首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because asexual species lack recombination, they have little opportunity to produce genetically variable offspring and cannot adapt to changes in their environment. However, a number of asexual species are very successful and appear to contradict this general view. One such species is the phytophagous mite Brevipalpus phoenicis (Geijskes), a species that is found in a wide range of environments. There are two general explanations for this pattern, the General Purpose Genotype (GPG) and Frozen Niche Variation (FNV). According to the GPG model, an asexual species consists of clones that can all survive and reproduce in all the different niches. Alternatively, the FNV model postulates that different clones are specialized to different niches. We have performed a test to distinguish between these models in B. phoenicis. Mites from three populations from three different host plant species (citrus, hibiscus and acerola) were transplanted to their own and the two alternative host plants and mite survival and egg production were measured. Additionally, the mite populations were genotyped using microsatellites. Fitness was seriously reduced when mites were transplanted to the alternative host plant species, except when the alternative host was acerola. We concluded that B. phoenicis clones are specialized to different niches and thus the FNV best describes the broad ecological niche of this species but that there is also some evidence for host plant generalization. This conclusion was strengthened by the observations that on each host plant species the native mite population performed better than the introduced ones, and that three microsatellite markers showed that the mite populations are genetically distinct.  相似文献   

2.
高海拔山区气候条件恶劣, 资源匮乏, 探究同域分布的近缘物种如何利用有限的资源以实现稳定共存, 对于了解高山生态系统生物多样性格局的形成和维持机制具有重要意义。鸡形目鸟类飞行能力弱, 属于典型的地栖物种, 生态位空间相对狭窄, 可能面临更高的种间竞争压力。本研究旨在比较几种同域分布的鸡形目鸟类的时空生态位, 为了解高山生态系统同域物种的共存机制提供新的研究案例。2020年4-9月, 研究人员在四川卧龙国家级自然保护区海拔3,300-4,200 m的高山区域进行了野外调查, 通过样线法和样方法对鸡形目鸟类群落优势物种绿尾虹雉(Lophophorus lhuysii)、雉鹑(Tetraophasis obscurus)和雪鹑(Lerwa lerwa)繁殖期的微生境进行调查, 使用红外相机对其活动节律进行监测, 并运用核密度估计法从微生境利用和日活动节律两个生态维度进行了种间生态位比较。结果显示, 雪鹑在微生境利用和日活动节律上均与其他两个物种存在显著差异。绿尾虹雉与雉鹑在微生境的利用上具有相似偏好; 但绿尾虹雉的早活动高峰晚于雉鹑, 晚活动高峰早于雉鹑, 表现出显著的种间日活动节律差异; 然而, 整合两个维度后, 绿尾虹雉和雉鹑的整体生态位仍然高度重叠, 没有显著分化。本研究表明高山鸡形目物种间的生态位分化体现于多个不同的生态维度, 并且不同物种之间的分化方式有所差异。在空间和时间生态位上的显著分化使雪鹑与同域物种间的竞争压力相对较小, 有利于其实现稳定共存。而绿尾虹雉与雉鹑的整体生态位高度重叠, 建议进一步对其食性开展研究, 探讨营养生态位上的潜在种间分化。  相似文献   

3.
Hutchinson defined the ecological niche as a hypervolume shaped by the environmental conditions under which a species can ‘exist indefinitely’. Although several authors further discussed the need to adopt a demographic perspective of the ecological niche theory, very few have investigated the environmental requirements of different components of species’ life cycles (i.e. vital rates) in order to examine their internal niche structures. It therefore remains unclear how species’ demography, niches and distributions are interrelated. Using comprehensive demographic data for two well‐studied, short‐lived plants (Plantago coronopus, Clarkia xantiana), we show that the arrangement of species’ demographic niches reveals key features of their environmental niches and geographic distributions. In Plantago coronopus, opposing geographic trends in some individual vital rates, through different responses to environmental gradients (demographic compensation), stabilize population growth across the range. In Clarkia xantiana, a lack of demographic compensation underlies a gradient in population growth, which could translate in a directional geographic range shift. Overall, our results highlight that occurrence and performance niches cannot be assumed to be the same, and that studying their relationship is essential for a better understanding of species’ ecological niches. Finally, we argue for the value of considering the assemblage of species’ demographic niches when studying ecological systems, and predicting the dynamics of species geographical ranges.  相似文献   

4.
Communities are mostly composed of rare species; yet, the factors that determine their patterns of occurrence remain obscure. Theory predicts that, in contrast with common species, the occurrence of rare species will be poorly correlated with environmental variables (niches) and more affected by stochasticity (ecological drift), but how this pattern varies across different trophic groups is still poorly understood. Here, we compared the ability of environmental variables (bottom–up biotic niches) to predict the occurrence of plant‐dwelling arthropods across different abundance classes in the Cape Floristic Region of South Africa. We compared three trophic groups, including 104 herbivorous hemipteran, 171 parasitoid wasp and 84 spider species, totalling 4511 individuals in 48 quadrats. To quantify bottom–up biotic niches, we studied the influences of species composition of plants on hemipterans, and of plants and hemipterans on spiders and wasps. We compared the observed strength of the correlation between rare species and their niches with expectations that were generated by repeatedly rarefying abundant species. A large proportion of arthropod species were very rare, i.e. with only one or two individuals (49–55%). Although rarefying abundant species greatly decreased the correlation with bottom–up biotic niches, bottom–up biotic niches generally better predicted the occurrence of rarefied abundant species than very rare ones, suggesting a greater influence of drift on very rare arthropods. That is, (very) rare arthropods are distributed more randomly than rarefied abundant species. Nevertheless, trophic groups differed in the details of their response to bottom–up biotic niches. Plant species composition was a better predictor of rarefied abundant than truly rare hemipterans. In contrast, the importance of bottom–up biotic niches among abundance classes varied less visibly in spiders and wasps. Our study thus suggests that the importance of niches in structuring arthropod communities depends on species rarity and trophic group.  相似文献   

5.
Background and AimsClimate is an important parameter in delimiting coarse-grained aspects of fundamental ecological niches of species; evolution of these niches has been considered a key component in biological diversification. We assessed phylogenetic niche conservatism and evolution in 24 species of the family Oleaceae in relation to temperature and precipitation variables. We studied niches of 17 Olea species and 7 species from other genera of Oleaceae globally.MethodsWe used nuclear ribosomal and plastid DNA to reconstruct an evolutionary tree for the family. We used an approach designed specifically to incorporate uncertainty and incomplete knowledge of species’ ecological niche limits. We performed parsimony- and likelihood-based reconstructions of ancestral states on two independent phylogenetic hypotheses for the family. After detailed analysis, species’ niches were classified into warm and cold niches, wet and dry niches, and broad and narrow niches.Key ResultsGiven that full estimates of fundamental niches are difficult, we explore the alternative approach of explicit incorporation of knowledge of gaps in the information available, which allows avoidance of overestimation of amounts of evolutionary change. The result is a first synthetic view of evolutionary dynamics of ecological niches and distributional potential in a widespread plant family. Temperate regions of the Earth were occupied only by lineages that could derive with cold and dry niches; Southeast Asia held species with warm and wet niches; and parts of Africa held only species with dry niches.ConclusionsHigh temperature in Lutetian (Oligocene) and low temperature in Rupelian (Eocene) with major desertification events play important role for niche retraction and expansion in the history for Oleaceae clades. Associations between environmental niche characteristics and phylogeny reconstruction play an important role in understanding ecological niche conservatism, the overall picture was relatively slow or conservative niche evolution in this group.  相似文献   

6.
A significant proportion of the global diversity of flowering plants has evolved in recent geological time, probably through adaptive radiation into new niches. However, rapid evolution is at odds with recent research which has suggested that plant ecological traits, including the beta- (or habitat) niche, evolve only slowly. We have quantified traits that determine within-habitat alpha diversity (alpha niches) in two communities in which species segregate on hydrological gradients. Molecular phylogenetic analysis of these data shows practically no evidence of a correlation between the ecological and evolutionary distances separating species, indicating that hydrological alpha niches are evolutionarily labile. We propose that contrasting patterns of evolutionary conservatism for alpha- and beta-niches is a general phenomenon necessitated by the hierarchical filtering of species during community assembly. This determines that species must have similar beta niches in order to occupy the same habitat, but different alpha niches in order to coexist.  相似文献   

7.
Water salinity and ionic composition are among the main environmental variables that constrain the fundamental niches of aquatic species, and accordingly, physiological tolerance to these factors constitutes a crucial part of the evolution, ecology, and biogeography of these organisms. The present study experimentally estimated the fundamental saline and anionic niches of adults of two pairs of congeneric saline beetle species that differ in habitat preference (lotic and lentic) in order to test the habitat constraint hypothesis. Osmotic and anionic realised niches were also estimated based on the field occurrences of adult beetle species using Outlying Mean Index analysis and their relationship with experimental tolerances. In the laboratory, all of the studied species showed a threshold response to increased salinity, displaying high survival times when exposed to low and intermediate conductivity levels. These results suggest that these species are not strictly halophilic, but that they are able to regulate both hyperosmotically and hypoosmotically. Anionic water composition had a significant effect on salinity tolerance at conductivity levels near their upper tolerance limits, with decreased species survival at elevated sulphate concentrations. Species occupying lentic habitats demonstrated higher salinity tolerance than their lotic congeners in agreement with the habitat constraint hypothesis. As expected, realised salinity niches were narrower than fundamental niches and corresponded to conditions near the upper tolerance limits of the species. These species are uncommon on freshwater-low conductivity habitats despite the fact that these conditions might be physiologically suitable for the adult life stage. Other factors, such as biotic interactions, could prevent their establishment at low salinities. Differences in the realised anionic niches of congeneric species could be partially explained by the varying habitat availability in the study area. Combining the experimental estimation of fundamental niches with realised field data niche estimates is a powerful method for understanding the main factors constraining species’ distribution at multiple scales, which is a key issue when predicting species’ ability to cope with global change.  相似文献   

8.
李云凯  汪惠琼  陈新军  贡艺 《生态学报》2020,40(15):5418-5423
同域近缘种由于进化选择的压力,会形成不同的行为适应策略。研究同域近缘种生态位格局,有助于理解近缘物种的竞争和共存机制,是深入了解种群动态变化的基础性问题。选取东太平洋赤道海域的柔鱼科头足类近缘种茎柔鱼和鸢乌贼为研究对象,利用生物地球化学示踪物(稳定同位素和脂肪酸)分析两种头足类的营养生态位及相互关系。结果显示,茎柔鱼和鸢乌贼肌肉的部分必需脂肪酸(C18∶2n6、C20∶2n6、C20∶3n3、C20∶4n6和C20∶5n3)含量存在差异,说明二者食物来源不同,但其碳、氮稳定同位素比值无显著差异,可能是因为相同个体大小的茎柔鱼和鸢乌贼营养级相近,且摄食空间相似。这些结果在营养生态位的分析结果中也得到了验证,稳定同位素营养生态位的重叠程度高于脂肪酸营养生态位,表明脂肪酸组成更能体现同域近缘种的食性差异。本研究可加深对头足类进化过程中摄食行为适应机制的理解,并为评估同域近缘种的营养生态位关系提供有益参考。  相似文献   

9.
A taxonomic comparison of local habitat niches of tropical trees   总被引:1,自引:0,他引:1  
The integration of ecology and evolutionary biology requires an understanding of the evolutionary lability in species’ ecological niches. For tropical trees, specialization for particular soil resource and topographic conditions is an important part of the habitat niche, influencing the distributions of individual species and overall tree community structure at the local scale. However, little is known about how these habitat niches are related to the evolutionary history of species. We assessed the relationship between taxonomic rank and tree species’ soil resource and topographic niches in eight large (24–50 ha) tropical forest dynamics plots. Niche overlap values, indicating the similarity of two species’ distributions along soil or topographic axes, were calculated for all pairwise combinations of co-occurring tree species at each study site. Congeneric species pairs often showed greater niche overlap (i.e., more similar niches) than non-congeneric pairs along both soil and topographic axes, though significant effects were found for only five sites based on Mantel tests. No evidence for taxonomic effects was found at the family level. Our results indicate that local habitat niches of trees exhibit varying degrees of phylogenetic signal at different sites, which may have important ramifications for the phylogenetic structure of these communities.  相似文献   

10.
We scrutinised the seasonal food-niche utilisation of river dwelling Atlantic salmon parr and alpine bullhead in order to examine potential mechanisms that may facilitate coexistence of species with similar niches. Fish were sampled monthly during the ice-free season, and diet composition and feeding strategy of the two species were compared by analyses of stomach contents. The dietary niches and feeding strategy of salmon parr and bullheads were highly similar both at the individual and population levels, with high within-phenotype contributions to niche width and pronounced generalisation observed during time periods with severe resource limitations. Our findings suggest that competitive coexistence with similar niches may be facilitated by a generalisation of niche width as predicted by optimal foraging theory, rather than the specialised niche width predicted by classic niche theory as a response to interspecific competition. Competitive coexistence may be particularly widespread in spatially and temporally dynamic habitats such as northern lotic systems, which thus may select for generalisation and convergence of ecological niches.  相似文献   

11.
Abstract.  1. Molecular techniques have greatly added to the number of known sympatric cryptic species in insects. Ecological differences between these newly distinguished species are little explored, but niches often appear to overlap strongly. These cases are good models for exploring new ideas about species coexistence and community structure.
2.  Acanthoscelides obtectus and A. obvelatus are two sister species of bean bruchids, which have been confused until the last decade. One important ecological difference between them has emerged, however: A. obtectus is multivoltine and now distributed worldwide, whereas A. obvelatus is univoltine and restricted to Mesoamerica. Where their ranges overlap, the two species share the same host plants and larvae can sometimes complete development in the same seed.
3. The analysis of 27 622 Mexican individuals of the two species in 2001-2002 and 2002-2003 indicates that their niches overlap, but are differentiated with respect to altitude and the kind of beans (wild vs. domesticated). The principal patterns in their relative abundance in different habitats, and at different seasons, were constant from one year to the next.
4. As sympatry of these species seems to be of recent origin, the observed niche differentiation may not have evolved in response to competition, but could instead be the consequence of physiological differences, evolved independently in each species in allopatry, that pre-adapted them for different altitudes and kinds of resources.
5. The combination of biological and historical factors thus appears to allow these two sibling species to coexist in sympatry, despite their broadly overlapping ecological niches.  相似文献   

12.
秦玉川  管致和 《生态学报》1995,15(2):128-133
两种叶螨及其捕食性天敌的微气候生态位维的组成由苹果树冠内20个位点的气温、照度和叶片含水一构成。研究表明:(1)温度、照度和叶片含水三者综合作用效应高于各单因子独立效应;三因子中温度与叶片含水量的联合作用效应高于其它因子间两两组合的效应。(2)两种叶螨及其天敌的生态位从6月到8月急剧缩小。叶螨间的生态位在6、7月趋于分离,而在8月份有较多的重叠。山楂叶螨的生态位与各天敌的重叠值较小或分离;苹果全爪螨的生态位在6月与小花蝽的重叠值较高,而在7月与草蛉及捕食螨的重叠值较高。小花蝽的生态位与草蛉、捕食螨的趋于分离;草蛉与捕食螨之间的生态位在7月份有较多的重叠,而在6月是分离的。(3)温度与叶片含水量组合是促成各种群微气候生态位转移的主因.  相似文献   

13.
Plodia interpunctella and Oryzaephilus surinamensis are found in food storehouses including dates and palm storages. The current study aimed to determine competition and overlap potentials of the two pests of date fruits. Time series models were used to study two species populations and logistic growth model to estimate the effect of density of the species. The results revealed the environmental capacities of O. surinamensis and P. interpunctella were 433 and 1610 (maximum number per 20 g), respectively, and the population growth rates (r) were 1.2 and 1.3, respectively. Ecological balances of the two species were close to each other from the first to the third week. The population of O. surinamensis decreased in the fourth week of the competition. The highest population balance of the two species was in the 14th week. The potential of exploitable ecological niches (eij) and the amount of non-exploited ecological niches by any species (zij) for O. surinamensis was higher than for P. interpunctella from the 8th week untill the end of sampling period. The overlap of ecological niches in the two species (D) ranged from 0.94 to 1, indicating a complete overlap of temporal activity in the two populations on date palm. The current results of this study can be used by integrated pest management specialists. Information over the effects of species competition on population dynamics and their coexistence can be used to predict population status and to adopt simple pest control methods.  相似文献   

14.
Niche differentiation, assumed to be a key mechanism of species coexistence, requires that species differ in their functional traits. So far it remains unclear to which extent trait plasticity leads to niche shifts of species at higher plant diversity, thereby increasing or decreasing niche overlap between species. To analyse this question it is convenient to measure niches indirectly via the variation in resource-uptake traits rather than directly via the resources used. We provisionally call these indirectly measured niches trait-based niches. We studied shoot- and leaf-morphological characteristics in seven legume species in monoculture and multi-species mixture in experimental grassland. Legume species varied in the extent of trait variation in response to plant diversity. Trait plasticity led to significant shifts in species niches in multiple dimensions. Single-species niches in several traits associated with height growth and filling of canopy space were expanded, while other niche dimensions were compressed or did not change with plant diversity. Niche separation among legumes decreased in dimensions related to height growth and space filling, but increased in dimensions related to leaf size and morphology. The total extent of occupied niche space was larger in mixture than in the combined monocultures for dimensions related to leaf morphology and smaller for dimensions related to whole-plant architecture. Taller growth, greater space filling and greater plasticity in shoot height were positively, while larger values and greater plasticity in specific leaf area were negatively related with increased performance of species in mixture. Our study shows that trait variation in response to plant diversity shifts species niches along trait axes. Plastically increased niche differentiation is restricted to niche dimensions that are apparently not related to size-dependent differences between species, but functional equivalence (convergence in height growth) rather than complementarity (divergence in traits associated with light acquisition) explains increased performance of legumes in mixture.  相似文献   

15.
Biological traits can determine species ecological niches and define species responses to environmental variation. Species have a specific functional position in the biological community, resulting in interactions like interspecific competition. In this study, we used biological traits in order to define the life strategies of 205 nektonic species of the Mediterranean Sea. Furthermore, traits related to resource use were analyzed to determine the level of trait and niche overlap and their relationship to life strategies. Focusing on habitats of importance (Posidonia beds, coralligène formations, and lagoons), we investigated strategies and niches of the species present there. Finally, we examined the life strategy of Lessepsian species and investigated the niche overlap between them and indigenous species. Archetypal analysis indicated the existence of three life histories corresponding to strategies already documented for fish (equilibrium, periodic, and opportunistic), with some species also placed in intermediate positions. Niche overlap was evaluated by multiple correspondence analysis and the generation of a single distance metric between all species pairs. This identified species occupying relatively empty (underexploited) ecological niches, like the Lessepsian species Siganus luridus and S. rivulatus, a finding that can also be associated with their establishment in the Mediterranean. Most Lessepsian species were associated with the opportunistic life history strategy, again an important aspect related to their establishment. Also, we documented that most species occurring in important habitats have a relatively high overlap of niches. No significant differences were found in the life strategies across Mediterranean habitats; however, variation in niche overlap and traits related to habitat use was detected. The findings can be useful to determine theoretical competition between species and to identify empty ecological niches. Fisheries science can also benefit from comprehending the dynamics of competing stocks or predict the responses of data‐poor stocks to anthropogenic stressors from known examples of species with shared life strategies.  相似文献   

16.
Niche theory predicts that species which share resources should evolve strategies to minimise competition for those resources, or the less competitive species would be extirpated. Some plant species are constrained to co-occur, for example parasitic plants and their hosts, and may overlap in their pollination niche if they flower at the same time and attract the same pollinators. Using field observations and experiments between 1996 and 2006, we tested a series of hypotheses regarding pollination niche overlap between a specialist parasitic plant Orobanche elatior (Orobanchaceae) and its host Centaurea scabiosa (Asteraceae). These species flower more or less at the same time, with some year-to-year variation. The host is pollinated by a diverse range of insects, which vary in their effectiveness, whilst the parasite is pollinated by a single species of bumblebee, Bombus pascuorum, which is also an effective pollinator of the host plant. The two species therefore have partially overlapping pollination niches. These niches are not finely subdivided by differential pollen placement, or by diurnal segregation of the niches. We therefore found no evidence of character displacement within the pollination niches of these species, possibly because pollinators are not a limiting resource for these plants. Direct observation of pollinator movements, coupled with experimental manipulations of host plant inflorescence density, showed that Bombus pascuorum only rarely moves between inflorescences of the host and the parasite and therefore the presence of one plant is unlikely to be facilitating pollination in the other. This is the first detailed examination of pollination niche overlap in a plant parasite system and we suggest avenues for future research in relation to pollination and other shared interactions between parasitic plants and their hosts.  相似文献   

17.
Blue-footed boobies (Sula nebouxii) in the Galápagos Islands nest at coastal sites such as cliff edges if Nazca boobies (S. granti) are absent. However, if sympatric with nesting Nazca boobies, they nest nearby, but farther inland, in areas with little topographical relief. Nazca boobies nest at the coastal sites whether blue-footed boobies are present or not. The segregated nesting pattern of these two species offers a model system to investigate factors influencing community structure. We tested a non-interactive hypothesis, in which different fundamental niches generate the non-overlapping distributions, and an interactive hypothesis, in which the two fundamental niches overlap and an interaction between the two species causes the segregation. Data on three factors considered as likely parameters differentiating fundamental niches (nest microclimate, nature of the nesting substrate, and ease of taking flight from nest sites) failed to support the non-interactive hypothesis. These results suggest that the two species have indistinguishable fundamental niches with respect to these parameters, but different realized niches. Researchers studying resource partitioning by ecologically similar species often only consider competition (a "-/-" interaction) to explain situations like this, ignoring the more parsimonious amensal (0/-) possibility. Nesting segregation in this situation is apparently caused by attacks of non-breeding adult Nazca boobies on blue-footed booby nestlings, injuring nestlings and ultimately preventing them from fledging. The interaction does not result in any discernible costs or benefits (i.e., effects on fecundity or survival) for the adult Nazca boobies, so it is best described as an amensal interaction. This interaction provides a sufficient explanation of the observed nesting segregation, and precludes present competition for nesting space.  相似文献   

18.
Geographic range size predicts species’ responses to land-use change and intensification, but the reason why is not well established because many correlates of larger geographic ranges, such as realized niche breadth, may mediate species’ responses to environmental change. Agricultural land uses (hereafter ‘agroecosystems’) have warm, dry and more variable microclimates than do cooler and wetter mature forests, so are predicted to filter for species that have warmer, drier and broader fundamental and realized niches. To test these predictions, we estimated species’ realized niches, for temperature and precipitation, and geographic range sizes of 764 insect species by matching GBIF occurrence records to global climate layers, and modelled how species presence/absence in mature forest and nearby agroecosystems depend on species’ realized niches or geographic ranges. The predicted species niche effects consistently matched the expected direction of microclimatic transition from mature forest to agroecosystems. We found a clear signal that species with preference for warmer and drier climates were more likely to be present in agroecosystems. In addition, the probability that species occurred in different land-use types was predicted better by species’ realized niche than their geographic range size. However, niche effects are often context-dependent and varied amongst studies, taxonomic groups and regions used in this analysis: predicting which particular aspects of species’ realized niche cause sensitivity to land-use change, and the underpinning mechanisms, remains a major challenge for future research and multiple components of species’ realized niches may be important to consider. Using realized niches derived from open-source occurrence records can be a simple and widely applicable tool to help identify when biodiversity responds to the microclimate component of land-use change.  相似文献   

19.
On mammals and birds communities of ectoparasites are present, which can include scores of ticks, mites and insects species. The parasitizing of arthropods terrestrial vertebrates appeared as far back a the Cretaceous period, and after 70-100 mil. years of the coevolution ectoparasites have assimilated all food resources and localities of the hosts' bodies. To the present only spatial and (to the less extent) trophic niches of parasitic insects, ticks and mites are studied completely enough. The main results these investigations are discussed in the present paper. A high abundance of the communities is reached because of their partition into the number of ecological niches. Host is complex of ecological niches for many ectoparasites species. These niches reiterate in the populations of a species closely related species of hosts and repeat from generation to generation. The each part of host (niche) being assimilated be certain parasite species is available potentially for other species. The partition of host into ecological niches is clearer than the structure of ecosystems including free-living organisms. A real extent of the ecological niches occupation by different species of ticks, mites and insects is considerably lower than a potential maximum. The degree of ecological niches saturation depends on the history of the coevolution of parasites community components, previous colonization be new ectoparasite species and many other ecological factors affecting host-parasite system. The use of the ecological niche conception in parasitology is proved to be rather promising. Ectoparasites communities because of their species diversity, different types of feeding and a number of habitats on host represent convenient models and study of them can contribute significantly to the developmeht of the general conception of ecological niche.  相似文献   

20.
Species migration in response to warming temperatures is expected to lead to ‘biotic attrition,’ or loss of local diversity, in areas where the number of species emigrating or going locally extinct exceeds the number immigrating. Biotic attrition is predicted be especially severe in the low‐lying hot tropics since elevated temperatures may surpass the observed tolerances of most extant species. It is possible, however, that the estimated temperature niches of many species are inaccurate and truncated with respect to their true tolerances due to the absence of hotter areas under current global climate. If so, these species will be capable of persisting in some areas where future temperatures exceed current temperatures, reducing rates of biotic attrition. Here, we use natural history collections data to estimate the realized thermal niches of > 2000 plant species from the tropical forests of South America. In accord with the truncation hypothesis, we find that the thermal niches of species from hot lowland areas are several degrees narrower than the thermal niches of species from cooler areas. We estimate rates of biotic attrition for South American tropical forests due to temperature increases ranging from 1 to 5 °C, and under two niche assumptions. The first is that the observed thermal niches truly reflect the plant's tolerances and that the reduction in niche breadth is due to increased specialization. The second is that lowland species have the same mean thermal niche breadth as nonlowland and nonequatorial species. The differences between these two models are dramatic. For example, using observed thermal niches we predict an almost complete loss of plant diversity in most South American tropical forests due to a 5 °C temperature increase, but correcting for possible niche truncation we estimate that most forests will retain > 50–70% of their current species richness. The different predictions highlight the importance of using fundamental vs. realized niches in predicting the responses of species to global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号