首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smith VA 《Plant physiology》1992,99(2):372-377
A comparative study of the metabolism of radiolabeled gibberellin (GA) 1, 19, and 20 in isolated vegetative tissues of isogenic Le and le pea (Pisum sativum) plants incubated in vitro with the appropriate GA substrate is described. The results of this study provide evidence that the enzymes involved in the latter stages of GA biosynthesis are spatially separated within the growing pea plant. Apical buds were not apparently involved in the production of bioactive GA1 or its immediate precursors. The primary site of synthesis of GA20 from GA19 was immature leaflets and tendrils, and the synthesis of bioactive GA1 and its inactive catabolite GA8 occurred predominantly in stem tissue. GA29, the inactive catabolite of GA20, was produced to varying extents in all the tissues examined. Little or no difference was observed in the ability of corresponding Le and le tissues to metabolize radiolabeled GA1, GA19, or even GA20. During a fixed period of 24 hours, stems of plants carrying the le mutation produced slightly more [3H]GA1 (and [3H]GA29) than those of Le plants. It has been concluded that the le mutation does not lie within the gene encoding the GA20 3β-hydroxylase protein.  相似文献   

2.
V. M. Sponsel 《Planta》1986,168(1):119-129
The stem growth in darkness or in continuous red light of two pea cultivars, Alaska (Le Le, tall) and Progress No. 9 (le le, dwarf), was measured for 13 d. The lengths of the first three internodes in dark-grown seedlings of the two cultivars were similar, substantiating previous literature reports that Progress No. 9 has a tall phenotype in the dark. The biological activity of gibberellin A20 (GA20), which is normally inactive in le le geno-types, was compared in darkness and in red light. Alaska seedlings, regardless of growing conditions, responded to GA20. Dark-grown seedlings of Progress No. 9 also responded to GA20, although red-light-grown seedlings did not. Gibberellin A1 was active in both cultivars, in both darkness and red light. The metabolism of [13C3H]GA20 has also been studied. In dark-grown shoots of Alaska and Progress No. 9 [13C3H]GA20 is converted to [13C3H]GA1, [13C3H]GA8, [13C]GA29, its 2-epimer, and [13C3H]GA29-catabolite. [13C3H] Gibberellin A1 was a minor product which appeared to be rapidly turned over, so that in some feeds only its metabolite, [13C3H]GA8, was detected. However results do indicate that the tall growth habit of Progress No. 9 in the dark, and its ability to respond to GA20 in the dark may be related to its capacity to 3-hydroxylate GA20 to give GA1. In red light the overall metabolism of [13C3H]GA20 was reduced in both cultivars. There is some evidence that 3-hydroxylation of [13C3H]GA20 can occur in red light-grown Alaska seedlings, but no 3-hydroxylated metabolites of [13C3H]GA20 were observed in red light-grown Progress. Thus the dwarf habit of Progress No. 9 in red light and its inability to respond to GA20 may be related, as in other dwarf genotypes, to its inability to 3-hydroxylate GA20 to GA1. However identification and quantification of native GAs in both cultivars showed that red-light-grown Progress does contain native GA1. Thus the inability of red light-grown Progress No. 9 seedlings to respond to, and to 3-hydroxylate, applied GA20 may be due to an effect of red light on uptake and compartmentation of GAs.Abbreviations AMO-1618 2-isopropyl-4-(trimethylammonium chloride)-5-methylphenyl piperidine-1-carboxylate - cv. cultivar - GC-MS gas chromatography-mass spectrometry - GA(n) gibberellin A(n) - HPLC high-pressure liquid chromatography  相似文献   

3.
The effect of light on the dwarfing allele, le, in Pisum sativum L. was tested as the growth response to gibberellins prior to or beyond the presumed block in the gibberellin biosynthetic pathway. The response to the substrate (GA20), the product (GA1), and a nonendogenous early precursor (steviol) was compared in plants bearing the normal Le and the deficient lele genotypes in plants made low in gibberellin content genetically (nana lines) or by paclobutrazol treatment to tall (cv Alaska) and dwarf (cv Progress) peas. Both genotypes responded to GA1 under red irradiation and in darkness. The lele plants grew in response to GA20 and steviol in darkness but showed a much smaller response when red irradiated. The Le plants responded to GA20 and steviol in both light and darkness. The red effects on lele plants were largely reversible by far-red irradiation. It is concluded that the deficiency in 3β-hydroxylation of GA20 to GA1 in genotype lele is due to a Pfr-induced blockage in the expression of that activity.  相似文献   

4.
The effect of application of GA3 on hypocotyl growth, the endogenous GAs, and the metabolism of applied 3H-GA1 were investigated in relation to dwarfism and light-mediated growth inhibition in the normal (tall) strain Violet and the dwarf strain Kidachi of Japanese morning glory (Pharbitis nil). GA3 applied in a wide concentration range (10−9 to 10−3m) to 4-day-old seedlings caused great extension of the hypocotyls in light-grown plants of both the normal and the dwarf strain. However, the dwarf strain did not attain the same length as the normal one at any given GA3 concentration, even when saturation was reached. Dark-grown plants of the dwarf strain responded to GA3, although relatively much less than light-grown ones; dark-grown plants of the normal strain showed no GA3 response at all.  相似文献   

5.
The metabolism and growth-promoting activity of gibberellin A20 (GA20) were compared in the internode-length genotypes of pea, na le and na Le. Gibberellin A29 and GA29-catabolite were the major metabolites of GA20 in the genotype na le. However, low levels of GA1, GA8 and GA8-catabolite were also identified as metabolites in this genotype, confirming that the le allele is a leaky mutation. Gibberellin A20 was approximately 20 to 30 times as active in promoting internode growth of genotype na Le as of genotype na le. However, the levels of the 3-hydroxylated metabolite of GA20, GA8 (2-hydroxy GA1), were similar for a given growth response in both genotypes. In each case a close linear relationship was observed between internode growth and the logarithm of GA8 levels. A similar relationship was found on comparing GA20 metabolism in the three genotypes le d, le and Le. The former mutation results in a more severe dwarf phenotype than the le allele (which has previously been shown to reduce the 3-hydroxylation of GA20 to GA1). These results indicate that GA20 has negligible intrinsic activity and support the contention that GA1 is the only GA active per se in promoting stem growth in pea.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

6.
[17-13C,3H]-Labeled gibberellin A20 (GA20), GA5, and GA1 were fed to homozygous normal (+/+), heterozygous dominant dwarf (D8/+), and homozygous dominant dwarf (D8/D8) seedlings of Zea mays L. (maize). 13C-Labeled GA29, GA8, GA5, GA1, and 3-epi-GA1, as well as unmetabolized [13C]GA20, were identified by gas chromatography-selected ion monitoring (GC-SIM) from feeds of [17-13C, 3H]GA20 to all three genotypes. 13C-Labeled GA8 and 3-epi-G1, as well as unmetabolized [13C]GA1, were identified by GC-SIM from feeds of [17-13C, 3H]GA1 to all three genotypes. From feeds of [17-13C, 3H]GA5, 13C-labeled GA3 and the GA3-isolactone, as well as unmetabolized [13C]GA5, were identified by GC-SIM from +/+ and D8/D8, and by full scan GC-MS from D8/+. No evidence was found for the metabolism of [17-13C, 3H]GA5 to [13C]GA1, either by full scan GC-mass spectrometry or by GC-SIM. The results demonstrate the presence in maize seedlings of three separate branches from GA20, as follows: (a) GA20 → GA1 → GA8; (b) GA20 → GA5 → GA3; and (c) GA20 → GA29. The in vivo biogenesis of GA3 from GA5, as well as the origin of GA5 from GA20, are conclusively established for the first time in a higher plant (maize shoots).  相似文献   

7.
Metabolism of tritiated gibberellin a(20) in maize   总被引:6,自引:5,他引:1       下载免费PDF全文
After the application of 2.36 Curies per millimole [2,3-3H]gibberellin A20 (GA20) to 21-day-old maize (Zea mays L., hybrid CM7 × CM49) plants, etiolated maize seedlings, or maturing maize cobs, a number of 3H-metabolites were observed. The principal acidic (pH 3.0), ethyl acetate-soluble metabolite was identified as [3H]GA1 on the basis of co-chromatography with standard [3H]GA1 on SiO2 partition, high resolution isocratic elution reverse phase C18 high performance liquid chromatography and gas-liquid chromatography radiocounting. Two other acidic metabolites were identified similarly as [3H]GA8 and C/D ring-rearranged [3H]GA20, although gas-liquid chromatography radiocounting was not performed on these metabolites. Numerous acidic, butanol-soluble (e.g. ethyl acetate-insoluble) metabolites were observed with retention times on C18 high performance liquid chromatography radiocounting similar to those of authentic glucosyl conjugates of GA1 and GA8, or with retention times where conjugates of GA20 would be expected to elute. Conversion to [3H]GA1 was greatest (23% of methanol extractable radioactivity) in 21-day-old maize plants. In etiolated maize seedlings, the C/D ring-rearranged [3H]GA20-like metabolite was the major acidic product, while conversion to [3H]GA1 was low.  相似文献   

8.
《Phytochemistry》1986,25(8):1823-1828
A series of chromatographic and derivatization techniques has been developed for the identification of radiolabelled gibberellin (GA) conjugates. The methods are based on reversed-phase HPLC, gel permeation chromatography, anion-exchange chromatography, enzymatic hydrolysis and transesterification of conjugates, and derivatization of free GAs to methoxycoumaryl esters. The procedures have been used to identify GA4-glucosyl ester, GA4-3-O-glucoside, a GA34-O-glucoside and GA8-2-O-glucoside, in addition to GA1 and GA8, as products of [1,2-3H]GA4 metabolism in shoots of light-grown Phaseolus coccineus seedlings.  相似文献   

9.
John L. Stoddart 《Planta》1984,161(5):432-438
Growth parameters were determined for tall (rht3) and dwarf (Rht3) seedlings of wheat (Triticum aestivum L.). Plant statures and leaf length were reduced by 50% in dwarfs but root and shoot dry weights were less affected. Leaves of dwarf seedlings had shorter epidermal cells and the numbers of cells per rank in talls and dwarfs matched the observed relationships in overall length. Talls grew at twice the rate of dwarfs (2.3 compared with 1.2 mm h-1). [3H]Gibberellin A1 ([3H]GA1) was fed to seedlings via the third leaf and metabolism was followed over 12 h. Immature leaves of tall seedlings transferred radioactivity rapidly to compounds co-chromatographing with [3H]gibberellin A8 ([3H]GA8) and a conjugate of [3H]GA8, whereas leaves of dwarf seedlings metabolised [3H]GA1 more slowly. Roots of both genotypes produced [3H]GA8-like material at similar rates. Isotopic dilution studies indicated a reduced 2-hydroxylation capacity in dwarfs, but parallel estimates of the endogenous GA pool size, obtained by radioimmunoassay, indicated a 12–15 times higher level of GA in the dwarf immature leaves. Dwarfing by the Rht3 gene does not appear to operate through enhanced, or abnormal metabolism of active gibberellins and the act of GA metabolism does not bear an obligate relationship to the growth response.Abbreviations GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

10.
Valerie A. Smith 《Planta》1993,191(2):158-165
The physiological and biochemical consequences of treating Le (tall) and le (dwarf) pea seedlings with varying quantities of the gibberellins [3H]GA20 and GA1 have been investigated. Although the percentage uptake of these compounds from the site of application on the 3 stipules was low and most of the applied GA remained unmetabolised in situ, the quantitative relationship between GA translocation and GA dosage was found to be linear for GA1 but saturating for GA20. The movement of the GAs and their subsequently produced metabolites was mainly acropetal. They accumulated in greatest quantity in the apical extremities of the shoot. Overall, the extent to which GA20 was metabolished in le seedlings was considerably less than in Le pea seedlings. Although all le tissues contained significantly less [3H]GA1 than their Le counterparts, phenotypic effects of the le mutation were apparent only on internode and tendril development. Increased tissue growth, consequent upon GA treatment, was also apparent only in the internodes and tendrils of le plants. For internodes, GA1 content determined the mid-logarithmic-phase growth rate and, consequently, final length. For tendrils, GA20 rather than GA1 may be the primary stimulatory agent.Abbreviations GA gibberellin - HPLC high-performance liquid chromatography - 1–6 consecutive developmental numbering system for plant tissues/organs as shown in Fig. 1 The author gratefully acknowledges financial support from Imperial Chemical Industries, Plant Protection, Jealott's Hill, Bracknell, Berks., UK and the Science and Engineering Research Council.  相似文献   

11.
The concentrations of endogenous gibberellin (GA) 1, 5, 8, 19, 20, and 29 in the component tissues of maturing tall (Le) and dwarf (le) pea (Pisum sativum) plants have been determined. The following conclusions were drawn from the data obtained: (a) GA20 and its metabolites accumulate only in the growing regions of Le and le plants; (b) the le mutation is biochemically expressed in all immature tissues of the dwarf plants; (c) the quantitative composition of the GA metabolites in the various immature tissues is variable; (d) the total GA concentration in apical buds, unexpanded leaves, and tendrils is considerably higher than in GA1-responsive stem tissue; and (e) there is very little GA accumulation of the inactive 2β-hydroxylated GAs (GA8 and GA29) in either the mature vegetative tissues or the roots of pea plants.  相似文献   

12.
Application experiments have suggested that short‐day‐induced cessation of elongation growth in trees is caused by photoperiodic regulation of the conversion of gibberellin GA19 to GA20. In the present study we examined further the photoperiodic control of GA metabolism in trees with focus on the conversion of GA19 in Salix pentandra, hybrid aspen (Populus tremula × tremuloides) and silver birch (Betula pendula) using [17,17‐2H2]‐GA19 or unlabelled GAs in application studies. GA20 and GA1 were able to restore growth also in hybrid aspen and silver birch under short days (SD), whereas GA19 had no or only a very small activity. Contrary to hybrid aspen and S. pentandra, the activity of GA20 in silver birch was significantly lower than that of GA1. Gas chromatography‐mass spectrometry (GC‐MS) analysis revealed a smaller turnover of [2H2]‐GA19 in SD than in long days (LD) in hybrid aspen. No such difference in turnover of [2H2]‐GA19 was observed in photoperiod‐insensitive hybrid aspen overexpressing PHYA. Application of unlabelled GAs to seedlings of S. pentandra, hybrid aspen and silver birch under SD followed by quantification of metabolites by GC‐MS analysis, showed that applied GA19 was not readily converted to GA20 and GA1. Although the sensitivity to GAs is also known to decrease under SD, the present data are in favour of a photoperiodic regulation of the metabolism of GA19in vivo in the woody species S. pentandra, hybrid aspen and silver birch. The data might also suggest that silver birch differs from S. pentandra and hybrid aspen by exhibiting a possible photoperiodic control also of the conversion of GA20 to GA1.  相似文献   

13.
Application of gibberellin A53 (GA53) to short-day (SD)-grown spinach (Spinacia oleracea L.) plants caused an increase in petiole length and leaf angle similar to that found in plants transferred to long days (LD). [2H] GA53 was fed to plants in SD, LD, and in a SD to LD transition experiment, and the metabolites were identified by gas chromatography with selected ion monitoring. After 2, 4, or 6 SD, [2H]GA53 was converted to [2H]GA19 and [2H]GA44. No other metabolites were detected. After 2 LD, only [2H] GA20 was identified. In the transition experiment in which plants were given 4 SD followed by 2 LD, all three metabolites were found. The results demonstrate unequivocally that GA19, GA20, and GA44 are metabolic products of GA53, and strongly suggest that photoperiod regulates GA metabolism, in part, by controlling the conversion of GA19 to GA20.  相似文献   

14.
We examined the gibberellin (GA) and ethylene regulation of submergence-induced elongation in seedlings of the submergence-tolerant lowland rice (Oryza sativa L.) cvs Senia and Bomba. Elongation was enhanced after germination to facilitate water escape and reach air. We found that submergence-induced elongation depends on GA because it was counteracted by paclobutrazol (an inhibitor of GA biosynthesis), an effect that was negated by GA3. Moreover, in the cv Senia, submergence increased the content of active GA1 and its immediate precursors (GA53, GA19 and GA20) by enhancing expression of several GA biosynthesis genes (OsGA20ox1 and -2, and OsGA3ox2), but not by decreasing expression of several OsGA2ox (GA inactivating genes). Senia seedlings, in contrast to Bomba seedlings, did not elongate in response to ethylene or 1-aminocyclopropane-1-carboxylic-acid (ACC; an ethylene precursor) application, and submergence-induced elongation was not reduced in the presence of 1-methylcyclopropene (1-MCP; an ethylene perception inhibitor). Ethylene emanation was similar in Senia seedlings grown in air and in submerged-grown seedlings following de-submergence, while it increased in Bomba. The expression of ethylene biosynthesis genes (OsACS1, -2 and -3, and OsACO1) was not affected in Senia, but expression of OsACS5 was rapidly enhanced in Bomba upon submergence. Our results support the conclusion that submergence elongation enhancement of lowland rice is due to alteration of GA metabolism leading to an increase in active GA (GA1) content. Interestingly, in the cv Senia, in contrast to cv Bomba, this was triggered through an ethylene-independent mechanism.  相似文献   

15.
Cell-free preparations from seeds of Marah macrocarpus L. and Malus domestica L. catalyzed the conversion of gibberellin A9 (GA9) and 2,3-dehydroGA9 to GA7; GA9 was also metabolized to GA4 in a branch pathway. The preparation from Marah seeds also metabolized GA5 to GA3 in high yield; GA6 was a minor product and was not metabolized to GA3. Using substrates stereospecifically labeled with deuterium, it was shown that the metabolism of GA5 to GA3 and of 2,3-dehydroGA9 to GA7 occurs with the loss of the 1β-hydrogen. In cultures of Gibberella fujikuroi, mutant B1-41a, [1β,2β-2H2]GA4, was metabolized to [1,2-2H2]GA3 with the loss of the 1α- and 2α-hydrogens. These results provide further evidence that the biosynthetic origin of GA3 and GA7 in higher plants is different from that in the fungus Gibberella fujikuroi.  相似文献   

16.
The application of gibberellin A4/7 (GA4/7) to the stem of previous-year (1-year-old) terminal shoots of Scots pine (Pinus sylvestris) seedlings has been observed to stimulate cambial growth locally, as well as at a distance in the distal current-year terminal shoot, but the distribution and metabolic fate of the applied GA4/7, as well as the pathway of endogenous GA biosynthesis in this species, has not been investigated. As a first step, we analysed for endogenous GAs and monitored the transport and metabolism of labelled GAs 4, 9 and 20. Endogenous GAs from the elongating current-year terminal shoot of 2-year-old seedlings were purified by column chromatography and high-performance liquid chromatography and analysed by combined gas chromatography-mass spectrometry (GC-MS). GAs 1, 3, 4, 9, 12 and 20 were identified in the stem, and GAs 1, 3 and 4 in the needles, by full-scan mass spectrometry (GAs 1, 3, 4, 9 and 12) or selected-ion monitoring (GA20) and Kovats retention index. Tritiated and deuterated GA4, GA9 or GA20 were applied around the circumference at the midpoint of the previous-year terminal shoot, and metabolites were extracted from the elongating current-year terminal shoot, the application point, and the 1-year-old needles and the cambial region above and below the application point. After purification, detection by liquid scintillation spectrometry and analysis by GC-MS, it was evident that, for each applied GA, unmetabolised [2H2]GA and [3H]radioactivity were present in every seedling part analysed. Most of the radioactivity was retained at the application point when [3H]GA9 and [3H]GA20 were applied, whereas the largest percentage of radioactivity derived from [3H]GA4 was recovered in the current-year terminal shoot. It was also found that [2H2]GA9 was converted to [2H2]GA20 and to both [2H2]GA4 and [2H2]GA1, [2H2]GA4 was metabolised to [2H2]GA1, and [2H2]GA20 was converted to [2H2]GA29. The data indicate that for Pinus sylvestris shoots (1) GAs applied laterally to the outside of the vascular system of previous-year shoots not only are absorbed and translocated extensively throughout the previous-year and current-year shoots, but also are readily metabolised, (2) the GA metabolic pathways found are closely related to the endogenous GAs identified, and (3) GA9 metabolism follows two distinctly different routes: in one, GA9 is converted to GA1 through GA4, and in the other it is converted to GA20, which is then metabolised to GA29. The results suggest that the late 13-hydroxylation pathway is an important route for GA biosynthesis in shoots of Pinus sylvestris, and that the stimulation of cambial growth in Scots pine by exogenous GA4/7 may be due to its conversion to GA1, rather than to it being active per se.  相似文献   

17.
Gibberellins A19, A20, and A1 were applied to seedlings of birch (Betula pubescens Ehrh.) and alder (Alnus glutinosa (L.) Gaertn.) in order to test their ability to counteract growth inhibition induced by growth retardants (ancymidol and BX-112) or short day (SD, 12 h) photoperiod. Ancymidol inhibits early and BX-112 inhibits late steps in gibberellin biosynthesis. BX-112 inhibited stem elongation in both species while ancymidol, applied as a soil drench, was effective in alder only. Growth retardants affected stem elongation mainly by inhibiting elongation of internodes. All three gibberellins were equally active when applied to seedlings treated with ancymidol; however, only GA1 was able to counteract the growth inhibition induced by BX-112. SD-induced cessation of elongation growth in birch was counteracted by GA1, and to some degree, by GA20, while GA19 was inactive. SD treatment did not induce cessation of apical growth in alder. These results are consistent with the hypothesis that of gibberellins belonging to the early C-13 hydroxylation pathway, GA1 is the only active gibberellin for stem elongation.  相似文献   

18.
Four gibberellins, GA53, GA19, GA20, and GA1, were detected by bioassay, chromatography in two HPLC systems, and combined gas chromatography-mass spectroscopy-selected ion monitoring (GC-MS-SIM) in etiolated soybean (Glycine max [L.] Merr.) hypocotyls. GC-MS-SIM employed [2H2]-labeled standards for each endogenous gibberellin detected, and quantities estimated from bioassays and GC-MS-SIM were similar. This result plus the tentative detection of GA44 and GA8 (standards not available) indicates that the early-C-13-hydroxylation pathway for gibberellin biosynthesis predominates in soybean hypocotyls. Other gibberellins were not detected. Growth rates decreased after transfer to low water potential (ψw) vermiculite and were completely arrested 24 hours after transfer. The GA1 content in the elongating region of hypocotyls had declined to 38% of the 0 time value at 24 hours after transfer to low ψw vermiculite, a level which was only 13% of the GA1 content in control seedlings at the same time (24 hours posttransfer). Rewatering seedlings following 24 hours growth in low ψw vermiculite resulted in a complete recovery in elongation rate, an increase in GA1 (20% at 2 hours, two-fold at 8 hours, eightfold at 24 hours), and a decrease in ABA levels (tenfold at 2 hours). Treatment of well-watered seedlings with the GA-synthesis inhibitor tetcyclacis (TCY) resulted in lowered GA1 levels and increased ABA levels. When seedlings grown 24 hours in low ψw vermiculite were rewatered with TCY, recovery of the elongation rate was delayed and reduced, and the decline in ABA levels was slowed. Addition of GA3 restored the elongation rate inhibited by TCY. Seedlings were growth responsive to exogenous GA3, and this GA3-promoted growth was inhibited by exogenous ABA. The data are consistent with the hypothesis that changes in GA1 and ABA levels play a role in adjusting hypocotyl elongation rates. However, the changes observed are not of sufficient magnitude nor do they occur rapidly enough to suggest they are the primary regulators of elongation rate responses to rapidly changing plant water status.  相似文献   

19.
Auxin-Gibberellin Interactions in Pea: Integrating the Old with the New   总被引:4,自引:1,他引:3  
Recent findings on auxin-gibberellin interactions in pea are reviewed, and related to those from studies conducted in the 1950s and 1960s. It is now clear that in elongating internodes, auxin maintains the level of the bioactive gibberellin, GA1, by promoting GA1 biosynthesis and by inhibiting GA1 deactivation. These effects are mediated by changes in expression of key GA biosynthesis and deactivation genes. In particular, auxin promotes the step GA20 to GA1, catalyzed by a GA 3-oxidase encoded by Mendel’s LE gene. We have used the traditional system of excised stem segments, in which auxin strongly promotes elongation, to investigate the importance for growth of auxin-induced GA1. After excision, the level of GA1 in wild-type (LE) stem segments rapidly drops, but the auxin indole-3-acetic acid (IAA) prevents this decrease. The growth response to IAA was greater in internode segments from LE plants than in segments from the le-1 mutant, in which the step GA20 to GA1 is impaired. These results indicate that, at least in excised segments, auxin partly promotes elongation by increasing the content of GA1. We also confirm that excised (light-grown) segments require exogenous auxin in order to respond to GA. On the other hand, decapitated internodes typically respond strongly to GA1 application, despite being auxin-deficient. Finally, unlike the maintenance of GA1 content by auxin, other known relationships among the growth-promoting hormones auxin, brassinosteroids, and GA do not appear to involve large changes in hormone level.  相似文献   

20.
Recently developed techniques have been used to reinvestigate the mechanism by which gibberellic acid (GA3) stimulates elongation of light-grown cucumber (Cucumis sativus L.) seedlings. Osmotic pressure and turgor pressure were slightly reduced in GA3-treated seedlings, which elongated 3.5 times faster than control seedlings. This indicated that GA3 enhancement of growth was not controlled by changes in the osmotic properties of the tissues. Stress/strain (Instron) analysis revealed that plastic extension of the cell walls of GA3-treated seedlings increased by up to 35% above the control values. Stress-relaxation measurements on frozen-thawed tissue showed that T0 the minimum relaxation time, was reduced following application of GA3. In vivo wall relaxation (measured by the pressure block technique) showed that the wall yield coefficient was increased, and the yield threshold was slightly reduced. Thus GA3 affected both the mechanical (viscoelastic) and biochemical (chemorheological) properties of the cell walls of light-grown cucumber. The previous hypothesis, that GA3 stimulates cucumber hypocotyl growth by increasing osmotic pressure and cell turgor, is contradicted by our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号