首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induction is a process in which the developmental pathway of one cell is controlled by signals emitted from another. Mesoderm induction is the first inductive interaction in theXenopus enbryo and probably occurs in all vertebrates. It is a very important event as it is implicated in the regulation of morphogenesis. Nieuwkoop first demonstrated the importance of vegetal endoderm in inducing the mesoderm. Slack and co-workers incorporated the information obtained from experimental embryology in a “three signal” model for mesoderm induction in amphibians (signals arising from ventral vegetal hemisphere, dorsal vegetal hemisphere and the organizer). More recent research has resulted in the detection of mesoderm inducing factors which are members of FGF and TGF--β families. Activin, a member of the TGF-β family, has been shown to induce differential gene expression and cell differentiation in a concentration-dependent manner giving credence to the theory of morphogen gradients. Study of mesoderm induction in the chick embryo is much more difficult due to several reasons. Novel experimental approaches, however, have been used which point to the role of activin and FGF in chick mesoderm induction. The demonstration of mesoderm inducing activity of activin and FGF in other groups of vertebrates, particularly the chick embryo brings out the possibility of a universal mechanism of mesoderm induction being operative in all the vertebrates.  相似文献   

2.
Regional specification within the mesoderm of early embryos of Xenopus laevis   总被引:22,自引:0,他引:22  
We have further analysed the roles of mesoderm induction and dorsalization in the formation of a regionally specified mesoderm in early embryos of Xenopus laevis. First, we have examined the regional specificity of mesoderm induction by isolating single blastomeres from the vegetalmost tier of the 32-cell embryo and combining each with a lineage-labelled (FDA) animal blastomere tier. Whereas dorsovegetal (D1) blastomeres induce 'dorsal-type' mesoderm (notochord and muscle), laterovegetal and ventrovegetal blastomeres (D2-4) induce either 'intermediate-type' (muscle, mesothelium, mesenchyme and blood) or 'ventral-type' (mesothelium, mesenchyme and blood) mesoderm. No significant difference in inductive specificity between blastomeres D2, 3 and 4 could be detected. We also show that laterovegetal and ventrovegetal blastomeres from early cleavage stages can have a dorsal inductive potency partially activated by operative procedures, resulting in the induction of intermediate-type mesoderm. Second, we have determined the state of specification of ventral blastomeres by isolating and culturing them in vitro between the 4-cell stage and the early gastrula stage. The majority of isolates from the ventral half of the embryo gave extreme ventral types of differentiation at all stages tested. Although a minority of cases formed intermediate-type and dorsal-type mesoderms we believe these to result from either errors in our assessment of the prospective DV axis or from an enhancement, provoked by microsurgery, of some dorsal inductive specificity. The results of induction and isolation experiments suggest that only two states of specification exist in the mesoderm of the pregastrula embryo, a dorsal type and a ventral type. Finally we have made a comprehensive series of combinations between different regions of the marginal zone using FDA to distinguish the components. We show that, in combination with dorsal-type mesoderm, ventral-type mesoderm becomes dorsalized to the level of intermediate-type mesoderm. Dorsal-type mesoderm is not ventralized in these combinations. Dorsalizing activity is confined to a restricted sector of the dorsal marginal zone, it is wider than the prospective notochord and seems to be graded from a high point at the dorsal midline. The results of these experiments strengthen the case for the three-signal model proposed previously, i.e. dorsal and ventral mesoderm inductions followed by dorsalization, as the simplest explanation capable of accounting for regional specification within the mesoderm of early Xenopus embryos.  相似文献   

3.
4.
The vertebrate liver and heart arise from adjacent cell layers in the anterior lateral (AL) endoderm and mesoderm of late gastrula embryos, and the earliest stages of liver and heart development are interrelated through reciprocal tissue interactions. Although classical embryological studies performed several decades ago in chick and quail defined the timing of hepatogenic induction in birds and the important role for cardiogenic mesoderm in this process, almost nothing is known about the molecular aspects of avian liver development. Here we use in vivo and explantation assays to investigate tissue interactions and signaling pathways regulating Hex, a homeobox gene required for liver development, and the earliest stages of hepatogenesis in the chick embryo. We find that explants of late gastrula anterior lateral endoderm plus mesoderm, which have been used extensively for studies relating to heart development, also produce albumin-expressing hepatoblasts. Expression of Hex, the earliest known molecular marker for the hepatogenic endoderm, and albumin, indicative of early committed hepatoblasts, requires both autocrine Bmp signaling and a specific paracrine signal from the cardiogenic (anterior lateral) mesoderm. Endodermal expression of Fox2a, in contrast, requires the mesoderm but is independent of Bmp signaling. In vivo induction assays show that the ability of BMP2 to activate Hex expression in the endoderm is restricted to a region that is only slightly larger than the endogenous domain of Hex expression. Although Fgfs can substitute for the cardiogenic mesoderm to support the expression of Hex and albumin in the endoderm, several Fgf genes are expressed in the anterior lateral endoderm but an Fgf expressed predominantly in the mesoderm was not identified. Studies also showed that Fgf gene expression in the endoderm does not require a signal from the mesoderm. Mechanisms regulating endodermal signaling pathways activated by Fgfs may therefore be more complex than previously appreciated.  相似文献   

5.
The grafting experiments of Spemann and Mangold have been a textbook classic for years, but as with many conclusions from experimental embryology, the idea that the dorsal lip of the blastopore ;organized' the early patterning of the embryo has sometimes come under question. In their 1983 paper in JEEM, Smith and Slack extended these classical experiments in newts to the now-standard amphibian model Xenopus laevis. By using injected lineage tracers, they distinguished the fates of graft and host, and showed unambiguously that the organizer is responsible for neural induction and that it dorsalizes the mesoderm.  相似文献   

6.
7.
Interest in the problem of anteroposterior specification has quickened because of our near understanding of the mechanism in Drosophila and because of the homology of Antennapedia-like homeobox gene expression patterns in Drosophila and vertebrates. But vertebrates differ from Drosophila because of morphogenetic movements and interactions between tissue layers, both intimately associated with anteroposterior specification. The purpose of this article is to review classical findings and to enquire how far these have been confirmed, refuted or extended by modern work. The "pre-molecular" work suggests that there are several steps to the process: (i) Formation of anteroposterior pattern in mesoderm during gastrulation with posterior dominance. (ii) Regional specific induction of ectoderm to form neural plate. (iii) Reciprocal interactions from neural plate to mesoderm. (iv) Interactions within neural plate with posterior dominance. Unfortunately, almost all the observable markers are in the CNS rather than in the mesoderm where the initial specification is thought to occur. This has meant that the specification of the mesoderm has been assayed indirectly by transplantation methods such as the Einsteckung. New molecular markers now supplement morphological ones but they are still mainly in the CNS and not the mesoderm. A particular interest attaches to the genes of the Antp-like HOX clusters since these may not only be markers but actual coding factors for anteroposterior levels. We have a new understanding of mesoderm induction based on the discovery of activins and fibroblast growth factors (FGFs) as candidate inducing factors. These factors have later consequences for anteroposterior pattern with activin tending to induce anterior, and FGF posterior structures. Recent work on neural induction has implicated cAMP and protein kinase C (PKC) as elements of the signal transduction pathway and has provided new evidence for the importance of tangential neural induction. The regional specificity of neural induction has been reinvestigated using molecular markers and provides conclusions rather similar to the classical work. Defects in the axial pattern may be produced by retinoic acid but it remains unclear whether its effects are truly coordinate ones or are concentrated in certain regions of high sensitivity. In general the molecular studies have supported and reinforced the "pre-molecular ones". Important questions still remain: (i) How much pattern is there in the mesoderm (how many states?) (ii) How is this pattern generated by the invaginating organizer? (iii) Is there one-to-one transmission of codings to the neural plate? (iv) What is the nature of the interactions within the neural plate? (v) Are the HOX cluster genes really the anteroposterior codings?  相似文献   

8.
A considerable quantity of data has been generated using the technique of in vivo gene knockout in mice, much of which is of relevance to the developmental biologist. Null mutations in Hox genes at the 3'-end of the clusters create complex irregularities at the rostral end of the embryo, including defects in the middle ear and the large blood vessels, suggesting that Hox genes may be involved in pattern specification of these structures in addition to the anteroposterior axis. Null mutations in oncogenes either cause wide pleiotropic effects, or act in a restricted manner on the haematopoietic system. Null mutations in growth factors and related molecules cause failure of proliferation in restricted areas of the embryo in some cases, but have little phenotype in others. There is as yet no null mutation which supports the idea that growth factors are involved in mesoderm induction in mammals. A surprising variety of genes have no null phenotype, or one less severe than might have been previously predicted on the basis of their known function in vitro and pattern of expression. This leads to the possibility that genetic redundancy exists in development.  相似文献   

9.
The first inductive interaction in amphibian development is mesoderm induction, during which a signal from the vegetal hemisphere of the blastula-staged embryo induces mesoderm from overlying equatorial cells. Recently, a number of 'mesoderm-inducing factors' (MIFs), which may be responsible for this interaction, have been discovered. Examples of these MIFs include members of the fibroblast growth factor family as well as members of the TGF-beta superfamily such as TGF-beta 2. In addition to these purified factors, several new sources of mesoderm-inducing activity have been described. One of the most potent of these is the murine myelomonocytic leukemia cell line WEHI-3. Even at high dilutions, conditioned medium from WEHI-3 cells induces isolated Xenopus animal pole regions to form a variety of mesodermal cell types. In this paper we show by several criteria, including N-terminal amino acid sequencing, Northern blotting and various functional assays, that the WEHI-MIF is activin A. Activins are known to modulate the release of follicle-stimulating hormone from cultured anterior pituitary cells and to cause the differentiation of two erythroleukemia cell lines. Our results, along with recent data from other laboratories, indicate that these molecules may also act in early development in the formation of the mesoderm.  相似文献   

10.
E Amaya  T J Musci  M W Kirschner 《Cell》1991,66(2):257-270
Peptide growth factors may play a role in patterning of the early embryo, particularly in the induction of mesoderm. We have explored the role of fibroblast growth factor (FGF) in early Xenopus development by expressing a dominant negative mutant form of the FGF receptor. Using a functional assay in frog oocytes, we found that a truncated form of the receptor effectively abolished wild-type receptor function. Explants from embryos expressing this dominant negative mutant failed to induce mesoderm in response to FGF. In whole embryos the mutant receptor caused specific defects in gastrulation and in posterior development, and overexpression of a wild-type receptor could rescue these developmental defects. These results demonstrate that the FGF signaling pathway plays an important role in early embryogenesis, particularly in the formation of the posterior and lateral mesoderm.  相似文献   

11.
12.
BACKGROUND: Most vertebrate tissues arise by embryonic induction, as a result of which new cell layers are formed. These are subsequently subdivided into discrete groups of homogeneous cell populations, each containing different cell-types with specific gene expression. There is preliminary evidence from previous work that the mesoderm-forming induction in amphibian development may be followed by a further interaction among some of the induced mesoderm cells, and that this could be required for muscle gene activation in uniform cell populations. RESULTS: We have established the existence, time and place of this further cell interaction by transplanting muscle progenitor cells from Xenopus mid-gastrulae into ectoderm sandwiches, and then culturing these constructs until the time of muscle gene activation. We find that cells implanted as reaggregates, but not those implanted as single cells, activate early myogenic genes and later muscle-specific genes. More than 100 cells must be near each other for muscle gene activation. These cells can induce non-muscle mesoderm cells to express muscle genes by emitting a signal that differs from the preceding mesoderm induction signal. Muscle gene activation under these conditions does not require gap junction communication. CONCLUSION: Cells within the muscle progenitor region of a Xenopus embryo need to interact with each other in order to activate muscle genes in homogeneous cell groups. This exemplifies the 'community effect', which may be a widespread developmental mechanism used to increase the homogeneity within, and demarkation between, embryonic tissues.  相似文献   

13.
S Schulte-Merker  J C Smith    L Dale 《The EMBO journal》1994,13(15):3533-3541
Activin and Vg1, two members of the TGF-beta family, are believed to play roles in mesoderm induction and axis formation in the amphibian embryo. Both molecules are provided maternally, either as protein (activin) or as RNA and protein (Vg1), and experiments with a truncated form of a type IIB activin receptor have led to the conclusion that activin is required for induction of mesoderm in vivo. In this paper we first show that truncated versions of two different Xenopus activin receptors also have severe effects on the activity of the mature region of Vg1, suggesting that such receptors may block the function of several members of the TGF-beta family. We go on to demonstrate that follistatin, a secreted protein which binds activin and blocks its activity, does not interfere with Vg1 signalling. Furthermore, overexpression of follistatin mRNA in Xenopus embryos does not perturb mesoderm formation. Taken together, our data show that the effects of truncated activin receptors on Xenopus development can be explained by the inhibition of Vg1 activity, while the lack of effect of follistatin argues against a function for activin in mesoderm induction.  相似文献   

14.
Establishment of the body pattern in all animals, and especially in vertebrate embryos, depends on cell interactions. During the cleavage and blastula stages in amphibians, signal(s) from the vegetal region induce the equatorial region to become mesoderm. Two types of peptide growth factors have been shown by explant culture experiments to be active in mesoderm induction. First, there are several isoforms of fibroblast growth factor (FGF), including aFGF, bFGF, and hst/kFGF. FGF induces ventral, but not the most dorsal, levels of mesodermal tissue; bFGF and its mRNA, and an FGF receptor and its mRNA, are present in the embryo. Thus, FGF probably has a role in mesoderm induction, but is unlikely to be the sole inducing agent in vivo. Second, members of the transforming growth factor-beta (TGF-beta) family. TGF-beta 2 and TGF-beta 3 are active in induction, but the most powerful inducing factors are the distant relatives of TGF-beta named activin A and activin B, which are capable of inducing all types of mesoderm. An important question relates to the establishment of polarity during the induction of mesoderm. While all regions of the animal hemisphere of frog embryos are competent to respond to activins by mesoderm differentiation, only explants that include cells close to the equator form structures with some organization along dorsoventral and anteroposterior axes. These observations suggest that cells in the blastula animal hemisphere are already polarized to some extent, although inducers are required to make this polarity explicit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Because of their capacity to give rise to various types of cells in vitro, embryonic stem and embryonal carcinoma (EC) cells have been used as convenient models to study the mechanisms of cell differentiation in mammalian embryos. In this study, we explored the mouse P19 EC cell line as an effective tool to investigate the factors that may play essential roles in mesoderm formation and axial elongation morphogenesis. We first demonstrated that aggregated P19 cells not only exhibited gene expression patterns characteristic of mesoderm formation but also displayed elongation morphogenesis with a distinct anterior–posterior body axis as in the embryo. We then showed by RNA interference that these processes were controlled by various regulators of Wnt signaling pathways, namely β‐catenin, Wnt3, Wnt3a, and Wnt5a, in a manner similar to normal embryo development. We further showed by inhibitor treatments that the axial elongation morphogenesis was dependent on the activity of Rho‐associated kinase. Because of the convenience of these experimental manipulations, we propose that P19 cells can be used as a simple and efficient screening tool to assess the potential functions of specific molecules in mesoderm formation and axial elongation morphogenesis. genesis 47:93–106, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
17.
We have cloned the Xenopus PDGF α receptor cDNA and have used this clone, along with cDNA encoding PDGF A, to examine their expression pattern in Xenopus embryos and to determine the factors responsible for lineage specificity. Recombinant Xenopus α receptor expressed in COS cells exhibits PDGF-A-dependent tyrosine kinase activity. We find that receptor mRNA is present in cultured marginal zone tissue explants and in animal cap tissue induced to form mesoderm either by grafting to vegetal tissue or by treatment with recombinant activin A. In contrast, PDGF A mRNA is expressed in cultured, untreated animal cap tissue and is suppressed by mesoderm induction. These results suggest that ectodermally produced PDGF A may act on the mesoderm during gastrulation and that mesoderm induction establishes the tissue pattern of ligand and receptor expression. © 1993Wiley-Liss, Inc.  相似文献   

18.
 The retinoblastoma (RB) gene is a tumor suppressor gene that plays an important role in cell cycle arrest and in the terminal differentiation of skeletal myoblasts. Differentiation into muscle occurs in Xenopus embryo explants during mesoderm induction by fibroblast growth factor (FGF) or activin A. We examined expression of the RB gene product (pRB) during mesoderm induction in vivo and in vitro. We show that hypo- and hyper-phosphorylated forms of pRB are present during early development and that expression of both forms increases significantly during the blastula stage, concomitant with mesoderm induction. Further investigation revealed that pRB is enriched in the presumptive mesoderm of the blastula stage embryo. In animal cap explants induced by Xenopus bFGF (XbFGF), pRB expression levels increased approximately tenfold while no increase was observed in explants induced by activin. However, when explants were induced by XbFGF in the presence of sodium orthovanadate, a compound previously shown to synergize with FGF to produce more dorsal ”activin-like” inductions than FGF alone, only a slight increase in pRB expression was observed. Furthermore, upregulation of pRB during mesoderm induction in vitro displayed an inverse correlation with expression of XFKH1, a marker for notochord. These results suggest that pRB may be important for patterning along the dorsoventral axis. Received: 22 February 1996 / Accepted: 20 September 1996  相似文献   

19.
We have re-examined some of the factors affecting the induction of heart-forming mesoderm in the axolotl. The formation of functional, rhythmically contracting myocardial tissue was used as an assay. We have found that heart-forming mesoderm is fully induced and capable of completing its developmental repertoire by the end of neurulation. As has been previously reported, pharyngeal endoderm appears to be the major inductor of heart mesoderm. Unlike previous workers, we have found that the inducing activity appears to be highly localized in the mid-ventral pharyngeal endoderm. The endoderm retains its inductive properties, and the mesoderm retains at least some capacity to respond, long after the heart-forming mesoderm is apparently fully induced. We have also found that RNA extracts from pharyngeal endoderm, which are capable of causing cardiac-lethal (c/c) mutant axolotl hearts to begin beating, are not capable of inducing early wild-type heart-forming mesoderm. Based on these results, we speculate that induction of heart-forming mesoderm is a two-step process. The first signal, occurring during neurulation, directs the mesoderm to begin differentiating into cardiomyocytes, and the second, beginning in mid- to late neurulation and continuing until just prior to the onset of heartbeat, causes myofibrillogenesis and the initiation of rhythmic contractions. The latter signal, which is lacking in c/c mutant embryos, appears to be necessary to override an inhibition present in the embryonic milieu.  相似文献   

20.
Avian neural crest cells migrate on precise pathways to their target areas where they form a wide variety of cellular derivatives, including neurons, glia, pigment cells and skeletal components. In one portion of their pathway, trunk neural crest cells navigate in the somitic mesoderm in a segmental fashion, invading the rostral, while avoiding the caudal, half-sclerotome. This pattern of cell migration, imposed by the somitic mesoderm, contributes to the metameric organization of the peripheral nervous system, including the sensory and sympathetic ganglia. At hindbrain levels, neural crest cells also travel from the neural tube in a segmental manner via three migratory streams of cells that lie adjacent to even-numbered rhombomeres. In this case, the adjacent mesoderm does not possess an obvious segmental organization, compared to the somitic mesoderm at trunk levels. Thus, the mechanisms by which the embryo controls segmentally-organized cell migrations have been a fascinating topic over the past several years. Here, I discuss findings from classical and recent studies that have delineated several of the tissue, cellular and molecular elements that contribute to the segmental organization of neural crest migration, primarily in the avian embryo. One common theme is that neural crest cells are prohibited from entering particular territories in the embryo due to the expression of inhibitory factors. However, permissive, migration-promoting factors may also play a key role in coordinating neural crest migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号