首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process.  相似文献   

2.
Ancient mummified soft‐tissues are a unique source to study the evolution of disease. Diagnostic imaging of such historic tissues is of foremost interest in paleoanthropology or paleopathology, with conventional x‐ray and computed tomography (CT) being the gold‐standard. Longer wavelength radiation in the far‐infrared or Terahertz region allows diagnostic close‐to‐surface tissue differentiation of bone morphology while being harmless to human cells. The aim of this study is to show the feasibility and the morpho‐diagnostic impact of THz imaging of historic remains. Images of an artificially embalmed ancient Egyptian human mummy hand, an artificially embalmed ancient Egyptian mummified fish and a macerated human lumbar vertebra were obtained by THz‐pulse imaging and compared with conventional X‐ray and CT images. Although conventional x‐ray imaging provides higher spatial resolution, we found that THz‐imaging is well‐suited for the investigation of ancient mummified soft tissue and embalming‐related substances / wrappings. In particular, bone and cartilaginous structures can be well differentiated from surrounding soft‐tissues and bandage‐wrappings by THz imaging. Furthermore, THz‐pulse imaging also measures the time‐delay of the pulsed signal when passing through the sample, which provides supplementary information on the optical density of the sample that is not obtained by X‐ray and CT. Terahertz radiation provides a completely non‐invasive diagnostic imaging modality for historic dry specimens. We anticipate this modality also to be used for detection of hidden objects in historic samples such as funerary amulets still in situ in wrapped mummies, as well as potentially for the identification of spectral signatures from chemical substances, e.g., in embalming essences.. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality.  相似文献   

4.
Over 7 million people worldwide die annually from erratic heart rhythms (cardiac arrhythmias), and many more are disabled. Yet there is no imaging modality to identify patients at risk, provide accurate diagnosis and guide therapy. Standard diagnostic techniques such as the electrocardiogram (ECG) provide only low-resolution projections of cardiac electrical activity on the body surface. Here we demonstrate the successful application in humans of a new imaging modality called electrocardiographic imaging (ECGI), which noninvasively images cardiac electrical activity in the heart. In ECGI, a multielectrode vest records 224 body-surface electrocardiograms; electrical potentials, electrograms and isochrones are then reconstructed on the heart's surface using geometrical information from computed tomography (CT) and a mathematical algorithm. We provide examples of ECGI application during atrial and ventricular activation and ventricular repolarization in (i) normal heart (ii) heart with a conduction disorder (right bundle branch block) (iii) focal activation initiated by right or left ventricular pacing, and (iv) atrial flutter.  相似文献   

5.
An important aspect of the diagnostic and prognostic work-up of patients with ischaemic cardiomyopathy is the assessment of myocardial viability. Patients with left ventricular dysfunction who have viable myocardium are the patients at highest risk because of the potential for ischaemia but at the same time benefit most from revascularisation. It is important to identify viable myocardium in these patients, and radionuclide myocardial scintigraphy is an excellent tool for this. Single-photon emission computed tomography perfusion scintigraphy (SPECT), whether using 201thallium, 99mTc-sestamibi, or 99mTc- tetrofosmin, in stress and/or rest protocols, has consistently been shown to be an effective modality for identifying myocardial viability and guiding appropriate management.Metabolic and perfusion imaging with positron emission tomography radiotracers frequently adds additional information and is a powerful tool for predicting which patients will have an improved outcome from revascularisation. New techniques in the nuclear cardiology field, such as attenuation corrected SPECT, dual isotope simultaneous acquisition (DISA) SPECT and gated FDG PET are promising and will further improve the detection of myocardial viability. Also the combination of multislice computed tomography scanners with PET opens possibilities of adding coronary calcium scoring and noninvasive coronary angiography to myocardial perfusion imaging and quantification.  相似文献   

6.
Computed tomography (CT) technology has emerged as the most promising imaging modality for the noninvasive evaluation of the coronary circulation. Of the CT-based approaches, multidetector-row computed tomography (MDCT) and to a lesser extent electron beam computed tomography offer the potential of providing not only data on the spatial extent and burden of coronary calcium content, but also angiographic data, and plaque composition characteristics with the potential for prediction of susceptibility to future cardiovascular events. A number of studies have now confirmed that CT-based assessment of the presence and amount of coronary artery calcium provides incremental prognostic information over traditional risk factors in patients with coronary artery disease and can be employed to refine risk stratification in both asymptomatic and symptomatic subjects. With the advent of several recent advances in CT imaging, it is now possible to provide high resolution (sub-millimeter, isotropic voxels) images of the coronary arteries obtained rapidly with iodinated contrast injected peripherally. MDCT is currently the preferred modality for noninvasive contrast angiography of the coronary arteries by most groups, with a new generation of 64-slice scanners promising to further improve the results of this technique. MDCT-derived angiographic information in conjunction with coronary calcium scoring and plaque characterization has the potential of replacing invasive angiography, as it potentially could provide better global assessment of risk.  相似文献   

7.
OBJECTIVE--To compare computed tomography and magnetic resonance imaging in investigating patients suspected of having a lesion in the posterior cranial fossa. DESIGN--Randomised allocation of newly referred patients to undergo either computed tomography or magnetic resonance imaging; the alternative investigation was performed subsequently only in response to a request from the referring doctor. SETTING--A regional neuroscience centre serving 2.7 million. PATIENTS--1020 Patients recruited between April 1986 and December 1987, all suspected by neurologists, neurosurgeons, or other specialists of having a lesion in the posterior fossa and referred for neuroradiology. The groups allocated to undergo computed tomography or magnetic resonance imaging were well matched in distributions of age, sex, specialty of referring doctor, investigation as an inpatient or an outpatient, suspected site of lesion, and presumed disease process; the referring doctor''s confidence in the initial clinical diagnosis was also similar. INTERVENTIONS--After the patients had been imaged by either computed tomography or magnetic resonance (using a resistive magnet of 0.15 T) doctors were given the radiologist''s report and a form asking if they considered that imaging with the alternative technique was necessary and, if so, why; it also asked for their current diagnoses and their confidence in them. MAIN OUTCOME MEASURES--Number of requests for the alternative method of investigation. Assessment of characteristics of patients for whom further imaging was requested and lesions that were suspected initially and how the results of the second imaging affected clinicians'' and radiologists'' opinions. RESULTS--Ninety three of the 501 patients who initially underwent computed tomography were referred subsequently for magnetic resonance imaging whereas only 28 of the 493 patients who initially underwent magnetic resonance imaging were referred subsequently for computed tomography. Over the study the number of patients referred for magnetic resonance imaging after computed tomography increased but requests for computed tomography after magnetic resonance imaging decreased. The reason that clinicians gave most commonly for requesting further imaging by magnetic resonance was that the results of the initial computed tomography failed to exclude their suspected diagnosis (64 patients). This was less common in patients investigated initially by magnetic resonance imaging (eight patients). Management of 28 patients (6%) imaged initially with computed tomography and 12 patients (2%) imaged initially with magnetic resonance was changed on the basis of the results of the alternative imaging. CONCLUSIONS--Magnetic resonance imaging provided doctors with the information required to manage patients suspected of having a lesion in the posterior fossa more commonly than computed tomography, but computed tomography alone was satisfactory in 80% of cases...  相似文献   

8.
One of the ultimate aims of imaging in biology is to achieve molecular localisation in the context of the structure of cells in their native state. Here, we review the current state of the art in cryo-soft X-ray tomography (cryo-SXT), which is the only imaging modality that can provide nanoscale 3D information from cryo-preserved, unstained, whole cells thicker than 1 μm. Correlative cryo-fluorescence and cryo-SXT adds functional information to structure, enabling studies of cellular events that cannot be captured using light, electron or X-ray microscopes alone.  相似文献   

9.
Hybrid imaging of positron emission tomography (PET) together with computed tomography (CT) is rapidly emerging. In cardiology, this new advanced hybrid imaging modality allows quantification of cardiac perfusion in combination with assessment of coronary anatomy within a single scanning session of less than 45 minutes. The near-simultaneous anatomical evaluation of coronary arteries using CT and corresponding functional status using PET provides a wealth of complementary information in patients who are being evaluated for (suspected) coronary artery disease, and could help guide clinical patient management in a novel manner. Clinical experience gained with this recently introduced advanced hybrid imaging tool, however, is still limited and its implementation into daily clinical practice remains largely unchartered territory. This review discusses principles of perfusion PET, its diagnostic accuracy, and potential clinical applications of cardiac PET-CT in patients with ischaemic heart disease. (Neth Heart J 2010;18:90–8.)  相似文献   

10.
There are many exciting new applications for advanced imaging in gout. These modalities employ multiplanar imaging and allow computerized three-dimensional rendering of bone and joints (including tophi) and have the advantage of electronic data storage for later retrieval. High-resolution computed tomography has been particularly helpful in exploring the pathology of gout by investigating the relationship between bone erosions and tophi. Magnetic resonance imaging and ultrasonography can image the inflammatory nature of gouty arthropathy, revealing synovial and soft tissue inflammation, and can provide information about the composition and vascularity of tophi. Dual-energy computerized tomography is a new modality that is able to identify tophi by their chemical composition and reveal even small occult tophaceous deposits. All modalities are being investigated for their potential roles in diagnosis and could have important clinical applications in the patient for whom aspiration of monosodium urate crystals from the joint is not possible. Imaging can also provide outcome measures, such as change in tophus volume, for monitoring the response to urate-lowering therapy and this is an important application in the clinical trial setting.  相似文献   

11.
Imaging techniques are a cornerstone of contemporary biology. Over the last decades, advances in microscale imaging techniques have allowed fascinating new insights into cell and tissue morphology and internal anatomy of organisms across kingdoms. However, most studies so far provided snapshots of given reference taxa, describing organs and tissues under “idealized” conditions. Surprisingly, there is an almost complete lack of studies investigating how an organism′s internal morphology changes in response to environmental drivers. Consequently, ecology as a scientific discipline has so far almost neglected the possibilities arising from modern microscale imaging techniques. Here, we provide an overview of recent developments of X‐ray computed tomography as an affordable, simple method of high spatial resolution, allowing insights into three‐dimensional anatomy both in vivo and ex vivo. We review ecological studies using this technique to investigate the three‐dimensional internal structure of organisms. In addition, we provide practical comparisons between different preparation techniques for maximum contrast and tissue differentiation. In particular, we consider the novel modality of phase contrast by self‐interference of the X‐ray wave behind an object (i.e., phase contrast by free space propagation). Using the cricket Acheta domesticus (L.) as model organism, we found that the combination of FAE fixative and iodine staining provided the best results across different tissues. The drying technique also affected contrast and prevented artifacts in specific cases. Overall, we found that for the interests of ecological studies, X‐ray computed tomography is useful when the tissue or structure of interest has sufficient contrast that allows for an automatic or semiautomatic segmentation. In particular, we show that reconstruction schemes which exploit phase contrast can yield enhanced image quality. Combined with suitable specimen preparation and automated analysis, X‐ray CT can therefore become a promising quantitative 3D imaging technique to study organisms′ responses to environmental drivers, in both ecology and evolution.  相似文献   

12.
《Médecine Nucléaire》2022,46(1):10-13
18-Fluoro-L-dihydroxyphenylalanine positron emission tomography/computed tomography (18F-DOPA PET-CT) is a nuclear medicine imaging modality indicated for the diagnosis and staging of neuroendocrine tumors (NETs), particularly for the midgut tumors, due to its excellent sensitivity and specificity. Its performance for the detection of foregut-derived NETs (duodenopancreas and proximal jejunum) and for the detection of hindgut-derived NETs is poor and inferior to PET somatostatin receptor imaging such as DOTATOC PET-CT and even inferior to somatostatin analog scintigraphy (octreoscan). There are few studies in the literature on heterotopic pancreas (HP) which is a rare entity, and which can be in some cases a false positive in 18F-DOPA PET-CT. We report a case of HP showing focal uptake on 18F-DOPA PET-CT mimicking an intestinal NET. This case suggests that HP should be included as a possible false positive on 18F-DOPA PET-CT.  相似文献   

13.
The ability to label tissue-specific antibodies has long been of interest for improving detection and guidance for therapeutic applications. The most studied target for prostate cancer is the prostate-specific membrane antigen, which is upregulated in prostate cancer, hormone-refractive disease, and prostate cancer metastases. Investigations using radioimmunoscintigraphy with the radiolabeled 7E11 antibody capromab pendetide have significantly improved sensitivity for prostate cancer detection compared with standard cross-sectional imaging, based on tissue confirmation of pathologic results. Over the past 5 years, significantly greater image resolution from improved camera technology and the use of co-registration to fuse functional and anatomic (computerized tomography and magnetic resonance imaging) images have dramatically enhanced prostate cancer localization. Outcomes data from several sources have spurred a resurgence in interest in this imaging modality.  相似文献   

14.
Non-invasive three-dimensional imaging of live rodents is a powerful research tool that has become critical for advances in many biomedical fields. For investigations into adipose development, obesity, or diabetes, accurate and precise techniques that quantify adiposity in vivo are critical. Because total body fat mass does not accurately predict health risks associated with the metabolic syndrome, imaging modalities should be able to stratify total adiposity into subcutaneous and visceral adiposity. Micro-computed tomography (micro-CT) acquires high-resolution images based on the physical density of the material and can readily discriminate between subcutaneous and visceral fat. Here, a micro-CT based method to image the adiposity of live rodents is described. An automated and validated algorithm to quantify the volume of discrete fat deposits from the computed tomography is available. Data indicate that scanning the abdomen provides sufficient information to estimate total body fat. Very high correlations between micro-CT determined adipose volumes and the weight of explanted fat pads demonstrate that micro-CT can accurately monitor site-specific changes in adiposity. Taken together, in vivo micro-CT is a non-invasive, highly quantitative imaging modality with greater resolution and selectivity, but potentially lower throughput, than many other methods to precisely determine total and regional adipose volumes and fat infiltration in live rodents.  相似文献   

15.
Alzheimer's disease is a progressive neurodegenerative disorder characterised by the gradual onset of dementia. The pathological hallmarks of the disease are beta-amyloid (Abeta) plaques, neurofibrillary tangles, synaptic loss and reactive gliosis. The current therapeutic effort is directed towards developing drugs that reduce Abeta burden or toxicity by inhibiting secretase cleavage, Abeta aggregation, Abeta toxicity, Abeta metal interactions or by promoting Abeta clearance. A number of clinical trials are currently in progress based on these different therapeutic strategies and they should indicate which, if any, of these approaches will be efficacious. Current diagnosis of Alzheimer's disease is made by clinical, neuropsychologic and neuroimaging assessments. Routine structural neuroimaging evaluation with computed tomography and magnetic resonance imaging is based on non-specific features such as atrophy, a late feature in the progression of the disease, hence the crucial importance of developing new approaches for early and specific recognition at the prodromal stages of Alzheimer's disease. Functional neuroimaging techniques such as functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and single photon emission computed tomography, possibly in conjunction with other related Abeta biomarkers in plasma and CSF, could prove to be valuable in the differential diagnosis of Alzheimer's disease, as well as in assessing prognosis. With the advent of new therapeutic strategies there is increasing interest in the development of magnetic resonance imaging contrast agents and positron emission tomography and single photon emission computed tomography radioligands that will permit the assessment of Abeta burden in vivo.  相似文献   

16.
Clinical considerations in rodent bioimaging   总被引:2,自引:0,他引:2  
Imaging modalities such as micro-computed tomography (micro-CT), micro-positron emission tomography (micro-PET), high-resolution magnetic resonance imaging (MRI), optical imaging, and high-resolution ultrasound are rapidly becoming invaluable research tools. These advanced imaging technologies are now commonly used to investigate rodent biology, metabolism, pharmacokinetics, and disease in vivo. Choosing an appropriate anesthetic regimen as well as monitoring and supporting the animal's physiologic balance is key to obtaining images that truly represent the biologic process or disease state of interest. However, there are many challenges in rodent bioimaging such as limited animal access, small sample volumes, anesthetic complications, strain and gender variability, and the introduction of image artifacts. Because each imaging study presents unique challenges, a thorough understanding of the imaging modality used, the animal's health status, and the research data desired is required. This article addresses these issues along with other common laboratory animal clinical considerations such as biosecurity and radiation safety in in vivo rodent bioimaging.  相似文献   

17.
Diffuse optical tomography is emerging as a viable new biomedical imaging modality. Using visible and near-infrared light this technique can probe the absorption and scattering properties of biological tissues. The main applications are currently in brain, breast, limb and joint imaging; however, optical tomographic imaging of small animals is attracting increasing attention. This interest is fuelled by recent advances in the transgenic manipulation of small animals that has led to many models of human disease. In addition, an ever increasing number of optically reactive biochemical markers has become available, which allow diseases to be detected at the molecular level long before macroscopic symptoms appear. The past three years have seen an array of novel technological developments that have led to the first optical tomographic studies of small animals in the areas of cerebral ischemia and cancer.  相似文献   

18.
19.
Tomographic techniques for the study of exceptionally preserved fossils   总被引:1,自引:0,他引:1  
Three-dimensional fossils, especially those preserving soft-part anatomy, are a rich source of palaeontological information; they can, however, be difficult to work with. Imaging of serial planes through an object (tomography) allows study of both the inside and outside of three-dimensional fossils. Tomography may be performed using physical grinding or sawing coupled with photography, through optical techniques of serial focusing, or using a variety of scanning technologies such as neutron tomography, magnetic resonance imaging and most usefully X-ray computed tomography. This latter technique is applicable at a variety of scales, and when combined with a synchrotron X-ray source can produce very high-quality data that may be augmented by phase-contrast information to enhance contrast. Tomographic data can be visualized in several ways, the most effective of which is the production of isosurface-based 'virtual fossils' that can be manipulated and dissected interactively.  相似文献   

20.
磁共振成像技术因对人体无创、任意方向断层扫描三维图像且分辨率较高、提供形态与功能两方面诊断评价等突出优点,成为了临床上用于疾病诊断的重要手段之一。临床上使用磁共振造影剂可以提高成像的分辨率和灵敏度,提高图像质量,增强对比度和可读性。但是,各种成像技术由于实现原理不同,具有各自的优势和缺陷,靠传统单一的诊断模式无法提供疾病的全面信息,因而在对各种复杂疾病进行诊断时会受到一定的限制。因此,将磁共振成像与其他成像技术如CT成像、超声成像等联合起来使用,则可以达到优势互补的效果,能为疾病的临床诊断提供更快捷精确的信息,同时可将磁共振成像与各种治疗方式结合在一起,即开发基于磁共振成像的诊断治疗一体化试剂,以实现对疾病的即时治疗和实时监控。本文主要介绍了磁共振成像造影剂的原理和种类,并且综述了目前国内外在基于磁共振成像的多功能造影剂/诊疗制剂这一领域的研究进展,最后就未来可能的研究方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号