首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synphilin-1 was described as a protein interacting with α-synuclein and is commonly found in Lewy bodies, the pathological hallmark of Parkinson's disease (PD). Our group has previously described and characterized in vitro a mutation in the synphilin-1 gene (R621C) in PD patients. Providing the first characterization of synphilin-1 expression in an animal model, we here used adenoviral gene transfer to study the effects of wild-type (WT) and R621C synphilin-1 in dopaminergic neurons in mouse brain. As synphilin-1 is commonly used to trigger aggregation of α-synuclein in cell culture, we investigated not only non-transgenic C57Bl/6 mice but also A30P-α-synuclein transgenic animals. Both WT synphilin-1 and R621C synphilin-1 led to the formation of Thioflavine-S positive inclusions in C57Bl/6 mice and degeneration of dopaminergic neurons in the substantia nigra. R621C synphilin-1 induced more aggregate formation than WT synphilin-1 in A30P-α-synuclein transgenic mice, consistent with the role of the R621C mutation as a susceptibility factor for PD. Synphilin-1 expression may be used to improve current mouse models of PD, as it induced both the formation of aggregates and degeneration of dopaminergic neurons, two core characteristics of PD that have not been well reproduced with expression of α-synuclein.  相似文献   

2.
《Autophagy》2013,9(3):372-374
α-synuclein is mutated in Parkinson's disease (PD) and is found in cytosolic inclusions, called Lewy bodies, in sporadic forms of the disease. A fraction of α-synuclein purified from Lewy bodies is monoubiquitinated, but the role of this monoubiquitination has been obscure. We now review recent data indicating a role of α-synuclein monoubiquitination in Lewy body formation and implicating the autophagic pathway in regulating these processes. The E3 ubiquitin-ligase SIAH is present in Lewy bodies and monoubiquitinates α-synuclein at the same lysines that are monoubiquitinated in Lewy bodies. Monoubiquitination by SIAH promotes the aggregation of α-synuclein into amorphous aggregates and increases the formation of inclusions within dopaminergic cells. Such effect is observed even at low monoubiquitination levels, suggesting that monoubiquitinated α-synuclein may work as a seed for aggregation. Accumulation of monoubiquitinated α-synuclein and formation of cytosolic inclusions is promoted by autophagy inhibition and to a lesser extent by proteasomal and lysosomal inhibition. Monoubiquitinated α-synuclein inclusions are toxic to cells and recruit PD-related proteins, such as synphilin-1 and UCH-L1. Altogether, the new data indicate that monoubiquitination might play an important role in Lewy body formation. Decreasing α-synuclein monoubiquitination, by preventing SIAH function or by stimulating autophagy, constitutes a new therapeutic strategy for Parkinson's disease.

Addendum to: Rott R, Szargel R, Haskin J, Shani V, Shainskaya A, Manov I, Liani E, Avraham E, Engelender S. Monoubiquitination of α-synuclein by SIAH promotes its aggregation in dopaminergic cells. J Biol Chem 2007; Epub ahead of print.  相似文献   

3.
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder beyond Alzheimer’s disease, affecting approximately 1% of people over the age of 65. The major pathological hallmarks of PD are significant loss of nigrostriatal dopaminergic (DA) neurons and the presence of intraneuronal protein inclusions termed Lewy bodies. Sporadic cases represent more than 90% of total patients with PD, while there exist several inherited forms caused by mutations in single genes. Identification and characterization of these causative genes and their products can help us understand the molecular mechanisms of DA neuronal cell death and design new approaches to treat both the inherited and sporadic forms of PD. Based on the finding that a point mutation in the gene encoding α-synuclein (αSyn) protein causes a rare familial form of PD, PARK1, it is now confirmed that αSyn is a major component of Lewy bodies in patients with sporadic PD. Abnormal accumulation of αSyn protein is considered a neurotoxic event in the development of PD. PARK4, another dominantly inherited form of familial PD, is caused by duplication or triplication of the αSyn gene locus. This genetic mutation results in the production of large amounts of wild-type αSyn protein, supporting the αSyn-induced neurodegeneration hypothesis. On the other hand, the recessively inherited early-onset Parkinsonism is caused in about half of the cases with loss-of-function mutations in PARK2, which encodes E3 ubiquitin ligase parkin in the ubiquitin–proteasome system. These findings have shed light on DA neurodegeneration caused by accumulation of toxic protein species that can be degraded and/or detoxicated through parkin activity. In this review, we will focus on the regulatory roles of αSyn and parkin proteins in DA neuronal cell apoptosis and provide evidence for the possible therapeutic action of parkin in sporadic patients with PD.  相似文献   

4.
Deposition of fibrillar α-synuclein as Lewy bodies is the neuropathological hallmark of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Apart from α-synuclein, these intraneuronal inclusions contain over 250 different proteins. The actin binding protein gelsolin, has previously been suggested to be part of the Lewy body, but its potential role in α-synuclein aggregation remains unknown. Here, we studied the association between gelsolin and α-synuclein in brain tissue from PD and DLB patients as well as in a cell model for α-synuclein aggregation. Moreover, the potential effect of gelsolin on α-synuclein fibrillization was also investigated. Our data demonstrate that gelsolin co-occured with α-synuclein in Lewy bodies from affected human brain as well as with Lewy body-like inclusions in α-synuclein over expressing cells. Furthermore, in the presence of calcium chloride, gelsolin was found to enhance the aggregation rate of α-synuclein in vitro. Moreover, no apparent structural differences could be observed between fibrils formed in the presence or absence of gelsolin. Further studies on gelsolin and other Lewy body associated proteins are warranted to learn more about their potential role in the α-synuclein aggregation process.  相似文献   

5.
A hallmark of Parkinson disease (PD) is the formation of intracellular protein inclusions called Lewy bodies that also contain mitochondria. α-Synuclein (αSyn) is a major protein component of Lewy bodies, where it is in an amyloid conformation and a significant fraction is truncated by poorly understood proteolytic events. Previously, we demonstrated that the 20S proteasome cleaves αSyn in vitro to produce fragments like those observed in Lewy bodies and that the fragments accelerate the formation of amyloid fibrils from full-length αSyn. Three point mutations in αSyn are associated with early-onset familial PD: A30P, E46K, and A53T. However, these mutations have very different effects on the amyloidogenicity and vesicle-binding activity of αSyn, suggesting neither of these processes directly correlate with neurodegeneration. Here, we evaluate the effect of the disease-associated mutations on the fragmentation, conformation, and association reactions of αSyn in the presence of the 20S proteasome and liposomes. The 20S proteasome produced the C-terminal fragments from both the mutant and wildtype αSyn. These truncations accelerated fibrillization of all α-synucleins, but again there was no clear correlation between the PD-associated mutations and amyloid formation in the presence of liposomes. Recent data suggests that cellular toxicity is caused by a soluble oligomeric species, which is a precursor to the amyloid form and is immunologically distinguishable from both soluble monomeric and amyloid forms of αSyn. Notably, the rate of formation of the soluble, presumptively cytotoxic oligomers correlated with the disease-associated mutations when both 20S proteasome and liposomes were present. Under these conditions, the wildtype protein was also cleaved and formed the oligomeric structures, albeit at a slower rate, suggesting that 20S-mediated truncation of αSyn may play a role in sporadic PD as well. Evaluation of the biochemical reactions of the PD-associated α-synuclein mutants in our in vitro system provides insight into the possible pathogenetic mechanism of both familial and sporadic PD.  相似文献   

6.
帕金森病是一种常见的老年神经退行性疾病,其致病机理复杂.其中α-synuclein基因是较早发现的与帕金森病相关的基因,其编码的α-synuclein蛋白是帕金森病神经元内出现的一种蛋白包涵体结构——路易体的主要组成成分.最近的研究结果显示,α-synuclein蛋白存在不同聚集状态间的转换,其中聚集过程中形成的寡聚体中间构象具有较强的细胞毒性,可能对帕金森病的发病过程有着重要作用;而且这种聚集状态的转换过程受到多种遗传学与细胞学因素的影响,从而在某种程度上反映了帕金森病发生形成的遗传学与细胞学机制.本文将对α-synuclein蛋白聚集状态转换特性及其在帕金森病发病过程中作用机制方面的研究进展作一综述.  相似文献   

7.
Parkinson's disease (PD) is a common neurodegenerative disease of unknown etiology. Evidence suggests a role for protein misfolding in disease pathogenesis. One pathologic feature observed in dopaminergic neurons is the intracytoplasmic eosinophilic inclusions known as Lewy bodies. One component of Lewy bodies, the presynaptic protein, alpha-synuclein forms oligomers and higher order aggregates and is proposed to be involved in dopaminergic neuronal death. In an effort to discriminate between alpha-synuclein conformational forms as well as design potential disruptors of pathogenic misfolding we panned a human phage antibody library for anti-synuclein single chain antibodies (scFvs). We identified six scFvs which recognize different conformers of alpha-synuclein in both an ELISA and Western blot analysis. These scFvs may further our understanding of alpha-synuclein's role in PD.  相似文献   

8.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, defined by the presence of resting tremor, muscular rigidity, bradykinesia, and postural instability. PD is characterized by the progressive loss of dopaminergic neurons within the substantia nigra pars compacta of the midbrain. The neuropathological hallmark of the disease is the presence of intracytoplasmic inclusions, called Lewy bodies (LBs) and Lewy neurites (LNs), containing α-synuclein, a small protein which is widely expressed in the brain. The α-synuclein gene, SNCA, is located on chromosome 4q22.1; SNCA-linked PD shows an autosomal dominant inheritance pattern with a relatively early onset age, and it usually progresses rapidly. Three missense mutations, A53T, A30P, and E46K, in addition to gene multiplications of the SNCA have been described so far. Although it is clear that LBs and LNs contain mainly the α-synuclein protein, the mechanism(s) which leads α-synuclein to accumulate needs to be elucidated. The primary question in the molecular pathology of PD is how wild-type α-synuclein aggregates in PD, and which interacting partner(s) plays role(s) in the aggregation process. It is known that dopamine synthesis is a stressfull event, and α-synuclein expression somehow affects the dopamine synthesis. The aberrant interactions of α-synuclein with the proteins in the dopamine synthesis pathway may cause disturbances in cellular mechanisms. The normal physiological folding state of α-synuclein is also important for the understanding of pathological aggregates. Recent studies on the α-synuclein protein and genome-wide association studies of the α-synuclein gene show that PD has a strong genetic component, and both familial and idiopathic PD have a common denominator, α-synuclein, at the molecular level. It is clear that the disease process in Parkinson’s disease, as in other neurodegenerative disorders, is very complicated; there can be several different molecular pathways which are responsible for diverse and possibly also unrelated functions inside the neuron, playing roles in PD pathogenesis.  相似文献   

9.
Lewy bodies and Lewy neurites constitute the cardinal neuropathological features of both Parkinson's disease (PD) and Lewy body dementia (LBD). Whereas α-synuclein has been found to be the major component of the Lewy body, the mechanisms by which neurons degenerate, as well as basic mechanisms involved in the formation of α-synuclein-related inclusions, remain obscure. We have suggested previously that potential mechanisms are likely to leave a "molecular signature" or protein adduct within the Lewy body, and have found examples of such signatures in previous studies. In this study, we demonstrate increased FOXO3 in association with Lewy bodies and Lewy neurites in LBD and PD brain tissue. Since FOXO proteins are involved in several pathways responsible for the regulation of cell death, cell proliferation, and cell metabolism, the ectopic localization of FOXO3 to Lewy bodies provides evidence that aberrations in basic cellular biochemistry may contribute to inclusion formation, which is likely more complex than a simple "gain of function" toxicity as is commonly opined. In light of the known interaction of FOXO3 and 14-3-3, basic protein-protein interaction between these proteins and α-synuclein may be key.  相似文献   

10.
11.
Parkinson's disease (PD) is a common movement disorder marked by the loss of dopaminergic (DA) neurons in the brain stem and the presence of intraneuronal inclusions designated as Lewy bodies (LB). The cause of neurodegeneration in PD is not clear, but it has been suggested that protein misfolding and aggregation contribute significantly to the development of the disease. Misfolded and aggregated proteins are cleared by ubiquitin proteasomal system (UPS) and autophagy lysosomal pathway (ALP). Recent studies suggested that different types of ubiquitin linkages can modulate these two pathways in the process of protein degradation. In this study, we found that co-expression of ubiquitin can rescue neurons from α-syn-induced neurotoxicity in a Drosophila model of PD. This neuroprotection is dependent on the formation of lysine 48 polyubiquitin linkage which is known to target protein degradation via the proteasome. Consistent with our results that we observed in vivo , we found that ubiquitin co-expression in the cell can facilitate cellular protein degradation by the proteasome in a lysine 48 polyubiquitin-dependent manner. Taken together, these results suggest that facilitation of proteasomal protein degradation can be a potential therapeutic approach for PD.  相似文献   

12.
Classically, Parkinson's disease (PD) is linked to dopamine neuron death in the substantia nigra pars compacta. Intracytoplasmic protein inclusions named Lewy bodies, and corresponding Lewy neurites found in neuronal processes, are also key features of the degenerative process in the substantia nigra. The molecular mechanisms by which substantia nigra dopamine neurons die and whether the Lewy pathology is directly involved in the cell death pathway are open questions. More recently, it has become apparent that Lewy pathology gradually involves greater parts of the PD brain and is widespread in late stages. In this review, we first discuss the role of misfolded α-synuclein protein, which is the main constituent of Lewy bodies, in the pathogenesis of PD. We then describe recent evidence that α-synuclein might transfer between cells in PD brains. We discuss in detail the possible molecular mechanisms underlying the proposed propagation and the likely consequences for cells that take up α-synuclein. Finally, we focus on aspects of the pathogenic process that could be targeted with new pharmaceutical therapies or used to develop biomarkers for early PD detection.  相似文献   

13.
Parkinson's disease (PD) is characterized in part by the presence of α-synuclein (α-syn) rich intracellular inclusions (Lewy bodies). Mutations and multiplication of the α-synuclein gene ( SNCA ) are associated with familial PD. Since Ca2+ dyshomeostasis may play an important role in the pathogenesis of PD, we used fluorimetry in fura-2 loaded SH-SY5Y cells to monitor Ca2+ homeostasis in cells stably transfected with either wild-type α-syn, the A53T mutant form, the S129D phosphomimetic mutant or with empty vector (which served as control). Voltage-gated Ca2+ influx evoked by exposure of cells to 50 mM K+ was enhanced in cells expressing all three forms of α-syn, an effect which was due specifically to increased Ca2+ entry via L-type Ca2+ channels. Mobilization of Ca2+ by muscarine was not strikingly modified by any of the α-syn forms, but they all reduced capacitative Ca2+ entry following store depletion caused either by muscarine or thapsigargin. Emptying of stores with cyclopiazonic acid caused similar rises of [Ca2+]i in all cells tested (with the exception of the S129D mutant), and mitochondrial Ca2+ content was unaffected by any form of α-synuclein. However, only WT α-syn transfected cells displayed significantly impaired viability. Our findings suggest that α-syn regulates Ca2+ entry pathways and, consequently, that abnormal α-syn levels may promote neuronal damage through dysregulation of Ca2+ homeostasis.  相似文献   

14.
Parkinson disease (PD) is the second most common neurodegenerative disease characterized by a progressive dopaminergic neuronal loss in association with Lewy body inclusions. Gathering evidence indicates that α-synuclein (α-syn), a major component of the Lewy body, plays an important role in the pathogenesis of PD. Although α-syn is considered to be a cytoplasmic protein, it has been detected in extracellular biological fluids, including human cerebrospinal fluid and blood plasma of healthy and diseased individuals. In addition, a prion-like spread of α-syn aggregates has been recently proposed to contribute to the propagation of Lewy bodies throughout the nervous system during progression of PD, suggesting that the metabolism of extracellular α-syn might play a key role in the pathogenesis of PD. In the present study, we found that plasmin cleaved and degraded extracellular α-syn specifically in a dose- and time- dependent manner. Aggregated forms of α-syn as well as monomeric α-syn were also cleaved by plasmin. Plasmin cleaved mainly the N-terminal region of α-syn and also inhibited the translocation of extracellular α-syn into the neighboring cells in addition to the activation of microglia and astrocytes by extracellular α-syn. Further, extracellular α-syn regulated the plasmin system through up-regulation of plasminogen activator inhibitor-1 (PAI-1) expression. These findings help to understand the molecular mechanism of PD and develop new therapeutic targets for PD.  相似文献   

15.
Parkinson’s disease (PD) is characterized by the progressive degeneration of substantia nigra pars compacta (SNpc) dopaminergic neurones and the formation of Lewy bodies (LB) in a proportion of the remaining neurones. α-synuclein is the main component of LB, but the pathological mechanisms that lead to neurodegeneration associated with LB formation remain unclear. Three pivotal elements have emerged in the development of PD: α-synuclein, mitochondria and protein degradation systems. We previously reported a unique model, created by conditional genetic depletion of 26S proteasomes in the SNpc of mice, which mechanistically links these three elements with the neuropathology of PD: progressive neurodegeneration and intraneuronal inclusion formation. Using this model, we tested the hypothesis that α-synuclein was essential for the formation of inclusions and neurodegeneration caused by 26S proteasomal depletion. We found that both of these processes were independent of α-synuclein. This provides an important insight into the relationship between the proteasome, α-synuclein, inclusion formation and neurodegeneration. We also show that the autophagy-lysosomal pathway is not activated in 26S proteasome-depleted neurones. This leads us to suggest that the paranuclear accumulation of mitochondria in inclusions in our model may reflect a role for the ubiquitin proteasome system in mitochondrial homeostasis and that neurodegeneration may be mediated through mitochondrial factors linked to inclusion biogenesis.  相似文献   

16.
A common finding in many neurodegenerative diseases is the presence of inclusion bodies made of aggregated proteins in neurons of affected brain regions. In Parkinson's disease, the inclusion bodies are referred to as Lewy bodies and their main component is α-synuclein. Although many studies have suggested that inclusion bodies may be cell protective, it is still not clear whether Lewy bodies promote or inhibit dopaminergic cell death in Parkinson's disease. Synphilin-1 interacts with α-synuclein and is present in Lewy bodies. Accumulation of ubiquitylated synphilin-1 leads to massive formation of inclusion bodies, which resemble Lewy bodies by their ability to recruit α-synuclein. We have recently isolated an isoform of synphilin-1, synphilin-1A, that spontaneously aggregates in cells, and is present in detergent-insoluble fractions of brain protein samples from α-synucleinopathy patients. Synphilin-1A displays marked neuronal toxicity and, upon proteasome inhibition, accumulates into ubiquitylated inclusions with concomitant reduction of its intrinsic toxicity. The fact that α-synuclein interacts with synphilin-1A, and is recruited to synphilin-1A inclusion bodies in neurons together with synphilin-1, further indicates that synphilin-1A cell model is relevant for research on Parkinson's disease. Synphilin-1A cell model may help provide important insights regarding the role of inclusion bodies in Parkinson's disease and other neurodegenerative disorders.  相似文献   

17.
α-Synuclein is the main component of Lewy bodies, the intraneuronal inclusion bodies characteristic of Parkinson’s disease. Although α-synuclein accumulation is caused by inhibition of proteasome and autophagy-lysosome, the degradation of α-synuclein inclusions is still unknown. Formation of Lewy body-like inclusions can be replicated in cultured cells by introducing α-synuclein fibrils generated in vitro. We used this cell culture model to investigate the autophagy of α-synuclein inclusions and impaired mitochondria. The intracellular α-synuclein inclusions immediately underwent phosphorylation and ubiquitination. Simultaneously they were encircled by an adaptor protein p62/SQSTM1 and directed to the autophagy-lysosome pathway in HEK293 cell line. Most phospho-α-synuclein-positive inclusions were degraded in 24 h, however, lysosomal dysfunction with bafilomycin A1 significantly affected their clearance. Moreover, inhibition of autophagy by Atg-5 siRNA treatment reduced the incorporation of α-synuclein inclusions into LC3-positive autophagosomes. Knockdown experiments demonstrated the requirement of p62 for α-synuclein autophagy. These results demonstrate that α-synuclein inclusions are preferred targets for p62-dependent autophagy. Next, we investigated the autophagic clearance of impaired mitochondria in α-synuclein inclusion-containing cells. Impaired mitochondria were almost completely eliminated after mitochondrial uncoupling even in the presence of α-synuclein inclusions, suggesting that mitochondrial clearance is not prevented by α-synuclein inclusions in HEK293 cells.  相似文献   

18.
Parkinson disease (PD) is the most common movement disorder affecting people. It is characterized by the accumulation of the protein α-synuclein in Lewy body inclusions in vulnerable neurons. α-Synuclein overexpression caused by gene multiplications is sufficient to cause this disease, suggesting that α-synuclein accumulation is toxic. Here we review our recent study showing that α-synuclein inhibits autophagy. We discuss our mechanistic understanding of this phenomenon and also speculate how a deficiency in autophagy may contribute to a range of pleiotropic features of PD biology.  相似文献   

19.
《Autophagy》2013,9(4):429-431
Parkinson disease (PD) is the most common movement disorder affecting people. It is characterized by the accumulation of the protein α-synuclein in Lewy body inclusions in vulnerable neurons. α-Synuclein overexpression caused by gene multiplications is sufficient to cause this disease, suggesting that α-synuclein accumulation is toxic. Here we review our recent study showing that α-synuclein inhibits autophagy. We discuss our mechanistic understanding of this phenomenon and also speculate how a deficiency in autophagy may contribute to a range of pleiotropic features of PD biology.  相似文献   

20.
Aggregation of α-synuclein plays a crucial role in the pathogenesis of synucleinopathies, a group of neurodegenerative diseases including Parkinson disease (PD), dementia with Lewy bodies (DLB), diffuse Lewy body disease (DLBD) and multiple system atrophy (MSA). The common feature of these diseases is a pathological deposition of protein aggregates, known as Lewy bodies (LBs) in the central nervous system. The major component of these aggregates is α-synuclein, a natively unfolded protein, which may undergo dramatic structural changes resulting in the formation of β-sheet rich assemblies. In vitro studies have shown that recombinant α-synuclein protein may polymerize into amyloidogenic fibrils resembling those found in LBs. These aggregates may be uptaken and propagated between cells in a prion-like manner. Here we present the mechanisms and kinetics of α-synuclein aggregation in vitro, as well as crucial factors affecting this process. We also describe how PD-linked α-synuclein mutations and some exogenous factors modulate in vitro aggregation. Furthermore, we present a current knowledge on the mechanisms by which extracellular aggregates may be internalized and propagated between cells, as well as the mechanisms of their toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号