首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gorlin equation for the hemodynamic assessment of valve area is commonly used in cardiac catheterization laboratories. A study was performed to test the prediction capabilities of the Gorlin formula as well as the Aaslid and Gabbay formula for the effective orifice area of prosthetic heart valves. Pressure gradient, flow, and valve opening area measurements were performed on four 27 mm valve prostheses (two mechanical bileaflet designs, St. Jude and Edwards-Duromedics, an Edwards pericardial tissue valve, and a trileaflet polyurethane valve) each mounted in the aortic position of an in vitro pulse duplicator. With the known valve orifice area, a different discharge coefficient was computed for each of the four valves and three orifice area formulas. After some theoretical considerations, it was proposed that the discharge coefficient would be a function of the flow rate through the valve. All discharge coefficients were observed to increase with increasing systolic flow rate. An empirical relationship of discharge coefficient as a linear function of systolic flow rate was determined through a regression analysis, with a different relationship for each valve and each orifice area formula. Using this relationship in the orifice area formulas improved the accuracy of the prediction of the effective orifice area with all three formulas performing equally well.  相似文献   

2.
No perfect valve or valved conduit is currently available to reconstruct the right ventricular outflow tract (RVOT) in pediatric patients. To investigate the fate of autologous pericardial valved conduit, twenty piglets weighing 12.2 +/- 1.4 kg were divided into two groups. In 10 of them, the pericardium was immersed in 0.6% glutaraldehyde for 5 minutes (Gr PG) and then washed with normal saline. In the other 10 pigs, the pericardium was immersed in normal saline only (Gr PN) after procurement. Afterwards the autologous pericardium was tailored as designed to build a tri-cusp-valve inside the pericardial conduit with reconstruction of the sinus of Valsalva. This conduit was connected to the pulmonary trunk (PT) distally and RVOT proximally without a pump. The PT was then doubly ligated just above the annulus. The pigs survived 114 +/- 92 days in Gr PG and 82 +/- 50 days in Gr PN. The body weight increased to 42 +/- 29 kg in Gr PG and 30 +/- 9 kg in Gr PN. No cusps adhered to the conduit wall in either group. In Gr PN, the valve became retracted; in 7 of them an aneurysm developed proximal to the stenotic pulmonary valve, while only one pig in Gr PG developed an aneurysm. In Gr PG, the leaflet and conduit showed evidence of growth. In contrast, no evidence of valve growth was found in Gr PN. Calcification was evident more in Gr PG than in Gr PN either on the leaflet (9/10 vs. 5/10) or in the wall of conduit (8/10 vs. 6/10), but the differences were not statistically significant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Particle Image Velocimetry (PIV) is an important technique in studying blood flow in heart valves. Previous PIV studies of flow around prosthetic heart valves had different research concentrations, and thus never provided the physical flow field pictures in a complete heart cycle, which compromised their pertinence for a better understanding of the valvular mechanism. In this study, a digital PIV (DPIV) investigation was carried out with improved accuracy, to analyse the pulsatile flow field around the bi-leaflet mechanical heart valve (MHV) in a complete heart cycle. For this purpose a pulsatile flow test rig was constructed to provide the necessary in vitro test environment, and the flow field around a St. Jude size 29 bi-leaflet MHV and a similar MHV model were studied under a simulated physiological pressure waveform with flow rate of 5.2 l/min and pulse rate at 72 beats/min. A phase-locking method was applied to gate the dynamic process of valve leaflet motions. A special image-processing program was applied to eliminate optical distortion caused by the difference in refractive indexes between the blood analogue fluid and the test section. Results clearly showed that, due to the presence of the two leaflets, the valvular flow conduit was partitioned into three flow channels. In the opening process, flow in the two side channels was first to develop under the presence of the forward pressure gradient. The flow in the central channel was developed much later at about the mid-stage of the opening process. Forward flows in all three channels were observed at the late stage of the opening process. At the early closing process, a backward flow developed first in the central channel. Under the influence of the reverse pressure gradient, the flow in the central channel first appeared to be disturbed, which was then transformed into backward flow. The backward flow in the central channel was found to be the main driving factor for the leaflet rotation in the valve closing process. After the valve was fully closed, local flow activities in the proximity of the valve region persisted for a certain time before slowly dying out. In both the valve opening and closing processes, maximum velocity always appeared near the leaflet trailing edges. The flow field features revealed in the present paper improved our understanding of valve motion mechanism under physiological conditions, and this knowledge is very helpful in designing the new generation of MHVs.  相似文献   

4.
Detailed comparisons of aortic valvular flow using saline, with that using a glycerin-based blood analog in a pulse duplicator are reported. The experiments were carried out to determine whether exposure to glycerin caused stiffening of bioprosthetic valve leaflets. For two pericardial bioprostheses and for a mechanical valve we observed a fluid-dependent systolic volume flow, a fluid-dependent regurgitation volume, and fluid-dependent systolic pressure differences. Volume flow changes, both forward and reverse, are independent of valve type. The observed pressure differences, while proportional to fluid density for the mechanical valve, are fluid dependent in a more complicated way for the pericardial valves. However, no trend of changing valvular performance was observed over as much as 80 days of glycerin exposure, indicating that it is unlikely that the fluid-dependent performance was caused by glycerin absorption by the valve leaflets. We conclude that valid performance comparisons between mechanical and bioprosthetic valves may be made using a glycerin-based fluid. Furthermore, it appears that any detailed analysis of the physical mechanisms of valvular flow dissipation will require a properly matched blood analog.  相似文献   

5.
6.
Aortic valve bypass (AVB) has been shown to be a viable solution for patients with severe aortic stenosis (AS). Under this circumstance, the left ventricle (LV) has a double outlet. The objective was to develop a mathematical model capable of evaluating the hemodynamic performance following the AVB surgery. A mathematical model that captures the interaction between LV, AS, arterial system, and AVB was developed. This model uses a limited number of parameters that all can be non-invasively measured using patient data. The model was validated using in vivo data from the literature. The model was used to determine the effect of different AVB and AS configurations on flow proportion and pressure of the aortic valve and the AVB. Results showed that the AVB leads to a significant reduction in transvalvular pressure gradient. The percentage of flow through the AVB can range from 55.47% to 69.43% following AVB with a severe AS. LV stroke work was also significantly reduced following the AVB surgery and reached a value of around 1.2 J for several AS severities. Findings of this study suggest: 1) the AVB leads to a significant reduction in transvalvular pressure gradients; 2) flow distribution between the AS and the AVB is significantly affected by the conduit valve size; 3) the AVB leads to a significant reduction in LV stroke work; and 4) hemodynamic performance variations can be estimated using the model.  相似文献   

7.
Morphometric data on mouse atrio-ventricular valve ultrastructure are reported. The statistical analysis of the volumetric density percentage for cellular and extracellular valve components and of endothelial plasmalemmal vesicle density for the different endocardial domains (atrial, valvular and ventricular) showed: the bicuspid compared to the tricuspid valve has a more important lymphatic drainage, less vascularization, higher endothelial plasmalemmal vesicle density and more macrophages, striated muscle cells and collagen along with fewer interstitial cells, nervous terminals and elastin in the leaflet; the valvular endothelium as compared to other endocardial domains has a higher density of plasmalemmal vesicles, considering the results for both endothelial fronts (luminal and abluminal).  相似文献   

8.
Heart valve disease is a major burden in the Western world and no effective treatment is available. This is mainly due to a lack of knowledge of the molecular, cellular and mechanical mechanisms underlying the maintenance and/or loss of the valvular structure. Current models used to study valvular biology include in vitro cultures of valvular endothelial and interstitial cells. Although, in vitro culturing models provide both cellular and molecular mechanisms, the mechanisms involved in the 3D-organization of the valve remain unclear. While in vivo models have provided insight into the molecular mechanisms underlying valvular development, insight into adult valvular biology is still elusive. In order to be able to study the regulation of the valvular 3D-organization on tissue, cellular and molecular levels, we have developed the Miniature Tissue Culture System. In this ex vivo flow model the mitral or the aortic valve is cultured in its natural position in the heart. The natural configuration and composition of the leaflet are maintained allowing the most natural response of the valvular cells to stimuli. The valves remain viable and are responsive to changing environmental conditions. This MTCS may provide advantages on studying questions including but not limited to, how does the 3D organization affect valvular biology, what factors affect 3D organization of the valve, and which network of signaling pathways regulates the 3D organization of the valve.  相似文献   

9.
Venous valves play a crucial role in blood circulation, promoting the one-way movement of blood from superficial and deep veins towards the heart. By preventing retrograde flow, venous valves spare capillaries and venules from being subjected to damaging elevations in pressure, especially during skeletal muscle contraction. Pathologically, valvular incompetence or absence of valves are common features of venous disorders such as chronic venous insufficiency and varicose veins. The underlying causes of these conditions are not well understood, but congenital venous valve aplasia or agenesis may play a role in some cases. Despite progress in the study of cardiac and lymphatic valve morphogenesis, the molecular mechanisms controlling the development and maintenance of venous valves remain poorly understood. Here, we show that in valved veins of the mouse, three gap junction proteins (Connexins, Cxs), Cx37, Cx43, and Cx47, are expressed exclusively in the valves in a highly polarized fashion, with Cx43 on the upstream side of the valve leaflet and Cx37 on the downstream side. Surprisingly, Cx43 expression is strongly induced in the non-valve venous endothelium in superficial veins following wounding of the overlying skin. Moreover, we show that in Cx37-deficient mice, venous valves are entirely absent. Thus, Cx37, a protein involved in cell–cell communication, is one of only a few proteins identified so far as critical for the development or maintenance of venous valves. Because Cxs are necessary for the development of valves in lymphatic vessels as well, our results support the notion of common molecular pathways controlling valve development in veins and lymphatic vessels.  相似文献   

10.
Artificial bio-prosthetic heart valves are prone to fatigue tearing, having a 50% failure rate in ten years. Tears in valves give rise to pulsing reverse flow back through the valve. This is termed regurgitant flow and the resultant jet of blood a regurgitant jet. The regurgitant volume of the jet during the pulsing cycle gives a measure of the severity of the valve defect and clinical significance. Hence, it is important for the cardiologists to be able to quantify this volume. Although the velocity of the regurgitant jet can be determined using Doppler ultrasound, the dimensions of the heart valve lesion cannot be measured directly; hence, the volumetric flow rate cannot be quantified accurately. At present the severity of the regurgitant jet is assessed qualitatively from the intrusion of the jet into the cardiac chamber. In the present study, classical mathematical theories of turbulent jets have been used to describe the velocity distributions for the types of jets expected in defective heart valves and these distributions have been verified experimentally. One of these models has been developed to enable the regurgitant volumetric flow through an axisymmetric orifice of unknown radius to be calculated from the velocity distribution of the jet. This relationship may be used in conjunction with ultrasound techniques to quantify the regurgitant volume within defective artificial heart valve implants. The present study shows that there is a significant difference in the velocity distributions in jets emanating from axisymmetric and high aspect ratio slots.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The need for better and longer lasting trileaflet valves has led to the design and development of the Abiomed polymeric trileaflet valve prosthesis. In-vitro fluid dynamic studies on sizes 25 and 21 mm valves in the aortic position indicate an overall improvement in performance compared to the Carpentier-Edwards and Ionescu-Shiley tissue valves in current clinical use. The pressure drop studies yielded effective orifice areas of 1.99 and 1.54 cm2, and performance indices of 0.41 and 0.45 for the Nos. 25 and 21 valves, respectively. Leaflet photography studies indicated that the two valve sizes had maximum opening areas of 225 and 145 mm2, respectively, at a normal resting cardiac output. Steady and pulsatile flow velocity measurements with a laser-Doppler anemometer (LDA) system indicate that the flow field downstream of the Abiomed valve is jetlike and turbulent. Maximum mean square axial velocity fluctuations of 55 and 83 cm/s, and turbulent shear stresses of 220 and 450 N/m2 were measured in the immediate vicinity of the nos. 25 and 21 valves, respectively. The Abiomed valves studied had been originally configured for use in valved conduits, and it is therefore our opinion that further improvements can be made to the valve and stent design, which would enhance its fluid dynamic performance.  相似文献   

12.
The hemodynamic and the thrombogenic performance of two commercially available bileaflet mechanical heart valves (MHVs)--the ATS Open Pivot Valve (ATS) and the St. Jude Regent Valve (SJM), was compared using a state of the art computational fluid dynamics-fluid structure interaction (CFD-FSI) methodology. A transient simulation of the ATS and SJM valves was conducted in a three-dimensional model geometry of a straight conduit with sudden expansion distal the valves, including the valve housing and detailed hinge geometry. An aortic flow waveform (60 beats/min, cardiac output 4 l/min) was applied at the inlet. The FSI formulation utilized a fully implicit coupling procedure using a separate solver for the fluid problem (FLUENT) and for the structural problem. Valve leaflet excursion and pressure differences were calculated, as well as shear stress on the leaflets and accumulated shear stress on particles released during both forward and backward flow phases through the open and closed valve, respectively. In contrast to the SJM, the ATS valve opened to less than maximal opening angle. Nevertheless, maximal and mean pressure gradients and velocity patterns through the valve orifices were comparable. Platelet stress accumulation during forward flow indicated that no platelets experienced a stress accumulation higher than 35 dyne x s/cm2, the threshold for platelet activation (Hellums criterion). However, during the regurgitation flow phase, 0.81% of the platelets in the SJM valve experienced a stress accumulation higher than 35 dyne x s/cm2, compared with 0.63% for the ATS valve. The numerical results indicate that the designs of the ATS and SJM valves, which differ mostly in their hinge mechanism, lead to different potential for platelet activation, especially during the regurgitation phase. This numerical methodology can be used to assess the effects of design parameters on the flow induced thrombogenic potential of blood recirculating devices.  相似文献   

13.
BACKGROUND: Many diseases that affect the mitral valve are accompanied by the proliferation or degradation of tissue microstructure. The early acoustic detection of these changes may lead to the better management of mitral valve disease. In this study, we examine the nonstationary acoustic effects of perturbing material parameters that characterize mitral valve tissue in terms of its microstructural components. Specifically, we examine the influence of the volume fraction, stiffness and splay of collagen fibers as well as the stiffness of the nonlinear matrix in which they are embedded. METHODS AND RESULTS: To model the transient vibrations of the mitral valve apparatus bathed in a blood medium, we have constructed a dynamic nonlinear fluid-coupled finite element model of the valve leaflets and chordae tendinae. The material behavior for the leaflets is based on an experimentally derived structural constitutive equation. The gross movement and small-scale acoustic vibrations of the valvular structures result from the application of physiologic pressure loads. Material changes that preserved the anisotropy of the valve leaflets were found to preserve valvular function. By contrast, material changes that altered the anisotropy of the valve were found to profoundly alter valvular function. These changes were manifest in the acoustic signatures of the valve closure sounds. Abnormally, stiffened valves closed more slowly and were accompanied by lower peak frequencies. CONCLUSION: The relationship between stiffness and frequency, though never documented in a native mitral valve, has been an axiom of heart sounds research. We find that the relationship is more subtle and that increases in stiffness may lead to either increases or decreases in peak frequency depending on their relationship to valvular function.  相似文献   

14.
The issue of the correct determination of the mechanical power dissipated by the blood flow in the circulatory system is very important. This parameter is particularly critical when the patient's circulation has to overcome structural impairments, such as, e.g., in the case of only one functional ventricle. The surgical palliation of such a condition, which is a relatively common form of congenital heart disease, calls for an optimization of the new connection's hydrodynamics. Starting from the general formulation of the energy dissipation rate in a given control volume, this paper discusses the critical assumptions of the formula usually employed to assess the power dissipation in complex connections, such as the total cavopulmonary connection (TCPC). A new formula is derived, in which the mean elevation of the outlet and inlet sections is shown to be relevant, through the use of the piezometric pressure. Moreover, the flow profile at the boundary of the control volume is also important, since the usual approach implicitly assumes that the flow is perfectly flat: this assumption is doubtful, especially in the venous return (as in the TCPC). In the experimental part of the study, the power dissipation was measured in a physical model of the TCPC, and a large difference was found between the usual method and the proposed one, especially at low regime (85% relative difference, at 1.5 l/min total cardiac output). The proposed approach should be adopted in order to improve the accuracy of the hydrodynamical performance's assessment of surgical connections (e.g., TCPC) or implantable devices (e.g., valved conduit).  相似文献   

15.
Cryopreservation is commonly used for the long-term storage of heart valve allografts. Despite the excellent hemodynamic performance and durability of cryopreserved allografts, reports have questioned whether cryopreservation affects the valvular structural proteins, collagen and elastin. This study uses two-photon laser scanning confocal microscopy (LSCM) to evaluate the effect of cryopreservation on collagen and elastin integrity within the leaflet and conduit of aortic and pulmonary human heart valves. To permit pairwise comparisons of fresh and cryopreserved tissue, test valves were bisected longitudinally with one segment imaged fresh and the other imaged after cryopreservation and brief storage in liquid nitrogen. Collagen was detected by second harmonic generation (SHG) stimulation and elastin by autofluorescence excitation. Qualitative analysis of all resultant images indicated the maintenance of collagen and elastin structure within leaflet and conduit post-cryopreservation. Analysis of the optimized percent laser transmission (OPLT) required for full dynamic range imaging of collagen and elastin showed that OPLT observations were highly variable among both fresh and cryopreserved samples. Changes in donor-specific average OPLT in response to cryopreservation exhibited no consistent directional trend. The donor-aggregated results predominantly showed no statistically significant change in collagen and elastin average OPLT due to cryopreservation. Since OPLT has an inverse relationship with structural signal intensity, these results indicate that there was largely no statistical difference in collagen and elastin signal strength between fresh and cryopreserved tissue. Overall, this study indicates that the conventional cryopreservation of human heart valve allografts does not detrimentally affect their collagen and elastin structural integrity.  相似文献   

16.
In this work, a new mechanical prosthetic heart valve, the central axis valve, is presented. This new prosthesis has been tested in vitro, and compared with four other common prosthetic cardiac valves (Starr-Edwards 6120, Bjork-Shiley monostrut, Medtronic-Hall, and St Jude Medical valves). All valves studied have the same orifice diameter of 22 mm. The prostheses were installed inside a transparent mitral test chamber, which enables pressure drop measurement to be made under steady-state flow conditions using a blood analogue fluid. Pressure drop loss is one important factor affecting the overall performance of a prosthetic heart valve. Steady-state flow tests are essential to predict certain flow characteristics and pressure gradient loss before more complicated, expensive, and difficult-to-interpret pulsatile flow tests are conducted. All experiments were performed in vitro and at steady volumetric flow rates of 10 to 30 l/min. The Starr-Edwards SE 6120 showed the highest values for pressure drop. The St Jude Medical valve offers the minimum resistance to flow. The central axis valve comes second to the Starr-Edwards valve for this type of measurement. The new valve is promising. A complete valve evaluation programme, covering initial conceptional design through to clinical use, is in progress. Materials for the fabrication of the new valve are also under consideration.  相似文献   

17.
目的:将体外构建的组织工程右心带瓣管道,以带瓣补片的形式移植于犬主肺动脉,观测带瓣管道材料体内情况。方法:去细胞处理牛颈静脉体,无菌处理后种植标记过的犬骨髓间质干细胞,构建组织工程带瓣管道,犬开胸手术,将体外构建的组织工程右心带瓣管道,以带瓣补片的形式移植于犬主肺动脉,术后4、8、12行胸部B超检查;取出补片,HE染色;荧光显微镜下标记细胞检测;样本钙含量测定。结果:术后犬胸部B超观察:瓣叶无增厚,钙化,管道血流通畅,无血栓及钙化。术后4、8、12周除了瓣叶逐渐缩小外,补片无动脉瘤形成,瓣膜表面光滑,无血栓形成,弹性良好,血管壁内面光滑,无血栓形成。种植种子细胞牛颈静脉带瓣补片成活。4周钙含量增加,8周时候,钙含量又有增加,12周时钙含量与8周相比无明显变化。结论:组织工程技术构建组织工程右心带瓣管道有可行之处。  相似文献   

18.
The effectiveness of prescribed respiratory therapy is often dependent upon the choice of a respirator (ventilator) that excels for a particular mode of ventilation. The exhalation valve of a ventilator is most often the key to a strong or weak performance. A computer model of the patient's gas flow through the expiratory circuit and exhalation valve is not only beneficial for design, but can also be used to study the optimum performance for a particular mechanical system. For this paper, the system that was used incorporated a linear voice coil actuator suspended by flat spider springs. The details of the modelling are given on a theoretical basis (with the appropriate equations), and the packaged simulation is described. Results are presented for simple computer algorithms with the intention of demonstrating the proper behaviour of the system. There are suggestions for further detailed studies to compare the linear voice coil model with other common exhalation valve mechanical designs, under various modes of ventilation.  相似文献   

19.
Atrial fibrillation (AF) consequences on the heart valve dynamics are usually studied along with a valvular disfunction or disease, since in medical monitoring, the two pathologies are often concomitant. Aim of the present work is to study, through a stochastic lumped-parameter approach, the basic fluid dynamics variations of heart valves, when only paroxysmal AF is present with respect to the normal sinus rhythm in absence of any valvular pathology. Among the most common parameters interpreting the valvular function, the most useful turns out to be the regurgitant volume. During AF, both atrial valves do not seem to worsen their performance, while the ventricular efficiency is remarkably reduced.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号