首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objectives were to describe the ultrastructure of equine oocytes aspirated from small and preovulatory follicles, and to relate the ultrastructural features to follicle size and follicular fluid steroid concentrations. Mares were examined every second day by transrectal ultrasonography, and follicles measuring ≤30 mm were aspirated (in vivo) using a 20-cm-long 12-gauge needle through the flank. Following slaughter, both large and small follicles were aspirated (in vitro) from six mares. The oocytes were isolated under a stereomicroscope and processed for transmission electron microscopy, and the follicular fluid was assayed for progesterone (P4) amd estradiol-17β (E2). A total of 29 oocytes (32% recovery rate) were aspirated in vivo, and 15 oocytes were recovered in vitro. According to the stage of nuclear maturation, the oocytes could be divided into the following six categories: 1) the central oocyte nucleus (CON) stage, 2) the peripheral spherical oocyte nucleus (PON-I) stage, 3) the peripheral flattened oocyte nucleus (PON-II) stage, 4) the oocyte nucleus breakdown (ONBD) stage, 5) the metaphase I (M-I) stage, and 6) the metaphase II (M-II) stage. The maturation of the preovulatory follicle was reflected by alterations in the follicular fluid concentrations of steroid hormones. E2 was high in all preovulatory follicles, whereas P4 concentration exhibited a 10-fold increase during follicle maturation, particularly associated with the progression from M-I-to M-II-stage oocytes. The nuclear oocyte maturation included flattening of the spherical oocyte nucleus, followed by increasing undulation of the nuclear envelope, formation of the metaphase plate of the first meiotic division, and, finally, the extrusion of the first polar body and the subsequent formation of the metaphase plate of the second meiotic division. The cytoplasmic oocyte maturation changes comprised breakdown of the intermediate junctions between the cumulus cell projections and the oolemma, enlargement of the perivitelline space, the formation and arrangement of a large number of cortical granules immediately beneath the oolemma, the rearrangement of mitochondria from a predominantly peripheral distribution to a more central or semilunar domain, and the rearrangement of membrane-bound vesicles and lipid droplets from an even distribution to an often semilunar domain, giving the ooplasm a polarized appearance. It is concluded that the final equine oocyte maturation includes a series of well-defined nuclear and cytoplasmic changes that are paralleled by an increase in P4 concentration in the follicular fluid, whereas E2 concentration remains constantly high. © 1995 wiley-Liss, Inc.  相似文献   

2.
During progesterone-induced nuclear maturation the oocytes of Bufo arenarum undergo a series of nuclear and cytoplasmic changes. The breakdown of heterocellular communications between the follicular cell projections and the oocyte microvilli, and the consequent enlargement of the perivitelline space, were observed at the animal pole. The more evident cytoplasmic feature during nuclear maturation comprised the gathering of glycogen granules in clusters, some phagocytosed by empty vesicles. With respect to the location of these vesicles, some were observed in close proximity to the oolemma and others were freely suspended in the perivitelline space, extruded from the oocyte. Other visible events were the disruption of the annulate lamellae, the formation of an elaborate cortical endoplasmic reticulum and the rearrangement of the cortical granules in a monolayer immediately beneath the oolemma together with aggregates of endoplasmic reticulum cisternae. Our results show that during nuclear maturation the nuclear oocyte changes include a flattening of the spherical oocyte nucleus, its migration towards the surface of the animal pole, the disappearance of the nucleoli and the dissolution of the nuclear envelope.  相似文献   

3.
The aim of the present study was to describe the canine oocyte ultrastructural modifications during in vivo maturation, with precise reference to the timing of the LH surge and of ovulation. Twenty-five bitches were ovariectomized at specific stages between the onset of proestrus and the fifth day post-ovulation: 65 oocytes were observed by transmission electron microscopy (TEM), either before the LH surge (n = 10), between the LH surge and ovulation (n = 12) or after ovulation (n = 43). Prior to the LH surge, the oocyte nucleus had already begun its displacement to the vicinity of the oolemma and reticulated nucleoli were infrequent. The cytoplasm showed signs of immaturity (few organelles preferentially located in the cortical zone, "mitochondrial cloud", scarce cortical granules). The LH surge was immediately followed by cumulus expansion but the ovulation occurred 2 days later. Retraction of the transzonal projections and the meiotic resumption occurred after another 3 days (5 days after the LH peak). The ovulation was then followed by gradual cytoplasmic modifications. Nucleoli re-assumed a reticulated aspect around 24 hr post-ovulation. From 48 hr post-ovulation mitochondria and SER were very numerous and evenly distributed. In conclusion canine oocyte maturation began prior to the LH surge and no cytoplasmic or nuclear modifications followed immediately the LH surge and ovulation. This study suggests that two distinct signals are needed for the final in vivo maturation: one prior to the LH surge (to induce maturation) and another one, around 3 days post-ovulation (to induce meiotic resumption).  相似文献   

4.
On the basis of structural observations bovine oocytes were grouped into four successive classed: 0, those before the luteinizing hormone (LH) surge; 1, those up to 8 h following the LH peak level; 2, those between 8 and 19 h after the LH peak level; and 3, those between 19 h after the LH peak level and ovulation. Oocytes in class 0 had mitochondria located in a generally peripheral position. Interior to the mitochondria were elements of rough endoplasmic reticulum (RER) and numerous membrane-bound vesicles which bore ribosome-like particles on their outer surface. The first visible changesater the LH peak level as seen in class 1 were the formation of the periviteline space with loss of contact between the cumulus cells and the oocyte, and ruffing of the nuclear envelope. These changes were followed b the resumption of meiosis as defined by germinal-vesicle breakdown (GVBD), the disappearance of RER, and the formation fo clusters of mitochondria in association with lipid droplets and elementrs of smooth endolasmic reticulum (SER). The period between 8 and 19 h following LH peak level (class 2) was characterized by intensive clustering of mitochoncria in association with lipid droplets and elements of SER, conversion of lipid, fusion of vesicles, and the appearance of ribosomes in the cytoplasm. During the final stage (class 3), the polar body was extruded, the mitochondria dispersed, and the majority of the organelles became located toward the center of the cell. The relatively organelle-free cortical region contained cortical granules immediately adjacent to the plasma membrane together with aggregates of tubular SER. The structural changes are discussed in the context of follicular steroidogenesis and oocyte developmental competence.  相似文献   

5.
Synthetically produced meiosis-activating sterol, a sterol originally derived from follicular fluid (FF-MAS), induces meiotic maturation of mouse oocytes in vitro. We therefore compared FF-MAS-induced maturation of naked mouse oocytes arrested in prophase I by either hypoxanthine (Hx) or forskolin (Fo) with spontaneous maturation of naked oocytes. FF-MAS-treated oocytes overcame the meiotic block by Hx or Fo, although germinal vesicle breakdown was delayed by 11 h and 7 h, respectively. We also investigated the influence of FF-MAS on chromosome, microtubule, and ultrastructural dynamics in Hx-cultured oocytes by immunocytochemistry and electron microscopy. Similarly to spontaneously matured oocytes, chromosomes became aligned, a barrel-shaped spindle formed, and overall organelle distribution was normal in FF-MAS-matured oocytes. The number of small cytoplasmic asters was elevated in FF-MAS-treated oocytes. Although the number of cortical granules (CGs) was similar to that in spontaneously matured oocytes, the overall distance between CGs and oolemma was increased in the FF-MAS group. These observations suggest that the initiation of meiotic maturation in FF-MAS-treated oocytes in the presence of high cAMP levels leads to a delayed but otherwise normal nuclear maturation. FF-MAS appears to improve oocyte quality by supporting microtubule assembly and by delaying CG release, which is known to contribute to reduced fertilization.  相似文献   

6.
The structure of oocytes aspirated from the dominant and its subordinate follicles was investigated from the achievement of follicular dominance to ovulation. Ovulation was induced in 18 heifers and 5 cows by injection of cloprostenol at days 8–14 (day 0 = day of ovulation), and follicular development was monitored by ultrasonography. The animals were slaughtered at days 3–11, but animals slaughtered on days 8–11 were given a second injection of cloprostenol at day 7 to allow ovulation of the dominant follicle of the first follicular wave. Oocytes were aspirated from the dominant (largest) and two largest subordinat efollicles and processed for transmission electron microscopy, whereas the follicular fluids were analyzed for concentrations of estradiol-17β (E2) and progesterone (P4). Dominant follicular growth was associated with increase in the concentration of E2 and P4 in the follicular fluid, which was E2-dominated. From days 3–7, the dominant oocytes had pronounced junctional contacts with the cumulus cells and a nonundulating nuclear envelope but showed an increase in the number of lipid droplets and a decrease in the size of Golgi complexes, the size of cortical granule clusters, and the number of microvilli stacks. After cloprostenol injection on day 7, but before the anticipated LH surge, the dominant oocytes showed a reduced oocyte cumulus contact, vacuolization of the nucleolus, undulation of the nuclear envelope, and dispersal of the mitochondrial clusters. The morphological alterations occurring in the dominant oocytes before the anticipated LH surge are suggested to be a prerequisite for the oocyte to achieve the competence to undergo final maturation. Subordinate follicles ceased growing at about days 3–4 and their follicular fluid had low E2:P4 ratio or was P4-dominated. Subordinate oocytes displayed degenerative features in their cumulus investment and nuclear activation and maturation especially after day 5. The structural changes associated with oocyte degeneration showed similarities with the processes seen before and during final maturation of the dominant oocytes. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Ding J  Foxcroft GR 《Theriogenology》1994,41(7):1473-1481
Follicular secretions can support cytoplasmic maturation in vitro in the pig. The effects of follicular secretions stimulated in vitro by different combinations of gonadotropins and over different culture periods on cytoplasmic maturation of the pig oocyte were studied. In Experiment 1, follicular shells (including theca and mural granulosa cells) from 5 to 7-mm follicles were cultured in vitro under the stimulation of different combinations of gonadotropins for 48 h, and then the obtained conditioned media were used for oocyte maturation. Oocytes cultured in conditioned medium harvested after treatment of follicular shells with 2.5 mug/ml FSH (FSH-stimulated conditioned medium) yielded a higher percentage of male pronuclear formation than those matured in conditioned medium harvested after culture of follicular shells with a combination of hormones (2.5mug/ml FSH, 2.5 mug/ml LH and 20 ng/ml PRL, FSH-LH-PRL-stimulated conditioned medium; 54.1 vs 28.5%; P=0.001). Addition of the combination of FSH, LH and PRL during the period of oocyte maturation marginally improved male pronuclear formation rates (41.3 vs 55.6%; P=0.06). In Experment 2, follicular shells were cultured under the stimulation of FSH only. Conditioned media were harvested after the first 24 h and the second 24 h of culture. The rates of male pronuclear formation in oocytes matured in these 2 conditioned media did not differ (P=0.65), but were higher than those of oocytes matured in fresh control medium (P<0.03). It is concluded that factors secreted by follicular cells stimulated by FSH alone provide better support for full oocyte maturation in the pig than by combined FSH, LH and PRL treatment.  相似文献   

8.
Rabbit ovaries were isolated surgically before the ovulatory gonadotrophin stimulation and perfused in vitro. Untreated, control ovaries never ovulated. Ovaries treated in vitro with ovine LH ovulated 10-14 h later and the oocytes had undergone germinal vesicle breakdown (GVB). LH induced increases in progesterone secretion from the treated ovaries. A 3 beta-hydroxysteroid dehydrogenase blocker ('Compound A') effectively reduced progesterone secretion into the perfusate and follicular fluid to very low levels but had no effect on ovulation rate or on oocyte maturation. Excessively high progesterone levels were obtained artificially in perfusates by addition of exogenous steroid; the number of ovaries ovulating was markedly reduced but there was no effect on oocyte maturation. It is concluded that the rise in progesterone that normally occurs immediately after the LH surge is not a prerequisite for ovulation in the rabbit. However, progesterone may have a modifying effect on LH-induced follicle rupture when at a pharmacologically high level.  相似文献   

9.
The membrane-potential changes of pig oocytes during maturation are described. Cumulus-enclosed oocytes have a resting potential of -41.81 +/- 0.60 mV; the removal of cumulus cells caused this potential to drop to -30.95 +/- 0.43 mV. Adding LH to the culture medium did not influence the potential of denuded oocytes but depolarized the potential of cumulus-enclosed oocytes to -32.90 +/- 0.43 mV. FSH did not affect the membrane potential of denuded or cumulus-enclosed oocytes, but significantly reduced the amplitude of the depolarization induced by LH. The effect of gonadotropins on cultured granulosa cells was also investigated. Plated granulosa cells have a resting potential of -45.21 +/- 0.72 mV, similar to that of cumulus-enclosed oocytes. As recorded in cumulus-enclosed oocytes, LH depolarized granulosa cell membrane potential (-30.33 +/- 0.69 mV) and FSH reduced this effect. To evaluate if oocyte maturation in vivo is accompanied by membrane-potential depolarization, follicular growth and oocyte maturation were induced in 6 prepubertal gilts by using an eCG-hCG treatment. Twenty hours after the beginning of oocyte maturation in vivo (induced by hCG), the membrane potential of the oocyte was depolarized to -28.84 +/- 1.01 mV, a value similar to that observed in vitro. These data indicate that both LH and FSH can influence the membrane potential of follicular somatic cells and, consequently, that of the oocyte. The electrical coupling between somatic cell and oocyte may represent a means by which the gonadotropin message is passed to the germinal cell by the somatic compartment.  相似文献   

10.
The present investigation describes the ultrastructural changes which occur at the surface and in the cytoplasm of developing oocytes of the lobster, Homarus americanus, during vitellogenesis. The immature oocytes showed no surface specializations of the oolemma and no pinocytotic activity was observed. Horseradish peroxidase (HRP) tracer studies showed penetration of the tracer into the perivitelline space, but no uptake by the oocytes. The surfaces of oocytes examined during vitellogenesis, when yolk protein accumulation was maximal, exhibited numerous microvilli that projected into the perivitelline space, often appearing to be embedded in the follicular cell mass. In addition, the plasma membrane of vitellogenic oocytes contained many pinocytotic pits frequently situated at the bases of microvilli. The perivitelline space was engorged with electrondense material which appeared similar to that contained in pinocytotic structures of the oocytes. Vitellogenic oocytes incubated in HRP showed uptake of tracer reaction product by the coated pits and vesicles of the oolemma. Aggregation and subsequent fusion of these vesicles into large multivesicular bodies of ingested material were also observed in vitellogenic oocytes. Animals artificially induced to undergo vitellogenesis exhibited modulations of oocyte ultrastructure similar to those of normal vitellogenesis, notably, pinocytotic incorporation of extra-oocytic material and hypertrophy of oocyte surface microvilli. This study supports the hypothesis for a dual source of yolk protein in the American lobster.  相似文献   

11.
We report for the first time that oocyte nuclear and cytoplasmic maturation are triggered in vitro in non-hormone-treated amphibian (Rana pipiens) ovarian follicles following transient exposure to synthetic chymotrypsin inhibitor Nα-tosyl-L-phenylalanine-chloromethyl ketone (TPCK). The mechanism of action of TPCK in regulating oocyte maturation was investigated and compared to that induced by progesterone or pituitary hormone. Follicular oocytes failed to mature following continuous exposure to the same doses of TPCK in the presence or absence of progesterone. Continuous treatment of follicles with lower levels of TPCK occasionally induced GVBD in the absence of progesterone and augmented maturational effects of low levels of progesterone. TPCK induced maturation of intrafollicular oocytes without stimulating progesterone production and also induced maturation of naked oocytes. Stimulation of follicular progesterone synthesis following gonadotropin stimulation or addition of pregnenolone was inhibited by TPCK, indicating that TPCK affects metabolic processes in both the somatic and germinal components of the ovarian follicle. Oocyte maturation induced by either TPCK or progesterone was inhibited by cycloheximide, calcium-deficient medium, and forskolin. Results suggest that TPCK induces oocyte maturation independent of steroidogenesis via mechanisms similar to those triggered by progesterone involving protein synthesis, formation of cytoplasmic maturation-promoting factor (MPF), and changes in cAMP levels. Our data indicate that a chymotrypsin-like protease plays a role(s) in regulating the oocyte meiotic maturation process.  相似文献   

12.
The objective of this study was to investigate the relationship between oocyte morphology and follicular fluid steroid concentrations in patients being treated with intracytoplasmic sperm injection. A total of 82 IVF cycles were evaluated in patients aged 24-40 years. Oocytes at metaphase II were graded into four groups according to the status of the first polar body and the size of the perivitelline space. The proportion of oocytes at the germinal vesicle and germinal vesicle breakdown stages, and the proportion of degenerated oocytes and oocytes with a large polar body were compared with different concentrations of oestradiol, progesterone and testosterone in the follicular fluid. The association between these oocyte characteristics and the ratio of oestradiol:testosterone and oestradiol:progesterone was also analysed. The results showed that oocyte morphology, as assessed by the status of the first polar body and the size of the perivitelline space, is associated with the ratio of oestradiol:testosterone and oestradiol:progesterone but not with the absolute concentrations of oestradiol, progesterone and testosterone in the follicular fluid. A ratio of oestradiol:testosterone > 200 is the best indicator for a small proportion of grade 1 and 2 oocytes (poor quality), a large proportion of grade 3 and 4 oocytes (good quality), and a small proportion of oocytes with cytoplasmic inclusions. These results will be of clinical use in evaluating oocyte quality.  相似文献   

13.
The effects of luteinizing hormone (NIH-bovine LH) and progesterone on maturation in vitro of oocyte-cumulus complexes from adult proestrous rats were studied by comparing proportions of oocytes showing germinal vesicle breakdown, mucification of the cumulus oophorus, and fertilizability. Addition of either or both of the hormones to the medium in concentrations between 1.25 and 10 μg/ml during maturation had no discernible effect on germinal vesicle breakdown or on fertilization. Mucification was stimulated by LH and even more by LH plus progesterone. It was concluded that maturation in vivo is the result of concerted action of the two hormones. However, addition of LH + progesterone had no effect on the fertilizability of these oocytes. We attribute this to a relative insensitivity of the system for fertilization in vitro to subtle changes in the oocyte.  相似文献   

14.
Effects of bovine follicular fluid on maturation of bovine oocytes   总被引:6,自引:0,他引:6  
Three experiments were conducted to determine the effects of follicular fluid and media on bovine oocyte maturation. Experiments 1 and 3 test the effects of follicular fluid obtained at different times after the LH surge on bovine oocyte maturation in vitro, while Experiment 2 was designed to compare TALP and Medium 199 as serum-free maturation media. Bovine follicular fluid (BFF) was obtained from preovulatory follicles either before (0 h BFF) or at 4, 8, 12 or 20 h after a GnRH-induced LH surge. Oocytes were obtained from follicles 1 to 6 mm in diameter from ovaries retrieved from a slaughterhouse. In Experiment 1, both 0 h and 4 h BFF inhibited resumption of meiosis, whereas BFF collected at 8, 12 and 20 h did not. When oocytes were cultured in media that contained equal portions of 0 and 8 h BFF, meiosis was not inhibited. In Experiment 2, Medium 199 supplemented with bovine serum albumin (BSA) was superior to Tyrode's medium with albumin, lactate and pyruvate for oocyte maturation. In Experiment 3, a higher percentage (P<0.05) of oocytes cultured for 18 h in 40% 20 h BFF in Medium 199 reached Metaphase-II (64%) than those cultured in 0 h BFF (41%) or control medium (39%). There was a transient meiotic arrest due to 0 h BFF as evidenced by the higher percentage of oocytes with germinal vesicles at 8 h of incubation (35% with 0 h vs 20% with 20 h; P<0.05). Furthermore, expansion of cumulus cells was induced in 8 and 20 h BFF, but not 0 h BFF.  相似文献   

15.
Progesterone (P(4)) and luteinizing hormone (LH) profiles were analyzed throughout the estrous cycle in 11 superovulated heifers that had follicular oocytes aspirated at different times after standing heat. It was found that high P(4) during estrus was incompatible with normal LH release, oocyte maturation and subsequent in vitro fertilizing capability. However, an LH peak was not a prerequisite for initiation of meiosis, since both metaphase I (MI) and metaphase II (MII) stages were observed in animals without an LH surge. Following follicular aspiration, the progesterone levels and the length of luteal phase were similar to those of superovulated animals that had no follicular intervention. We concluded that aspiration per se does not interfere with normal corpora lutea (CL) development in heifers when aspiration occurs after the LH surge.  相似文献   

16.
To investigate protein synthesis and phosphorylation during bovine oocyte maturation in vivo, oocytes were collected at consecutive times after the preovulatory luteinizing hormone (LH) peak. Therefore, heifers treated for superovulation were ovariectomized between 3 and 20 h after the maximum of the LH peak. Subsequently, cumulus-enclosed oocytes, selected from nonatretic follicles greater than 10 mm, were radiolabeled with 35S-methionine or 32P-orthophosphate for 3 h and individually prepared for gel electrophoresis. Changes in the protein synthesis patterns were observed coinciding with germinal vesicle breakdown (GVBD). No changes were detected during the ensuing maturation period or coinciding with the extrusion of the first polar body. In addition, the protein phosphorylation patterns exhibited striking differences around GVBD. In particular, a phosphoprotein band of 19 kDa and the two heavily phosphorylated proteins with apparent molecular weights between 50 and 60 kDa were present in patterns of oocytes in the germinal vesicle stage. The results are discussed in relation to previous data obtained during maturation in vitro.  相似文献   

17.
The localization and changes in microfilaments (MF) during golden hamster oocyte maturation were examined by an immunofluorescein method and confocal laser scanning microscopy (CLSM). We also studied the relationship between the changes in MF and oocyte nuclear and cytoplasmic maturation. During in vivo maturation, generalized submembranous MF were found initially which gradually became more prominent at the site of the first polar body extrusion. However, 43.7% of the in vitro matured metaphase 2 stage oocytes lacked the submembranous MF structure. This fact may partly account for the low fertilization rate of in vitro matured oocytes. MF were not found in the folicular oocytes cultured in cytochalasin-D-containing medium, and metaphase-like chromosomes were located at the center of the oocyte and first polar body extrusion did not occur. Twenty-five percent of the oocytes, which were arrested at meiosis by hypoxanthine, synthesized submembranous MF structure although the nuclear stage of these oocytes was germinal vesicle. These facts suggest that MF plays a role in nuclear behavior but there are some differences in the changes taking place within the nucleus and MF. MF may play a role in oocyte cytoplasmic maturation although the details of this have yet to be established. © 1995 Wiley-Liss, Inc.  相似文献   

18.
19.
The repartition and fate of glycogen β has been followed during progesterone-induced maturation of amphibian oocytes. The use of specific staining, both at the cytological and ultrastructural level, demonstrates that glycogen tends to be extruded from the oocyte during maturation of the urodeles Pleurodeles waltlii and Ambystoma mexicanum. No such effect of the hormone is observed in Xenopus laevis, where only a slight centrifuge migration of the glycogen could be recorded. Stacks of annulate lamellae increase during the early phase of in vitro progesterone-induced maturation (2 to 9 hours after progesterone application). After germinal vesicle breakdown (about 12 hours after beginning the progesterone treatment) annulate lamellae have disappeared and numerous masses of vesicles are present in the cytoplasm of Pleurodeles and Ambystoma matured oocytes. We never observed any close relation between the annulate lamellae and these vesicles.  相似文献   

20.
Pituitary gonadotropins are believed to induce the somatic cell portion of the amphibian follicle to synthesize and release progesterone which, in turn, induces the resumption of the meiotic divisions in the follicular oocyte. We report here that pituitary extract, at concentrations that induce ovulation and meiosis, causes a rapid hyperpolarization of the follicular oocyte. A similar hyperpolarization is seen in response to porcine LH but not FSH. Voltage clamp studies indicate that this is due to an increase in follicle K+ conductance. An electrical model of the amphibian follicle suggests that pituitary factors act by increasing the K+ conductance of the oolemma, by increasing the extent of oocyte-follicle cell ionic coupling, or by increasing the conductance of follicle cell plasma membrane. The conductance change does not occur in the absence of follicle cells, is not mediated by progesterone, and is not necessary for meiotic maturation, per se , but may play a role in processes which accompany or follow maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号