首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以纳豆芽孢杆菌BN-2-6为出发菌株,利用亚硝基胍(NTG)和N+注入复合诱变选育产维生素K2的突变株。经过NTG诱变后得到突变株BN-N30—1,其维生素K2的产量提高了53%,继而采用低能N+注入技术进行处理得到突变株BN-P15—11-1,维生素K2的产量比BN—N30—1提高了96%,比原始菌株提高了166%。结果表明,对纳豆芽孢杆菌BN-2-6进行NTG和低能N+注入复合诱变的效果明显,突变菌株维生素K2的产量显著提高。  相似文献   

2.
M Suh 《Journal of virology》1982,41(3):1095-1098
Transformation of hamster embryo cells by herpes simplex virus stimulated the production of a 35-kilodalton (35K) protein that was specifically immunoprecipitated, along with other polypeptides, by rabbit hyperimmune serum. This 35K polypeptide was further analyzed by partial digestion with Staphylococcus aureus V8 protease in parallel with a 35K polypeptide from herpes simplex virus type 2-infected cells. These polypeptides had almost identical partial-proteolytic cleavage maps, indicating that they are probably the same or that they are very similar polypeptides.  相似文献   

3.
Inward rectifier K(+) (Kir) channels are activated by phosphatidylinositol-(4,5)-bisphosphate (PIP(2)), but G protein-gated Kir (K(G)) channels further require either G protein βγ subunits (Gβγ) or intracellular Na(+) for their activation. To reveal the mechanism(s) underlying this regulation, we compared the crystal structures of the cytoplasmic domain of K(G) channel subunit Kir3.2 obtained in the presence and the absence of Na(+). The Na(+)-free Kir3.2, but not the Na(+)-plus Kir3.2, possessed an ionic bond connecting the N terminus and the CD loop of the C terminus. Functional analyses revealed that the ionic bond between His-69 on the N terminus and Asp-228 on the CD loop, which are known to be critically involved in Gβγ- and Na(+)-dependent activation, lowered PIP(2) sensitivity. The conservation of these residues within the K(G) channel family indicates that the ionic bond is a character that maintains the channels in a closed state by controlling the PIP(2) sensitivity.  相似文献   

4.
Gross cystic disease of the breast is one of the most common diseases of adult females. Breast cyst fluid contains various steroid hormones. In order to obtain more information about the concentrations of 4- and 5-ene steroids in human breast cyst fluids, levels of pregnenolone sulfate (PREGS), pregnenolone (PREG), dehydroepiandrosterone sulfate (DHEAS) and dehydroepiandrosterone (DHEA) were determined by high-performance liquid chromatography (HPLC). A total of 35 human breast cyst fluid samples, obtained from 35 patients (28-54 years old) were analyzed. Cyst fluid electrolytes were simultaneously determined. Levels of PREGS (mean+/-S.D.) were 26.9+/-20.0 micromol/l (N=35) and of PREG were <0.1 micromol/l. Levels of DHEAS and DHEA were 89.1+/-111.7 micromol/l (N=35) and 0.3+/-0.2 micromol/l (N=35), respectively. Cyst fluids were divided into two groups (types I and II) according to their electrolyte ratio (K(+)/Na(+)). The cysts of the type I group (K(+)/Na(+) >1.5) contained significantly higher levels of PREGS (39.9+/-21.1 micromol/l) and DHEAS (133.2+/-87.9 micromol/l) than those of the type II group (K(+)/Na(+) <1.5), the mean levels of which were 19.8+/-16.2 micromol/dl for PREGS, and 36.3+/-29.0 micromol/dl for DHEAS (P<0.05). PREGS and DHEAS levels in the cysts were significantly correlated (r=0.49; P<0.01). Human breast cyst fluids contain high concentration of DHEAS and PREGS, especially in the cyst fluids containing high K(+)/Na(+) ratios.  相似文献   

5.
The CMP-sialic acid transporter SLC35A1 and UDP-galactose transporter SLC35A2 are two well-characterized nucleotide sugar transporters with distinctive substrate specificities. Mutations in either induce congenital disorders of glycosylation. Despite the biomedical relevance, mechanisms of substrate specificity are unclear. To address this critical issue, we utilized a structure-guided mutagenesis strategy and assayed a series of SLC35A2 and SLC35A1 mutants using a rescue approach. Our results suggest that three pockets in the central cavity of each transporter provide substrate specificity. The pockets comprise (1) nucleobase (residues E52, K55, and Y214 of SLC35A1; E75, K78, N235, and G239 of SLC35A2); (2) middle (residues Q101, N102, and T260 of SLC35A1; Q125, N126, Q129, Y130, and Q278 of SLC35A2); and (3) sugar (residues K124, T128, S188, and K272 of SLC35A1; K148, T152, S213, and K297 of SLC35A2) pockets. Within these pockets, two components appear to be especially critical for substrate specificity. Y214 (for SLC35A1) and G239 (for SLC35A2) in the nucleobase pocket appear to discriminate cytosine from uracil. Furthermore, Q129 and Q278 of SLC35A2 in the middle pocket appear to interact specifically with the β-phosphate of UDP while the corresponding A105 and A253 residues in SLC35A1 do not interact with CMP, which lacks a β-phosphate. Overall, our findings contribute to a molecular understanding of substrate specificity and coordination in SLC35A1 and SLC35A2 and have important implications for the understanding and treatment of diseases associated with mutations or dysregulations of these two transporters.  相似文献   

6.
7.
In vitro activity of interferon-alpha-2b in combination with various antioxidants against the influenza virus and Herpes simplex was studied. The standard strains and a clinical strain of Herpes simplex isolated from a patient with resistance to acyclovir were used. The in vitro studie showed that antioxidants, such as alpho-tocoferol acetate (vitamin E), Unithiol and ascorbic acid had a significant antiinfluenzae and antiherpetic action on the influenza virus A/H5N1 and Herpes simplex variants. They protected up to 100% of the cell monolayer from the virus cytopathic effect. The taurin solutions had no antiviral activity irrespective of the infection dose. Combinations of interferon-alpha-2b with alpha-tocopherol acetate (vitamin E), Unithiol or ascorbic acid showed a significant synergistic effect: the antiviral activity of interferon increased several times. The antiinfluenza activity of interferon-a-2b in the presence of various concentrations of taurin did not change.  相似文献   

8.
9.
R Wallin  F Rossi  R Loeser    L L Key  Jr 《The Biochemical journal》1990,269(2):459-464
An osteoblast-like human osteosarcoma cell line (U2-OS) has been shown to possess a vitamin K-dependent carboxylation system which is similar to the system in human HepG2 cells and in liver and lung from the rat. In an 'in vitro' system prepared from these cells, vitamin K1 was shown to overcome warfarin inhibition of gamma-carboxylation carried out by the vitamin K-dependent carboxylase. The data suggest that osteoblasts, the cells involved in synthesis of vitamin K-dependent proteins in bone, can use vitamin K1 as an antidote to warfarin poisoning if enough vitamin K1 can accumulate in the tissue. Five precursors of vitamin K-dependent proteins were identified in osteosarcoma and HepG2 cells respectively. In microsomes (microsomal fractions) from the osteosarcoma cells these precursors revealed apparent molecular masses of 85, 78, 56, 35 and 31 kDa. When osteosarcoma cells were cultured in the presence of warfarin, vitamin K-dependent 14C-labelling of the 78 kDa precursor was enhanced. Selective 14C-labelling of one precursor was also demonstrated in microsomes from HepG2 cells and from rat lung after warfarin treatment. In HepG2 cells this precursor was identified as the precursor of (clotting) Factor X. This unique 14C-labelling pattern of precursors of vitamin K-dependent proteins in microsomes from different cells and tissues reflects a new mechanism underlying the action of warfarin.  相似文献   

10.
Vitamin K1 (2-methyl-3-phytyl-1,4-napthoquinone) increases the microsomal metabolism of benzo(a)pyrene in rat liver microsomes in vitro. The increase is most marked in the 9,10 diol, 4,5 diol and 3-OH metabolites. The effect is seen at an in vitro concentration of 25 microM and disappears at higher concentrations of K1. The production of BP metabolite-DNA adducts in liver in vivo in ICR/Ha mice is reduced in dietary induced vitamin K deficient mice and this effect is reversed by vitamin K1. These findings indicate a role for vitamin K1 in the regulation of the microsomal mixed function oxidase system and suggest a reason for the low intracellular content and minimal body stores of this vitamin.  相似文献   

11.
Annexin A2 is a phospholipid-binding protein that forms a heterotetramer (annexin II-p11 heterotetramer; A2t) with p11 (S100A10). It has been reported that annexin A2 is involved in binding to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and in inducing membrane microdomain formation. To understand the mechanisms underlying these findings, we determined the membrane binding properties of annexin A2 wild type and mutants both as monomer and as A2t. Our results from surface plasmon resonance analysis showed that A2t and annexin A2 has modest selectivity for PtdIns(4,5)P2 over other phosphoinositides, which is conferred by conserved basic residues, including Lys279 and Lys281, on the convex surface of annexin A2. Fluorescence microscopy measurements using giant unilamellar vesicles showed that A2t of wild type, but not (K279A)2-(p11)2 or (K281A)2-(p11)2, specifically induced the formation of 1-microm-sized PtdIns(4,5)P2 clusters, which were stabilized by cholesterol. Collectively, these studies elucidate the structural determinant of the PtdIns(4,5)P2 selectivity of A2t and suggest that A2t may be involved in the regulation of PtdIns(4,5)P2 clustering in the cell.  相似文献   

12.
Phylloquinone (vitamin K1; 2-methyl-3-phytyl-1,4-naphthoquinone), the secondary electron acceptor A1 in photosystem I of plants, algae, and cyanobacteria, mediates the electron transfer between A0 (a monomeric chlorophyll a) and the iron-sulfur cluster Fx. In order to investigate the interaction of vitamin K1 with the A1-binding site, their models on the non-covalent complexes were obtained and studied. The fluorescent properties of vitamin K1, its derivatives, and their complexes with Trp showed a possible role of amino acid components in the formation of a stable energy state, which provides the energy redistribution between oxidized and reduced forms of vitamin K1. The formation of the charge-transfer complex and the influence of the ratio of the components on fluorescence derived from the tryptophan-vitamin K1, tryptophan-dihydrovitamin K1 , tryptophan-quinhydrone K1, and tryptophan-naphthochromanol complexes are described. The data obtained allow us to suggest that naphthochromanol is involved in the energy transfer reaction in PS I as an intermediate form of the secondary electron acceptor.  相似文献   

13.
14.
The Mason–Pfizer monkey virus is a type D retrovirus, which assembles its immature particles in the cytoplasm prior to their transport to the host cell membrane. The association with the membrane is mediated by the N‐terminally myristoylated matrix protein. To reveal the role of particular residues which are involved in the capsid‐membrane interaction, covalent labelling of arginine, lysine and tyrosine residues of the Mason–Pfizer monkey virus matrix protein bound to artificial liposomes containing 95% of phosphatidylcholine and 5% phosphatidylinositol‐(4,5)‐bisphosphate (PI(4,5)P2) was performed. The experimental results were interpreted by multiscale molecular dynamics simulations. The application of these two complementary approaches helped us to reveal that matrix protein specifically recognizes the PI(4,5)P2 molecule by the residues K20, K25, K27, K74, and Y28, while the residues K92 and K93 stabilizes the matrix protein orientation on the membrane by the interaction with another PI(4,5)P2 molecule. Residues K33, K39, K54, Y66, Y67, and K87 appear to be involved in the matrix protein oligomerization. All arginine residues remained accessible during the interaction with liposomes which indicates that they neither contribute to the interaction with membrane nor are involved in protein oligomerization. Proteins 2016; 84:1717–1727. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Vitamin K epoxide reductase (VKOR) catalyzes the conversion of vitamin K 2,3-epoxide into vitamin K in the vitamin K redox cycle. Recently, the gene encoding the catalytic subunit of VKOR was identified as a 163-amino acid integral membrane protein. In this study we report the experimentally derived membrane topology of VKOR. Our results show that four hydrophobic regions predicted as the potential transmembrane domains in VKOR can individually insert across the endoplasmic reticulum membrane in vitro. However, in the intact enzyme there are only three transmembrane domains, residues 10-29, 101-123, and 127-149, and membrane-integration of residues 75-97 appears to be suppressed by the surrounding sequence. Results of N-linked glycosylation-tagged full-length VKOR shows that the N terminus of VKOR is located in the endoplasmic reticulum lumen, and the C terminus is located in the cytoplasm. Further evidence for this topological model of VKOR was obtained with freshly prepared intact microsomes from insect cells expressing HPC4-tagged full-length VKOR. In these experiments an HPC4 tag at the N terminus was protected from proteinase K digestion, whereas an HPC4 tag at the C terminus was susceptible. Altogether, our results suggest that VKOR is a type III membrane protein with three transmembrane domains, which agrees well with the prediction by the topology prediction program TMHMM.  相似文献   

16.
Diphenylamine at concentrations which did not effect the growth rate inhibited the synthesis of vitamin K(2) in both anaerobic and aerobic cultures by about 50%. At this concentration, diphenylamine inhibited the synthesis of the cyclic carotenoids delta-carotene and the rubixanthins 25 to 35% anaerobically and 60 to 90% aerobically. The inhibition of synthesis of cyclic carotenoids and vitamin K(2) by diphenylamine had no detectable effect on the formation of the membrane-bound electron transport system.  相似文献   

17.
The polyamine spermine (N,N'bis[3-aminopropyl]-1,4-butanediamine) activates phosphatidylinositol-4-phosphate 5-kinase (PtdIns(4)P5K) and phosphatidylinositol 4-kinase (PtdIns4K) in vitro. Spermine concentration increases that occur in proliferating cells were approximated in streptolysin O-permeabilized HL60 cells. When phospholipase C was activated by GTPgammaS in the presence of PITPalpha, 0.1-1.2 mM spermine evoked increases in PtdIns(4,5)P(2) contents in a dose-dependent manner to 110-170% of control and concomitantly decreased inositol phosphate formation by 10-50%. Spermine-induced increases in PtdIns(4,5)P(2) content in permeabilized cells also occurred during GTPgammaS stimulation in the absence of PITPalpha, were augmented in the presence of PITPalpha, occurred in unstimulated cells and were additive to PtdIns(4,5)P(2) formation evoked by ARF1, another activator of phosphoinositide kinases. Slowly developing spermine-evoked increases in PtdIns(4,5)P(2) contents occurred in nonpermeabilized cells that were abolished in the presence of a spermine transport inhibitor. Data are consistent with spermine at physiological concentrations evoking a PITPalpha-dependent shift in formation of PtdIns(4,5)P(2) from compartments that contained an active phospholipase C to compartments that were separated from an active PLC and from PtdIns(4,5)P(2) formed by ARF1.  相似文献   

18.
Hereditary vitamin D-resistant rickets (HVDRR) is a genetic disorder most often caused by mutations in the vitamin D receptor (VDR). The patient in this study exhibited the typical clinical features of HVDRR with early onset rickets, hypocalcemia, secondary hyperparathyroidism, and elevated serum concentrations of alkaline phosphatase and 1,25-dihydroxyvitamin D [1,25-(OH)(2)D(3)]. The patient did not have alopecia. Assays of the VDR showed a normal high affinity low capacity binding site for [(3)H]1,25-(OH)(2)D(3) in extracts from the patient's fibroblasts. However, the cells were resistant to 1,25-dihydroxyvitamin D action as demonstrated by the failure of the patient's cultured fibroblasts to induce the 24-hydroxylase gene when treated with either high doses of 1,25-(OH)(2)D(3) or vitamin D analogs. A novel point mutation was identified in helix H12 in the ligand-binding domain of the VDR that changed a highly conserved glutamic acid at amino acid 420 to lysine (E420K). The patient was homozygous for the mutation. The E420K mutant receptor recreated by site-directed mutagenesis exhibited many normal properties including ligand binding, heterodimerization with the retinoid X receptor, and binding to vitamin D response elements. However, the mutant VDR was unable to elicit 1,25-(OH)(2)D(3)-dependent transactivation. Subsequent studies demonstrated that the mutant VDR had a marked impairment in binding steroid receptor coactivator 1 (SRC-1) and DRIP205, a subunit of the vitamin D receptor-interacting protein (DRIP) coactivator complex. Taken together, our data indicate that the mutation in helix H12 alters the coactivator binding site preventing coactivator binding and transactivation. In conclusion, we have identified the first case of a naturally occurring mutation in the VDR (E420K) that disrupts coactivator binding to the VDR and causes HVDRR.  相似文献   

19.
20.
Possible antimutagenic activity of 26 vitamins and related compounds - ascorbic acid, beta-carotene, cyanocobalamin, folic acid, nicotinic acid, nicotinamide, pantothenic acid, pyridoxale, pyridoxamine, pyridoxine, retinal, retinol, retinoic acid, retinyl acetate, retinyl palmitate, riboflavin, riboflavin 5'-phosphate, flavin adenine dinucleotide (FAD), alpha-tocopherol, alpha-tocopherol acetate, vitamins K(1), K(3), K(4), 1, 4-naphthoquinone, and coenzyme Q(10) - was tested against six heterocyclic amine (HCA) mutagens, i.e., 2-amino-3-methyl-imidazo[4, 5-f]quinoline (IQ), 2-amino-3,4-dimethyl-imidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-6-methyl-dipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) in the Salmonella/reversion assay using tester strains Salmonella typhimurium TA 98 and TA 100. Retinol, retinal, riboflavin, riboflavin 5'-phosphate, FAD, vitamins K(1), K(3), K(4), 1, 4-naphthoquinone, and coenzyme Q(10) caused a concentration-dependent decrease in the mutagenicity of all six mutagens in both tester strains. Quantification of antimutagenic potencies by calculating ID(50)1000; vitamin K(1): 401-740; vitamin K(3) (menadione): 85-590; vitamin K(4): 45-313; 1,4-naphthoquinone: 170-290; coenzyme Q(10): 490-860. In general, there were no major differences between HCAs tested except in part with Trp-P-2 nor between the two tester strains. In enzyme kinetic experiments with Salmonella, retinol, vitamins K(3), and K(4) behaved as competitive inhibitors of IQ induced mutagenesis. However, at the highest concentration of menadione (200 nmol/plate) and of riboflavin 5'-phosphate (2000 nmol/plate), non-competitive inhibition was observed. At other concentrations of riboflavin 5'-phosphate and at all concentrations of FAD, meaningful interpretation of enzyme kinetics were not possible. Reduction of the activity of 7-ethoxy- and 7-methoxyresorufin-O-dealkylases with IC(50) values of 2.03-30.8 microM indicated strong inhibition of 1A1 and 1A2 dependent monooxygenases by menadione and retinol. Riboflavin 5'-phosphate and FAD were less effective (IC(50): 110-803.7 microM). Nicotinamide-adenine-dinucleotidephosphate (NADPH) cytochrome P-450 reductase was not affected by retinoids but stimulated by naphthoquinones and both riboflavin derivatives up to about 50 and 80%, respectively. Again, the mutagenic activity of N-hydroxy-2-amino-3-methyl-imidazo[4,5-f]quinoline (N-OH-IQ) in Salmonella was not suppressed by K-vitamins but marginally reduced by retinol, retinal, and FAD but distinctly by riboflavin 5'-phosphate. In various experiments designed for modulation of the mutagenic response, inhibition of metabolic activation of IQ to N-OH-IQ was found to be the only relevant mechanism of antimutagenesis of menadione while a weak contribution of an other way seemed possible for retinol and FAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号