dopamine D1 and D2 receptor mRNAs in the vein. The uneven distribution of dopamine D1 and D2 receptor mRNAs in the rat systemic vasculatures and pulmonary artery suggests that dopamine differentially regulates the vasodilation of the systemic and pulmonary arteries through the differential stimulation of dopamine D1 and D2 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号