首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Ruoqi Yu 《Biometrics》2023,79(3):2346-2356
Fine balance is a matching technique to improve covariate balance in observational studies. It constrains a match to have identical distributions for some covariates without restricting who is matched to whom. However, despite its wide application and excellent performance in practice, there is very little theory indicating when the method is likely to succeed or fail and to what extent it can remove covariate imbalance. In order to answer these questions, this paper studies the limits of what is possible for covariate balancing using fine balance and near-fine balance. The investigations suggest that given the distributions of the treated and control groups, in large samples, the maximum achievable balance by using fine balance only depends on the matching ratio (ie, the ratio of the sample size of the control group to that of the treated group). In addition, the results indicate how to estimate this matching ratio threshold without knowledge of the true distributions in finite samples. The findings are also illustrated by numerical studies in this paper.  相似文献   

2.
Multivariate matching in observational studies tends to view covariate differences symmetrically: a difference in age of 10 years is thought equally problematic whether the treated subject is older or younger than the matched control. If matching is correcting an imbalance in age, such that treated subjects are typically older than controls, then the situation in need of correction is asymmetric: a matched pair with a difference in age of 10 years is much more likely to have an older treated subject and a younger control than the opposite. Correcting the bias may be easier if matching tries to avoid the typical case that creates the bias. We describe several easily used, asymmetric, directional penalties and illustrate how they can improve covariate balance in a matched sample. The investigator starts with a matched sample built in a conventional way, then diagnoses residual covariate imbalances in need of reduction, and achieves the needed reduction by slightly altering the distance matrix with directional penalties, creating a new matched sample. Unlike penalties commonly used in matching, a directional penalty can go too far, reversing the direction of the bias rather than reducing the bias, so the magnitude of the directional penalty matters and may need adjustment. Our experience is that two or three adjustments, guided by balance diagnostics, can substantially improve covariate balance, perhaps requiring fifteen minutes effort sitting at the computer. We also explore the connection between directional penalties and a widely used technique in integer programming, namely Lagrangian relaxation of problematic linear side constraints in a minimum cost flow problem. In effect, many directional penalties are Lagrange multipliers, pushing a matched sample in the direction of satisfying a linear constraint that would not be satisfied without penalization. The method and example are in an R package DiPs at CRAN .  相似文献   

3.
In randomized trials, the treatment influences not only endpoints but also other variables measured after randomization which, when used as covariates to adjust for the observed imbalance, become pseudo‐covariates. There is a logical circularity in adjusting for a pseudo‐covariate because the variability in the endpoint that is attributed not to the treatment but rather to the pseudo‐covariate may actually represent an effect of the treatment modulated by the pseudo‐covariate. This potential bias is well known, but we offer new insight into how it can lead to reversals in the direction of the apparent treatment effect by way of stage migration. We then discuss a related problem that is not generally appreciated, specifically how the absence of allocation concealment can lead to this reversal of the direction of the apparent treatment effect even when adjustment is for a true covariate measured prior to randomization. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.

Background

Quasi-experimental studies of menu labeling have found mixed results for improving diet. Differences between experimental groups can hinder interpretation. Propensity scores are an increasingly common method to improve covariate balance, but multiple methods exist and the improvements associated with each method have rarely been compared. In this re-analysis of the impact of menu labeling, we compare multiple propensity score methods to determine which methods optimize balance between experimental groups.

Methods

Study participants included adult customers who visited full-service restaurants with menu labeling (treatment) and without (control). We compared the balance between treatment groups obtained by four propensity score methods: 1) 1:1 nearest neighbor matching (NN), 2) augmented 1:1 NN (using caliper of 0.2 and an exact match on an imbalanced covariate), 3) full matching, and 4) inverse probability weighting (IPW). We then evaluated the treatment effect on differences in nutrients purchased across the different methods.

Results

1:1 NN resulted in worse balance than the original unmatched sample (average standardized absolute mean distance [ASAM]: 0.185 compared to 0.171). Augmented 1:1 NN improved balance (ASAM: 0.038) but resulted in a large reduction in sample size. Full matching and IPW improved balance over the unmatched sample without a reduction in sample size (ASAM: 0.049 and 0.031, respectively). Menu labeling was associated with decreased calories, fat, sodium and carbohydrates in the unmatched analysis. Results were qualitatively similar in the propensity score matched/weighted models.

Conclusions

While propensity scores offer an increasingly popular tool to improve causal inference, choosing the correct method can be challenging. Our results emphasize the benefit of examining multiple methods to ensure results are consistent, and considering approaches beyond the most popular method of 1:1 NN matching.  相似文献   

5.
In many experiments, researchers would like to compare between treatments and outcome that only exists in a subset of participants selected after randomization. For example, in preventive HIV vaccine efficacy trials it is of interest to determine whether randomization to vaccine causes lower HIV viral load, a quantity that only exists in participants who acquire HIV. To make a causal comparison and account for potential selection bias we propose a sensitivity analysis following the principal stratification framework set forth by Frangakis and Rubin (2002, Biometrics58, 21-29). Our goal is to assess the average causal effect of treatment assignment on viral load at a given baseline covariate level in the always infected principal stratum (those who would have been infected whether they had been assigned to vaccine or placebo). We assume stable unit treatment values (SUTVA), randomization, and that subjects randomized to the vaccine arm who became infected would also have become infected if randomized to the placebo arm (monotonicity). It is not known which of those subjects infected in the placebo arm are in the always infected principal stratum, but this can be modeled conditional on covariates, the observed viral load, and a specified sensitivity parameter. Under parametric regression models for viral load, we obtain maximum likelihood estimates of the average causal effect conditional on covariates and the sensitivity parameter. We apply our methods to the world's first phase III HIV vaccine trial.  相似文献   

6.
In multivariate matching, fine balance constrains the marginal distributions of a nominal variable in treated and matched control groups to be identical without constraining who is matched to whom. In this way, a fine balance constraint can balance a nominal variable with many levels while focusing efforts on other more important variables when pairing individuals to minimize the total covariate distance within pairs. Fine balance is not always possible; that is, it is a constraint on an optimization problem, but the constraint is not always feasible. We propose a new algorithm that returns a minimum distance finely balanced match when one is feasible, and otherwise minimizes the total distance among all matched samples that minimize the deviation from fine balance. Perhaps we can come very close to fine balance when fine balance is not attainable; moreover, in any event, because our algorithm is guaranteed to come as close as possible to fine balance, the investigator may perform one match, and on that basis judge whether the best attainable balance is adequate or not. We also show how to incorporate an additional constraint. The algorithm is implemented in two similar ways, first as an optimal assignment problem with an augmented distance matrix, second as a minimum cost flow problem in a network. The case of knee surgery in the Obesity and Surgical Outcomes Study motivated the development of this algorithm and is used as an illustration. In that example, 2 of 47 hospitals had too few nonobese patients to permit fine balance for the nominal variable with 47 levels representing the hospital, but our new algorithm came very close to fine balance. Moreover, in that example, there was a shortage of nonobese diabetic patients, and incorporation of an additional constraint forced the match to include all of these nonobese diabetic patients, thereby coming as close as possible to balance for this important but recalcitrant covariate.  相似文献   

7.
8.
9.
We have developed a recursive-partitioning (RP) algorithm for identifying phenotype and covariate groupings that interact with the evidence for linkage. This data-mining approach for detecting gene x environment interactions uses genotype and covariate data on affected relative pairs to find evidence for linkage heterogeneity across covariate-defined subgroups. We adapted a likelihood-ratio based test of linkage parameterized with relative risks to a recursive partitioning framework, including a cross-validation based deviance measurement for choosing optimal tree size and a bootstrap sampling procedure for choosing robust tree structure. ALDX2 category 5 individuals were considered affected, categories 1 and 3 unaffected, and all others unknown. We sampled non-overlapping affected relative pairs from each family; therefore, we used 144 affected pairs in the RP model. Twenty pair-level covariates were defined from smoking status, maximum drinks, ethnicity, sex, and age at onset. Using the all-pairs score in GENEHUNTER, the nonparametric linkage tests showed no regions with suggestive linkage evidence. However, using the RP model, several suggestive regions were found on chromosomes 2, 4, 6, 14, and 20, with detection of associated covariates such as sex and age at onset.  相似文献   

10.
Rosenbaum PR 《Biometrics》2011,67(3):1017-1027
Summary In an observational or nonrandomized study of treatment effects, a sensitivity analysis indicates the magnitude of bias from unmeasured covariates that would need to be present to alter the conclusions of a naïve analysis that presumes adjustments for observed covariates suffice to remove all bias. The power of sensitivity analysis is the probability that it will reject a false hypothesis about treatment effects allowing for a departure from random assignment of a specified magnitude; in particular, if this specified magnitude is “no departure” then this is the same as the power of a randomization test in a randomized experiment. A new family of u‐statistics is proposed that includes Wilcoxon's signed rank statistic but also includes other statistics with substantially higher power when a sensitivity analysis is performed in an observational study. Wilcoxon's statistic has high power to detect small effects in large randomized experiments—that is, it often has good Pitman efficiency—but small effects are invariably sensitive to small unobserved biases. Members of this family of u‐statistics that emphasize medium to large effects can have substantially higher power in a sensitivity analysis. For example, in one situation with 250 pair differences that are Normal with expectation 1/2 and variance 1, the power of a sensitivity analysis that uses Wilcoxon's statistic is 0.08 while the power of another member of the family of u‐statistics is 0.66. The topic is examined by performing a sensitivity analysis in three observational studies, using an asymptotic measure called the design sensitivity, and by simulating power in finite samples. The three examples are drawn from epidemiology, clinical medicine, and genetic toxicology.  相似文献   

11.
Lu B 《Biometrics》2005,61(3):721-728
In observational studies with a time-dependent treatment and time-dependent covariates, it is desirable to balance the distribution of the covariates at every time point. A time-dependent propensity score based on the Cox proportional hazards model is proposed and used in risk set matching. Matching on this propensity score is shown to achieve a balanced distribution of the covariates in both treated and control groups. Optimal matching with various designs is conducted and compared in a study of a surgical treatment, cystoscopy and hydrodistention, given in response to a chronic bladder disease, interstitial cystitis. Simulation studies also suggest that the statistical analysis after matching outperforms the analysis without matching in terms of both point and interval estimations.  相似文献   

12.
Summary Cluster randomization trials with relatively few clusters have been widely used in recent years for evaluation of health‐care strategies. On average, randomized treatment assignment achieves balance in both known and unknown confounding factors between treatment groups, however, in practice investigators can only introduce a small amount of stratification and cannot balance on all the important variables simultaneously. The limitation arises especially when there are many confounding variables in small studies. Such is the case in the INSTINCT trial designed to investigate the effectiveness of an education program in enhancing the tPA use in stroke patients. In this article, we introduce a new randomization design, the balance match weighted (BMW) design, which applies the optimal matching with constraints technique to a prospective randomized design and aims to minimize the mean squared error (MSE) of the treatment effect estimator. A simulation study shows that, under various confounding scenarios, the BMW design can yield substantial reductions in the MSE for the treatment effect estimator compared to a completely randomized or matched‐pair design. The BMW design is also compared with a model‐based approach adjusting for the estimated propensity score and Robins‐Mark‐Newey E‐estimation procedure in terms of efficiency and robustness of the treatment effect estimator. These investigations suggest that the BMW design is more robust and usually, although not always, more efficient than either of the approaches. The design is also seen to be robust against heterogeneous error. We illustrate these methods in proposing a design for the INSTINCT trial.  相似文献   

13.
ABSTRACT: Reviews have repeatedly noted important methodological issues in the conduct and reporting of cluster randomized trials (C-RCTs). These reviews usually focus on whether the intra-cluster correlation was explicitly considered in the design and analysis of the C-RCT. However, another important aspect requiring special attention in C-RCTs is the risk for imbalance of covariates at baseline. Imbalance of important covariates at baseline decreases statistical power and precision of the results. Imbalance also reduces face validity and credibility of the trial results. The risk of imbalance is elevated in C-RCTs compared to trials randomizing individuals because of the difficulties in recruiting clusters and the nested nature of correlated patient-level data. A variety of restricted randomization methods have been proposed as way to minimise risk of imbalance. However, there is little guidance regarding how to best restrict randomization for any given C-RCT. The advantages and limitations of different allocation techniques, including stratification, matching, minimization, and covariate-constrained randomization are reviewed as they pertain to C-RCTs to provide investigators with guidance for choosing the best allocation technique for their trial.  相似文献   

14.

Objectives

Little is known about influences of sample selection on estimation in propensity score matching. The purpose of the study was to assess potential selection bias using one-to-one greedy matching versus optimal full matching as part of an evaluation of supportive housing in New York City (NYC).

Study Design and Settings

Data came from administrative data for 2 groups of applicants who were eligible for an NYC supportive housing program in 2007–09, including chronically homeless adults with a substance use disorder and young adults aging out of foster care. We evaluated the 2 matching methods in their ability to balance covariates and represent the original population, and in how those methods affected outcomes related to Medicaid expenditures.

Results

In the population with a substance use disorder, only optimal full matching performed well in balancing covariates, whereas both methods created representative populations. In the young adult population, both methods balanced covariates effectively, but only optimal full matching created representative populations. In the young adult population, the impact of the program on Medicaid expenditures was attenuated when one-to-one greedy matching was used, compared with optimal full matching.

Conclusion

Given covariate balancing with both methods, attenuated program impacts in the young adult population indicated that one-to-one greedy matching introduced selection bias.  相似文献   

15.

Summary

Omission of relevant covariates can lead to bias when estimating treatment or exposure effects from survival data in both randomized controlled trials and observational studies. This paper presents a general approach to assessing bias when covariates are omitted from the Cox model. The proposed method is applicable to both randomized and non‐randomized studies. We distinguish between the effects of three possible sources of bias: omission of a balanced covariate, data censoring and unmeasured confounding. Asymptotic formulae for determining the bias are derived from the large sample properties of the maximum likelihood estimator. A simulation study is used to demonstrate the validity of the bias formulae and to characterize the influence of the different sources of bias. It is shown that the bias converges to fixed limits as the effect of the omitted covariate increases, irrespective of the degree of confounding. The bias formulae are used as the basis for developing a new method of sensitivity analysis to assess the impact of omitted covariates on estimates of treatment or exposure effects. In simulation studies, the proposed method gave unbiased treatment estimates and confidence intervals with good coverage when the true sensitivity parameters were known. We describe application of the method to a randomized controlled trial and a non‐randomized study.  相似文献   

16.
Studies of large policy interventions typically do not involve randomization. Adjustments, such as matching, can remove the bias due to observed covariates, but residual confounding remains a concern. In this paper we introduce two analytical strategies to bolster inferences of the effectiveness of policy interventions based on observational data. First, we identify how study groups may differ and then select a second comparison group on this source of difference. Second, we match subjects using a strategy that finely balances the distributions of key categorical covariates and stochastically balances on other covariates. An observational study of the effect of parity on the severely ill subjects enrolled in the Federal Employees Health Benefits (FEHB) Program illustrates our methods.  相似文献   

17.
Due to increasing discoveries of biomarkers and observed diversity among patients, there is growing interest in personalized medicine for the purpose of increasing the well‐being of patients (ethics) and extending human life. In fact, these biomarkers and observed heterogeneity among patients are useful covariates that can be used to achieve the ethical goals of clinical trials and improving the efficiency of statistical inference. Covariate‐adjusted response‐adaptive (CARA) design was developed to use information in such covariates in randomization to maximize the well‐being of participating patients as well as increase the efficiency of statistical inference at the end of a clinical trial. In this paper, we establish conditions for consistency and asymptotic normality of maximum likelihood (ML) estimators of generalized linear models (GLM) for a general class of adaptive designs. We prove that the ML estimators are consistent and asymptotically follow a multivariate Gaussian distribution. The efficiency of the estimators and the performance of response‐adaptive (RA), CARA, and completely randomized (CR) designs are examined based on the well‐being of patients under a logit model with categorical covariates. Results from our simulation studies and application to data from a clinical trial on stroke prevention in atrial fibrillation (SPAF) show that RA designs lead to ethically desirable outcomes as well as higher statistical efficiency compared to CARA designs if there is no treatment by covariate interaction in an ideal model. CARA designs were however more ethical than RA designs when there was significant interaction.  相似文献   

18.
Propensity-score matching is frequently used in the medical literature to reduce or eliminate the effect of treatment selection bias when estimating the effect of treatments or exposures on outcomes using observational data. In propensity-score matching, pairs of treated and untreated subjects with similar propensity scores are formed. Recent systematic reviews of the use of propensity-score matching found that the large majority of researchers ignore the matched nature of the propensity-score matched sample when estimating the statistical significance of the treatment effect. We conducted a series of Monte Carlo simulations to examine the impact of ignoring the matched nature of the propensity-score matched sample on Type I error rates, coverage of confidence intervals, and variance estimation of the treatment effect. We examined estimating differences in means, relative risks, odds ratios, rate ratios from Poisson models, and hazard ratios from Cox regression models. We demonstrated that accounting for the matched nature of the propensity-score matched sample tended to result in type I error rates that were closer to the advertised level compared to when matching was not incorporated into the analyses. Similarly, accounting for the matched nature of the sample tended to result in confidence intervals with coverage rates that were closer to the nominal level, compared to when matching was not taken into account. Finally, accounting for the matched nature of the sample resulted in estimates of standard error that more closely reflected the sampling variability of the treatment effect compared to when matching was not taken into account.  相似文献   

19.
Summary Time varying, individual covariates are problematic in experiments with marked animals because the covariate can typically only be observed when each animal is captured. We examine three methods to incorporate time varying, individual covariates of the survival probabilities into the analysis of data from mark‐recapture‐recovery experiments: deterministic imputation, a Bayesian imputation approach based on modeling the joint distribution of the covariate and the capture history, and a conditional approach considering only the events for which the associated covariate data are completely observed (the trinomial model). After describing the three methods, we compare results from their application to the analysis of the effect of body mass on the survival of Soay sheep (Ovis aries) on the Isle of Hirta, Scotland. Simulations based on these results are then used to make further comparisons. We conclude that both the trinomial model and Bayesian imputation method perform best in different situations. If the capture and recovery probabilities are all high, then the trinomial model produces precise, unbiased estimators that do not depend on any assumptions regarding the distribution of the covariate. In contrast, the Bayesian imputation method performs substantially better when capture and recovery probabilities are low, provided that the specified model of the covariate is a good approximation to the true data‐generating mechanism.  相似文献   

20.
Biswas S  Lin S  Berry DA 《BMC genetics》2005,6(Z1):S138
We consider a new Bayesian approach for heterogeneity that can take into account categorical covariates, if available. We use the Genetic Analysis Workshop 14 simulated data to first compare the Bayesian approach with the heterogeneity LOD, when no covariate information is used. We find that the former is more powerful, while the two approaches have comparable false-positive rates. We then include informative covariates in the Bayesian approach and find that it tends to give more precise interval estimates of the disease gene location than when covariates are not included. We had knowledge of the simulation models at the time we performed the analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号