首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spodoptera frugiperda (Sf-9) insect cells have been grown in serum-free medium in 250-ml spinner flasks. The maximum cell density obtained in these cultures was dependent on the aeration rate of the culture. Similar yields of uninfected cells were obtained when cultures were stirred in spinner flasks at 80 rev min-1 and in a 4-1 stirred-tank bioreactor and the dissolved oxygen in the bioreactor was controlled at 20% of air saturation. Cells were infected with a recombinant baculovirus at different multiplicities of infection: the timing and maximum level of expression of the recombinant protein were dependent on the multiplicity of infection, the cell density at infection, and on the aeration rate of the culture. Oxygen-limited growth resulted in undetectable levels of recombinant protein (< 6 ng recombinant protein 10(-7) cells). Compared with the maximum yields observed in spinner flask cultures, higher levels of recombinant protein were produced when cells were grown and infected in the bioreactor. The level of dissolved oxygen in the bioreactor was controlled at 50% of air saturation.  相似文献   

2.
Summary Four recombinant strains ofEscherichia coli were examined for the effects of the dissolved oxygen level on the level of biomass, the plasmid content, and the level of recombinant protein at the stationary phase of batch growth. Strains JM101/pYEJ001, and TB-1/pYEJ001 (encoding chloramphenicol acetyltransferase), and strain TB-1/p1034, and TB-1/pUC19 (encoding -galactosidase) were grown at the constant dissolved oxygen levels of 0, 50, and 100% air saturation, as well as in the absence of dissolved, oxygen control. The biomass of all strains under constant aerobic conditions was 12–36 times higher than that under anaerobic conditions, but was the same as or slightly higher than that without dissolved oxygen control. The plasmid content in all strains under anaerobic conditions was 2.9–11.7 times higher than that under aerobic conditions. The optimal dissolved oxygen concentration for the specific activity of recombinant proteins was dependent upon the strain. In no strain were constant aerobic conditions optimal. However, because of the effect on biomass, controlled aerobic conditions were optimal for the volumetric activity of recombinant protein in all but one strain.  相似文献   

3.
Summary The effect of oxygen limitation on the stability of a recombinant yeast plasmid was measured during continuous culture in a non-selective medium. The fraction of plasmid containing cells was found to decrease more rapidly after a step change to low dissolved oxygen (DOT) levels. An increased rate of plasmid loss appeared to be the major cause of the decreased stability.  相似文献   

4.
Tryptone has multiple and complex effects on cell physiology and process performance in pulse fed-batch cultivation of recombinant Escherichia coli. By applying feedback control of dissolved oxygen signal responding to pulse in the feed rate, the production of acetate was avoided and the optimization of production of recombinant human epidermal growth factor (hEGF) was successfully achieved. With the addition of an optimum amount of tryptone along with glucose in the pulse fedbatch cultivation of E. coli, the ability of the cell to divide and the stability of the plasmid within the bacteria were improved. Consequently, segregation of the cells into a viable but non-culturable physiological state was alleviated. Addition of tryptone also enhanced cell respiration before and after hEGF expression and thus further benefited the production of recombinant hEGF. Excessive addition of tryptone resulted in low sensitivity of the oscillation of dissolved oxygen signal and poor operability of pulse fed-batch cultivation as this led to an accumulation of acetate, which weakened the dissolved oxygen signal responses. Consequently, the production of recombinant protein was considerably reduced. By combining the process performance and the positive effect of complex media pulse addition on bacterial metabolism, the optimal production conditions of hEGF were successfully determined. A high cell density of 91 g/L dry cell weight was obtained under these optimal production conditions. Furthermore, a high level of 0.24 g/L hEGF was attained leading to a 32.6% increase in product yield as compared to the controls.  相似文献   

5.
In this study, we compare stress protein induction in anoxic and hyperthermicSpodoptera frugiperda cells. Anoxia transiently induces a cluster of heat shock proteins at 71 and 72 kDa. This is a subset of a larger group of stress proteins induced by heat shock. Several heat shock proteins reported in this study were previously undetected inS. frugiperda. With these additional proteins, the stress response of hyperthermicS. frugiperda closely resembles that ofDrosophila melanogaster. Prior investigations of stress protein induction during oxygen deprivation focused on mammalian cells. In sharp contrast to these cells, anoxicS. frugiperda cells neither induce glucose-regulated proteins nor suppress the heat shock family of 71/72 kDa proteins. These findings provide insight into the virtually unexplored area of stress protein induction in anoxic insect cells. In addition, they help to explain the effects of oxygen deprivation on heterologous protein yield from virally infected insect cells and to develop an oxygenregulated promoter for stably transformed insect cells.Abbreviations DO dissolved oxygen concentration - GRP's glucose-regulated proteins - HSP's heat shock proteins - ORP's oxygen-regulated proteins - PAGE polyacrylamide gel electrophoresis - Sf9 Spodoptera frugiperda cells  相似文献   

6.
Decorin-binding lipoprotein, lpp-DBP, a bacterial surface adhesin, shows promise as a vaccine against Lyme disease. It is expressed in recombinant E. coli as an undesirable 20.5 KDa apoprotein that is subsequently lipidated in vivo to the desired 22 KDa lpp-DBP form. This study defines fermentation conditions for maximizing lpp-DBP yield. Super broth medium, a low post-induction temperature (30 degrees C), and a glucose feed based on dissolved oxygen resulted in high lpp-DBP yield and minimized apoprotein formation. Since cells lysed within 2-3 h after induction, the cell yield was maximized by growing cells to high cell density prior to induction. Compared to a glucose feed based on maintaining a constant fermentor glucose concentration (Glucose-Stat), feeding based on maintaining a constant dissolved oxygen level (DO-Stat) improved yields. Also, a dissolved oxygen level of 60% (air saturation) was best, as no product degradation was detected by Western blotting and SDS-PAGE. Acetic acid levels under both modes of glucose feed were sufficiently low, and no adverse growth effects were observed.  相似文献   

7.
AIMS: To obtain an optimal combination of agitation speed and aeration rate for maximization of specific glucose oxidase (GOD) production in recombinant Saccharomyces cerevisiae, and to establish a correlation between kLa vis-à-vis oxygen transfer condition and specific glucose oxidase production. METHODS AND RESULTS: The oxygen transfer condition was manifested indirectly by manipulating the impeller speed and aeration rate in accordance with a Central Composite Rotatory Design (CCRD). The dissolved oxygen concentration and the volumetric oxygen transfer coefficient (kLa) were determined at corresponding combinations of impeller speed and aeration rate. The maximal specific extracellular glucose oxidase production (3.17 U mg-1 dry cell mass) was achieved when the initial dissolved oxygen concentration was 6.83 mg l-1 at the impeller speed of 420 rev min-1 and at the rate of aeration of 0.25 vvm. It was found out that while impeller speed had a direct effect on the production of enzyme, a correlation between kLa and specific GOD production could not be established. CONCLUSION: At the agitation speed of 420 rev min-1 and at 0.25 vvm aeration rate, the degree of turbulence and the dissolved oxygen concentration were thought to be optimal both for cellular growth and production of enzyme. SIGNIFICANCE AND IMPACT OF THE STUDY: The combined effect of agitation and aeration on recombinant glucose oxidase production in batch cultivation has not yet been reported in the literature. Therefore, this study gives an insight into the effect of these two important physical parameters on recombinant protein production. It also suggests that since there is no correlation between kLa and specific production of GOD, kLa should not be used as one of the scale-up parameters.  相似文献   

8.
A model was formulated to examine specific experimental data of growth and heterologous product formation with recombinant Saccharomyces cerevisiae while incorporating available literature. The model simulated dry cell weight, glucose, ethanol, dissolved oxygen, human Epidermal Growth Factor (hEGF) production, fraction of recombinant cells, oxygen uptake rate, and carbon dioxide production rate for batch, fed batch, and hollow fiber bioreactor configurations. Nineteen differential equations, 24 analytical equations, and 48 parameters were required. Due to the lack of detailed studies needed for the ADH-II and the TCA enzyme pool, 8 of the 48 parameters were adjustable. Simulation results are presented for verification of the model which successfully described the observed phenomena for the fermentations of S. cerevisiae strain AB103. 1 pYalphaEF-25. Also presented is a statistical analysis of the model's fit and model parameter sensitivity.  相似文献   

9.
The independent control of culture redox potential (CRP) by the regulated addition of a reducing agent, dithiothreitol (DTT) was demonstrated in aerated recombinant Escherichia coli fermentations. Moderate levels of DTT addition resulted in minimal changes to specific oxygen uptake, growth rate, and dissolved oxygen. Excessive levels of DTT addition were toxic to the cells resulting in cessation of growth. Chloramphenicol acetyltransferase (CAT) activity (nmoles/microgram total protein min.) decreased in batch fermentation experiments with respect to increasing levels of DTT addition. To further investigate the mechanisms affecting CAT activity, experiments were performed to assay heat shock protein expression and specific CAT activity (nmoles/microgram CAT min.). Expression of such molecular chaperones as GroEL and DnaK were found to increase after addition of DTT. Additionally, sigma factor 32 (sigma32) and several proteases were seen to increase dramatically during addition of DTT. Specific CAT activity (nmoles/microgram CAT min. ) varied greatly as DTT was added, however, a minimum in activity was found at the highest level of DTT addition in E. coli strains RR1 [pBR329] and JM105 [pROEX-CAT]. In conjunction, cellular stress was found to reach a maximum at the same levels of DTT. Although DTT addition has the potential for directly affecting intracellular protein folding, the effects felt from the increased stress within the cell are likely the dominant effector. That the effects of DTT were measured within the cytoplasm of the cell suggests that the periplasmic redox potential was also altered. The changes in specific CAT activity, molecular chaperones, and other heat shock proteins, in the presence of minimal growth rate and oxygen uptake alterations, suggest that the ex vivo control of redox potential provides a new process for affecting the yield and conformation of heterologous proteins in aerated E. coli fermentations.  相似文献   

10.
The relationship between oxygen concentration and growth rate in the yeast Trichosporon cutaneum was studied. In order to establish the conditions for purely oxygen-limited growth, the cells were first grown in a carbon-limited chemostat, and kinetic parameters determined. The cells were then grown in an oxygen-limited chemostat at different dilution rates yielding different oxygen uptake rates. The steady-state dissolved oxygen tension was found at each dilution rate and the corresponding equilibrium dissolved oxygen tension was found at each dilution rate and the corresponding equilibrium dissolved oxygen concentration determined in the effluent medium. The relationship between oxygen concentration and growth rate followed Monod-type kinetics with an apparent K(O) of 4.38 x 10(-6)M.  相似文献   

11.
The effect of aeration rate on the production of cloned glucoamylase in a recombinant yeast was investigated. This system consisted of Saccharomyces cerevisiae transformed with the 2 μ-based plasmid YEpSUCSTA which contains the SUC2 promoter, the STA signal sequence, and the STA structural gene. In contrast to typical yeast expression reports, high production of cloned glucoamylase was achieved at low aeration level (0·3 vvm). The recombinant yeast grown at 0·3 vvm aeration produced more glucoamylase (0·94 units/ml) than when grown at 0·0 vvm, 0·6 vvm, or 0·9 vvm (9·4, 1·4, and 3·1 times more, respectively). A high dissolved oxygen level early in the cultivation was important for cell growth and a low dissolved oxygen level during the production stage was important for glucoamylase production. In large scale processes for the production of recombinant proteins, the maintenance of aeration and dissolved oxygen at high levels is difficult and expensive. In this work, we have evaluated the coordination of oxygen level with growth and protein production and developed optimal conditions. Since a low aeration rate was optimal, our results demonstrate that the method described at the laboratory scale should be successfully applied at an industrial scale.  相似文献   

12.
氧载体对L—天冬酰胺酶发酵过程影响的研究   总被引:5,自引:0,他引:5  
以抗癌药物L天冬酰胺酶生产为应用背景,针对发酵过程中存在严重耗氧问题,研究了氧载体对发酵过程的影响。通过对几种氧载体的筛选,认为正十二烷最适合于该发酵过程。随后以产物L天冬酰胺酶活性、菌体浓度以及溶氧水平为主要指标,考察了氧载体在发酵过程中的作用,实验表明,发酵基质中5%正十二烷的添加量为最佳浓度,这种氧载体的加入,明显地提高了发酵介质中的溶氧水平,改善了供氧条件,增加了菌体浓度,提高了L天冬酰胺酶发酵水平,在优化条件下,可使发酵液最终酶活提高21%左右  相似文献   

13.
Human recombinant erythropoietin (rHuEPO) was produced from Chinese hamster ovary (CHO) cells transfected with the human EPO gene. The cells were grown in batch cultures in controlled bioreactors in which the set-points for dissolved oxygen varied between 3% and 200%. The cell-specific growth rate and final cell yield was significantly lower under hyperoxic conditions (200% DO). However, there was no significant difference in growth rates at other oxygen levels compared to control cultures run under a normoxic condition (50% DO). The specific productivity of EPO was significantly lower at a DO set-point of 3% and 200% but maintained a consistently high value between 10% to 100% DO. The EPO produced under all conditions as analyzed by two-dimensional electrophoresis showed a molecular weight range of 33 to 37 kDa and a low isoelectric point range of 3.5 to 5.0. This corresponds to a highly glycosylated and sialylated protein with a profile showing at least seven distinct isoforms. The glycan pattern of isolated samples of EPO was analyzed by weak anion exchange (WAX) HPLC and by normal-phase HPLC incorporating sequential digestion with exoglycosidase arrays. Assigned structures were confirmed by mass spectrometry (MALDI-MS). The most prominent glycan structures were core fucosylated tetranntenary with variable sialylation. However, significant biantennary, triantennary, and non-fucosylated glycans were also identified. Detailed analysis of these glycan structures produced under variable dissolved oxygen levels did not show consistently significant variations except for the ratio of fucosylated to non-fucosylated isoforms. Maximum core fucosylation (80%) was observed at 50% and 100% DO, whereas higher or lower DO levels resulted in reduced fucosylation. This observation of lower fucosylation at high or low DO levels is consistent with previous data reported for glycoprotein production in insect cells.  相似文献   

14.
强化表达SAM合成酶促进SAM在毕赤酵母中累积   总被引:14,自引:0,他引:14  
S 腺苷甲硫氨酸 (S adenosyl L methionine ,SAM)是生物体硫代谢的重要中间代谢物质 ,在体内起着转甲基、转硫基、转氨丙基的作用 ,具有重要的药用和保健价值。将酿酒酵母来源的SAM合成酶 2基因置于GAP启动子调控下 ,构建胞内组成型表达质粒 ,并电转化至毕赤酵母菌株GS115。经Zeocin抗性和培养筛选到一株高产SAM的重组菌。对重组菌表达工艺的研究表明 ,碳源、氮源、pH和溶解氧对SAM的累积有较大影响。在优化条件下 ,重组细胞培养 3天 ,SAM累积量可达 2 .49g/L。  相似文献   

15.
可溶性TRAIL蛋白的高密度培养及补料策略研究   总被引:3,自引:0,他引:3  
采用分批补料的方法高密度培养重组大肠杆菌C600/PbvTRAIL制备人可溶性TRAIL蛋白,优化发酵工艺,探索简单高效的分离纯化方法并测定蛋白生物活性。通过比较几种不同的补料策略:间歇流加、Dostat、pHstat,摸索了一种流加策略,即DOstatpHstat组合流加,有效的避免了发酵过程中,尤其是诱导表达阶段乙酸积累的增加,使TRAIL蛋白在高密度培养条件下,得到高效表达。菌体密度最终达到300g/L(WCW)以上,可溶性TRAIL蛋白占菌体总蛋白的4.2%,含量为1.1g/L。在整个发酵过程中,乙酸浓度接近于0,且未使用任何特殊手段,如纯氧、加压等,简化了发酵工艺,降低了发酵成本,为TRAIL的工业化生产创造了条件。  相似文献   

16.
透明颤菌血红蛋白的表达及对基因工程菌的影响   总被引:4,自引:0,他引:4  
利用已克隆的透明颤菌(Vitreoscilla)血红蛋白基因(vgb),构建了一批复制类型和抗生标记不同的vgb表达载体,并就vgb基因表达及其对几种基因工程大肠杆菌的影响进行了初步研究。实验证明vgb基因的表达具有氧调控特性,在溶氧水平下跌至20%饱和度时迅速合成。Vgb基因的表达产物(Vitreoscilla Hemoglogin,VHb)可促进青霉素酰化酶和TNF、IL-2等基因工程菌在低氧条件下细胞生长和产物表达的状况,由于vgb基因的表达降低了细胞对氧的敏感程度,可望运用它来改善发酵过程中溶氧控制裕度。这些实验结果预示着vgb基因在耗氧生物过程中,如抗生素工业和基因工程菌高密度发酵,有着良好的应用前景。  相似文献   

17.
In high cell density cultivation processes the productivity is frequently constrained by the bioreactor maximum oxygen transfer capacity. The productivity can often be increased by operating the process at low dissolved oxygen concentrations close to the limitation level. This may be accomplished with a closed-loop controller that regulates the dissolved oxygen concentration by manipulating the dominant carbon source feeding rate. In this work we study this control problem in a pilot 50l bioreactor with a high cell density recombinant P. pastoris cultivation in complex media. The study focuses on the design of accurate stable adaptive controllers, with guaranteed exponential convergence and its relation with the calibration of controller parameters. Two adaptive control strategies were tested in the pilot bioreactor: a model reference adaptive controller with a linear reference model and an integral feedback controller with adaptive gain. The latter alternative proved to be more robust to errors in the measurements of the off-gas composition. Concerning the instrumentation, algorithms were derived assuming that both the dissolved oxygen tension and off-gas composition are measured on-line, but also the case of only dissolved oxygen being measured is addressed. It was verified that the measurement of off-gas composition might not improve the controller performance due to measurement and process time delays.  相似文献   

18.
A fed-batch culture strategy for the production of recombinant Escherichia coli cells anchoring surface-displayed transglucosidase for use as a whole-cell biocatalyst for α-arbutin synthesis was developed. Lactose was used as an inducer of the recombinant protein. In fed-batch cultures, dissolved oxygen was used as the feed indicator for glucose, thus accumulation of glucose and acetate that affected the cell growth and recombinant protein production was avoided. Fed-batch fermentation with lactose induction yielded a biomass of 18 g/L, and the cells possessed very high transglucosylation activity. In the synthesis of α-arbutin by hydroquinone glucosylation, the whole-cell biocatalysts showed a specific activity of 501 nkat/g cell and produced 21 g/L of arbutin, which corresponded to 76% molar conversion. A sixfold increased productivity of whole cell biocatalysts was obtained in the fed-batch culture with lactose induction, as compared to batch culture induced by IPTG.  相似文献   

19.
The cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus NCIMB 9871 has been cloned into Escherichia coli in an L-arabinose inducible vector. The recombinant E. coli containing the L-arabinose inducible CHMO was grown at 1.5 litres under controlled conditions to determine the parameters for growth and induction. It was found that induction with 0.1% (w/v) L-arabinose at late logarithmic phase of growth and growth for a further 2.5 to 3 h gave the optimal CHMO titre ( approximately 3500 U.l(-1,) 630 U. g dry cell weight(-1)). High dissolved oxygen concentrations were shown to be deleterious to the CHMO titre. This influenced the strategy for growth and induction, and was optimal when the oxygen uptake rate was maximized but the dissolved oxygen concentration was zero. Finally, a 300 litre scale fermentation was carried out giving a total CHMO titre of >8 x 10(5) U.  相似文献   

20.
Although Litopenaeus vannamei is a widely studied species, the information on how the organisms respond to natural daily variations of environmental conditions such as temperature and dissolved oxygen, and how such conditions alter the physiological responses, is scarce. In the present work, the strategies used by shrimps to cope with temperature and dissolved oxygen fluctuations during 24 days were investigated through the evaluation of oxygen consumption and heat shock proteins (HSP) gene expression. During daily fluctuations, no change in oxygen consumption in the short-term, but a significant increase in the long-term during hyperthermia conditions was registered, whereas a significant decrease during hypoxia was observed during all the bioassay. On the other hand, HSP70 and HSP90 gene expression increased in gills under thermal stress but was down-regulated under hypoxia, in both the short- and the long-term. This study highlights that to counteract environmental variations of temperature and dissolved oxygen, the shrimps use molecular compensatory mechanisms (HSP gene expression) that are different to those used under constant hypoxic conditions, suggesting that hypoxia can compromise physiological cytoprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号