首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The genomic RNAs of flaviviruses such as dengue virus (DEN) have a 5' m7GpppN cap like those of cellular mRNAs but lack a 3' poly(A) tail. We have studied the contributions to translational expression of 5'- and 3'-terminal regions of the DEN serotype 2 genome by using luciferase reporter mRNAs transfected into Vero cells. DCLD RNA contained the entire DEN 5' and 3' untranslated regions (UTRs), as well as the first 36 codons of the capsid coding region fused to the luciferase reporter gene. Capped DCLD RNA was as efficiently translated in Vero cells as capped GLGpA RNA, a reporter with UTRs from the highly expressed alpha-globin mRNA and a 72-residue poly(A) tail. Analogous reporter RNAs with regulatory sequences from West Nile and Sindbis viruses were also strongly expressed. Although capped DCLD RNA was expressed much more efficiently than its uncapped form, uncapped DCLD RNA was translated 6 to 12 times more efficiently than uncapped RNAs with UTRs from globin mRNA. The 5' cap and DEN 3' UTR were the main sources of the translational efficiency of DCLD RNA, and they acted synergistically in enhancing translation. The DEN 3' UTR increased mRNA stability, although this effect was considerably weaker than the enhancement of translational efficiency. The DEN 3' UTR thus has translational regulatory properties similar to those of a poly(A) tail. Its translation-enhancing effect was observed for RNAs with globin or DEN 5' sequences, indicating no codependency between viral 5' and 3' sequences. Deletion studies showed that translational enhancement provided by the DEN 3' UTR is attributable to the cumulative contributions of several conserved elements, as well as a nonconserved domain adjacent to the stop codon. One of the conserved elements was the conserved sequence (CS) CS1 that is complementary to cCS1 present in the 5' end of the DEN polyprotein open reading frame. Complementarity between CS1 and cCS1 was not required for efficient translation.  相似文献   

4.
5.
Huang SW  Chan MY  Hsu WL  Huang CC  Tsai CH 《PloS one》2012,7(3):e33764
The 3' untranslated region (UTR) is usually involved in the switch of the translation and replication for a positive-sense RNA virus. To understand the 3' UTR involved in an internal ribosome entry site (IRES)-mediated translation in Classical swine fever virus (CSFV), we first confirmed the predicted secondary structure (designated as SLI, SLII, SLIII, and SLIV) by enzymatic probing. Using a reporter assay in which the luciferase expression is under the control of CSFV 5' and 3' UTRs, we found that the 3' UTR harbors the positive and negative regulatory elements for translational control. Unlike other stem loops, SLI acts as a repressor for expression of the reporter gene. The negative cis-acting element in SLI is further mapped to the very 3'-end hexamer CGGCCC sequence. Further, the CSFV IRES-mediated translation can be enhanced by the heterologous 3'-ends such as the poly(A) or the 3' UTR of Hepatitis C virus (HCV). Interestingly, such an enhancement was repressed by flanking this hexamer to the end of poly(A) or HCV 3' UTR. After sequence comparison and alignment, we have found that this hexamer sequence could hypothetically base pair with the sequence in the IRES IIId1, the 40 S ribosomal subunit binding site for the translational initiation, located at the 5' UTR. In conclusion, we have found that the 3'-end terminal sequence can play a role in regulating the translation of CSFV.  相似文献   

6.
PC12 cells contain NR1 mRNA but lack significant expression of NR1 protein suggesting translational or posttranslational regulation. Translational activity of NR1 mRNA in PC12 cells was examined by sucrose gradient fractionation and by heterologous luciferase NR1 gene expression studies. The cosedimentation and association of NR1 mRNA with large polyribosomes (polysomes) confirmed the translatability of NR1 message in PC12 cells. Possible initiation and/or elongation defects during the translation of NR1 mRNAs were investigated by cyclohexamide treatment. The marked decline in the number of ribosomes associated with NR1 mRNA after prolonged exposure to cyclohexamide suggested that initiation was limiting translation of NR1 mRNA in PC12 cells. Consequently, the effect of the 5' and 3' untranslated regions (UTRs) on translation was examined using fusion constructs consisting of the luciferase coding region fused to either or both the 5' UTR and 3' UTR of NR1. The transfection of PC12 cells with the luciferase NR1-UTR fusion constructs revealed that the 3' UTR of NR1 had a significant inhibitory effect on luciferase expression. In contrast, the 5' UTR of NR1 had no inhibitory effect on mRNA translation in PC12 cells. The results from this study indicate that the translation of NR1 mRNA in PC12 cells may be impeded at initiation and this inhibition may be regulated at least in part through the 3' UTR of NR1.  相似文献   

7.
Introns are important sequence elements that modulate the expression of genes. Using the GUS reporter gene driven by the promoter of the rice (Oryza sativa L.) polyubiquitin rubi3 gene, we investigated the effects of the 5' UTR intron of the rubi3 gene and the 5' terminal 27 bp of the rubi3 coding sequence on gene expression in stably transformed rice plants. While the intron enhanced GUS gene expression, the 27-bp fused to the GUS coding sequence further augmented GUS expression level, with both varying among different tissues. The intron elevated GUS gene expression mainly at mRNA accumulation level, but also stimulated enhancement at translational level. The enhancement on mRNA accumulation, as determined by realtime quantitative RT-PCR, varied remarkably with tissue type. The augmentation by the intron at translational level also differed by tissue type, but to a lesser extent. On the other hand, the 27-bp fusion further boosted GUS protein yield without affecting mRNA accumulation level, indicating stimulation at translation level, which was also affected by tissue type. The research revealed substantial variation in the magnitudes of intron-mediated enhancement of gene expression (IME) among tissues in rice plants and the importance of using transgenic plants for IME studies.  相似文献   

8.
Expression Enhancement of a Rice Polyubiquitin Gene Promoter   总被引:11,自引:0,他引:11  
An 808 bp promoter from a rice polyubiquitin gene, rubi3, has been isolated. The rubi3 gene contained an open reading frame of 1140 bp encoding a pentameric polyubiquitin arranged as five tandem, head-to-tail repeats of 76 aa. The 1140 bp 5′ UTR intron of the gene enhanced its promoter activity in transient expression assays by 20-fold. Translational fusion of the GUS reporter gene to the coding sequence of the ubiquitin monomer enhanced GUS enzyme activity in transient expression assays by 4.3-fold over the construct containing the original rubi3 promoter (including the 5′ UTR intron) construct. The enhancing effect residing in the ubiquitin monomer coding sequence has been narrowed down to the first 9 nt coding for the first three amino acid residues of the ubiquitin protein. Mutagenesis at the third nucleotide of this 9 nt sequence still maintains the enhancing effect, but leads to translation of the native GUS protein rather than a fusion protein. The resultant 5′ regulatory sequence, consisting of the rubi3 promoter, 5′ UTR exon and intron, and the mutated first 9 nt coding sequence, has an activity nearly 90-fold greater than the rubi3 promoter only (without the 5′ UTR intron), and 2.2-fold greater than the maize Ubi1 gene promoter (including its 5′ UTR intron). The newly created expression vector is expected to enhance transgene expression in monocot plants. Considering the high conservation of the polyubiquitin gene structure in higher plants, the observed enhancement in gene expression may apply to 5′ regulatory sequences of other plant polyubiquitin genes.  相似文献   

9.
Kumari S  Bugaut A  Balasubramanian S 《Biochemistry》2008,47(48):12664-12669
Nucleic acid secondary structures in the 5' untranslated regions (UTRs) of mRNAs have been shown to play a critical role in translation regulation. We recently demonstrated that a naturally occurring, conserved, and stable RNA G-quadruplex element (5'-GGGAGGGGCGGGUCUGGG-3'), located close to the 5' cap within the 5' UTR of the NRAS proto-oncogene mRNA, modulates gene expression at the translational level. Herein, we show that the translational effect of this G-quadruplex motif in NRAS 5' UTR is not uniform, but rather depends on the location of the G-quadruplex-forming sequence. The RNA G-quadruplex-forming sequence represses translation when situated relatively proximal to the 5' end, within the first 50 nt, in the 5' UTR of the NRAS proto-oncogene, whereas it has no significant effect on translation if located comparatively away from the 5' end. We have also demonstrated that the thermodynamic stability of the RNA G-quadruplex at its natural position within the NRAS 5' UTR is an important factor contributing toward its ability to repress translation.  相似文献   

10.
11.
Reduced level of expression of most cell proteins under stress conditions is determined by low efficiency of cap-dependent translation of corresponding mRNAs. The maize gene encoding alcohol dehydrogenase, adh1, is an example of a gene which mRNA is efficiently translated under hypoxia. Using reporter gene assay we showed that the leader sequence of adh1 mRNA, provides efficient translation of reporter gene gfp in Nicotiana benthamiana cells under hypoxia and heat shock. The presence of this leader sequence in 5' UTR of mRNA does not change the level of expression in aerobic conditions, but under hypoxia and heat shock the levels of reporter gfp expression were reduced about 5-10 fold in the absence of leader and remained unaffected in its presence in 5'UTR. We found that this leader sequence does not change the level of mRNA stability and does not exhibit promoter activity. Consequently, leader sequence acts as translational enhancer providing efficient translation of mRNA in plant cells under stress conditions. Introduction of this sequence into standard expression cassettes may be used for development of new systems of expression of target proteins in plants, efficient under stress conditions.  相似文献   

12.
Eukaryotic translation initiation factor 5A (eIF5A) is an essential protein tightly linked to cellular polyamine homeostasis. It receives the unique spermidine-derived posttranslational modification hypusine that is necessary for eIF5A's biochemical activity and cellular proliferation. The eIF5A protein stimulates ribosomal peptidyl-transferase and may be involved in nucleocytoplasmic mRNA transport. Little is known about the molecular genetics of eIF5A. Here we report on the sequence and molecular characterization of human EIF5A2, a novel phylogenetically conserved gene for eIF5A. EIF5A2 stretches over 17 kb and consists of five exons and four introns. It is localized at 3q25-q27, often noted for chromosomal instability in cancers. EIF5A2 is highly expressed in testis and colorectal adenocarcinoma and at moderate levels in the brain, in contrast to the ubiquitously expressed EIF5A1 gene. Two EIF5A2 mRNAs share a 129-nt 5' UTR and a coding sequence for the 153-amino-acid eIF5AII protein, but possess two alternative 3' UTRs of 46 and 890 nt that arise through differential polyadenylation. The protein is 84% identical and 94% similar to eIF5AI. Both EIF5A genes are conserved in vertebrates. Our findings lend further support for a specialized gene expression program of polyamine metabolic proteins and regulators that function to maintain polyamine homeostasis at elevated levels during spermatogenesis.  相似文献   

13.
14.
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.  相似文献   

15.
We investigated the possibility that insulin could stimulate translation of ornithine decarboxylase (ODC) mRNA in a murine fibroblast cell line that expresses large numbers of human insulin receptors (HIR 3.5 cells). Within 3 h after exposure to 70 nM insulin, ODC enzyme activity increased approximately 50-fold and mRNA accumulation 3-fold in the HIR 3.5 cells but not in normal fibroblasts. Pretreatment of cells with cycloheximide completely inhibited insulin-stimulated ODC expression; actinomycin D partially inhibited this effect. To determine the influence of the 5' untranslated region (5'UTR) of ODC mRNA on insulin-regulated ODC expression, plasmids were constructed which contained sequences from the 5'UTR of a rat ODC mRNA interposed between the ferritin promoter and the coding region of the human growth hormone gene. These constructions were then expressed transiently in HIR 3.5 cells. Insulin stimulated a 2-4-fold change in growth hormone accumulation in the medium of cells transiently expressing plasmids containing the entire 5'UTR of ODC mRNA or just the 5'-most 115 bases, a G/C-rich conserved sequence predicted to form a stem-loop structure and shown previously to be responsible for constitutive inhibition of translation. There was a direct correlation between the extent of insulin stimulation and the predicted secondary structure of the added 5'UTR sequences. To determine whether this effect might be due to insulin activation of initiation factors responsible for melting mRNA secondary structure, we examined the effect of insulin on the phosphorylation states of two such factors, eucaryotic initiation factors eIF-4B and eIF-4E. Insulin stimulated the phosphorylation of both initiation factors; this stimulation was evident at 15 min and maximal by 60 min. These results suggest a potential general mechanism by which insulin could preferentially stimulate translation of mRNAs whose 5'UTRs exhibit significant secondary structure by activating initiation factors involved in melting such secondary structures.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号