首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeast Vts1 SAM (sterile alpha motif) domain is a member of a new class of SAM domains that specifically bind RNA. To elucidate the structural basis for RNA binding, the solution structure of the Vts1 SAM domain, in the presence of a specific target RNA, has been solved by multidimensional heteronuclear NMR spectroscopy. The Vts1 SAM domain retains the "core" five-helix-bundle architecture of traditional SAM domains, but has additional short helices at N and C termini, comprising a small substructure that caps the core helices. The RNA-binding surface of Vts1, determined by chemical shift perturbation, maps near the ends of three of the core helices, in agreement with mutational data and the electrostatic properties of the molecule. These results provide a structural basis for the versatility of the SAM domain in protein and RNA-recognition.  相似文献   

2.
3.
4.
5.
6.
7.
The N-terminal RNA-binding domain (RBD1) of the human U1A protein is evolutionarily designed to bind its RNA targets with great affinity and specificity. The physical mechanisms that modulate the coupling (local cooperativity) among amino acid residues on the extensive binding surface of RBD1 are investigated here, using mutants that replace a highly conserved glycine residue. This glycine residue, at the strand/loop junction of beta3/loop3, is found in U1A RBD1, and in most RBD domains, suggesting it has a specific role in modulation of RNA binding. Here, two RBD1 proteins are constructed in which that residue (Gly53) is replaced by either alanine or valine. These new proteins are shown by NMR methods and molecular dynamics simulations to be very similar to the wild-type RBD1, both in structure and in their backbone dynamics. However, RNA-binding assays show that affinity for the U1 snRNA stem-loop II RNA target is reduced by nearly 200-fold for the RBD1-G53A protein, and by 1.6 x 10(4)-fold for RBD1-G53V. The mode of RNA binding by RBD1-G53A is similar to that of RBD1-WT, displaying its characteristic non-additive free energies of base recognition and its salt-dependence. The binding mode of RBD1-G53V is altered, having lost its salt-dependence and displaying site-independence of base recognition. The molecular basis for this alteration in RNA-binding properties is proposed to result from the inability of the RNA to induce a change in the structure of the free protein to produce a high-affinity complex.  相似文献   

8.
RNA recognition by a Staufen double-stranded RNA-binding domain   总被引:23,自引:6,他引:17       下载免费PDF全文
The double-stranded RNA-binding domain (dsRBD) is a common RNA-binding motif found in many proteins involved in RNA maturation and localization. To determine how this domain recognizes RNA, we have studied the third dsRBD from Drosophila Staufen. The domain binds optimally to RNA stem–loops containing 12 uninterrupted base pairs, and we have identified the amino acids required for this interaction. By mutating these residues in a staufen transgene, we show that the RNA-binding activity of dsRBD3 is required in vivo for Staufen-dependent localization of bicoid and oskar mRNAs. Using high-resolution NMR, we have determined the structure of the complex between dsRBD3 and an RNA stem–loop. The dsRBD recognizes the shape of A-form dsRNA through interactions between conserved residues within loop 2 and the minor groove, and between loop 4 and the phosphodiester backbone across the adjacent major groove. In addition, helix α1 interacts with the single-stranded loop that caps the RNA helix. Interactions between helix α1 and single-stranded RNA may be important determinants of the specificity of dsRBD proteins.  相似文献   

9.
An RNA-binding protein of 28 kD (28RNP) has been previously isolated from spinach chloroplasts and was found to be required for 3' end processing of chloroplast mRNAs. The amino acid sequence of 28RNP revealed two approximately 80 amino-acid RNA-binding domains, as well as an acidic and glycine-rich amino terminal domain. Each domain by itself, as well as in combination with other domains, was expressed in bacterial cells and the polypeptides were purified to homogeneity. We have investigated the RNA-binding properties of the different structural domains using UV-crosslinking, saturation binding and competition between the different domains on RNA-binding. It was found that the acidic domain does not bind RNA, but that each of the RNA-binding domains, expressed either individually or together, do bind RNA, although with differing affinities. When either the first or second RNA-binding domain was coupled to the acidic domain, the affinity for RNA was greatly reduced. However, the acidic domain has a positive effect on the binding of the full-length protein to RNA, because the mature protein binds RNA with a better affinity than the truncated protein which lacks the acidic domain. In addition, it was found that a stretch of two or three G residues is enough to mediate binding of the 28RNP, whereas four U residues were insufficient. The implications of the RNA-binding properties of 28RNP to its possible function in the processing of chloroplast RNA is discussed.  相似文献   

10.
RNase II is a single-stranded-specific 3'-exoribonuclease that degrades RNA generating 5'-mononucleotides. This enzyme is the prototype of an ubiquitous family of enzymes that are crucial in RNA metabolism and share a similar domain organization. By sequence prediction, three different domains have been assigned to the Escherichia coli RNase II: two RNA-binding domains at each end of the protein (CSD and S1), and a central RNB catalytic domain. In this work we have performed a functional characterization of these domains in order to address their role in the activity of RNase II. We have constructed a large set of RNase II truncated proteins and compared them to the wild-type regarding their exoribonucleolytic activity and RNA-binding ability. The dissociation constants were determined using different single- or double-stranded substrates. The results obtained revealed that S1 is the most important domain in the establishment of stable RNA-protein complexes, and its elimination results in a drastic reduction on RNA-binding ability. In addition, we also demonstrate that the N-terminal CSD plays a very specific role in RNase II, preventing a tight binding of the enzyme to single-stranded poly(A) chains. Moreover, the biochemical results obtained with RNB mutant that lacks both putative RNA-binding domains, revealed the presence of an additional region involved in RNA binding. Such region, was identified by sequence analysis and secondary structure prediction as a third putative RNA-binding domain located at the N-terminal part of RNB catalytic domain.  相似文献   

11.
Nucleolin is an abundant 70 kDa nucleolar protein involved in many aspects of ribosomal RNA biogenesis. The central region of nucleolin contains four tandem consensus RNA-binding domains (RBD). The two most N-terminal domains (RBD12) bind with nanomolar affinity to an RNA stem-loop containing the consensus sequence UCCCGA in the loop. We have determined the solution structure of nucleolin RBD12 in its free form and have studied its interaction with a 22 nt RNA stem-loop using multidimensional NMR spectroscopy. The two RBDs adopt the expected beta alpha beta beta alpha beta fold, but the position of the beta 2 strand in both domains differs from what was predicted from sequence alignments. RBD1 and RBD2 are significantly different from each others and this is likely important in their sequence specific recognition of the RNA. RBD1 has a longer alpha-helix 1 and a shorter beta 2-beta 3 loop than RBD2, and differs from most other RBDs in these respects. The two RBDs are separated by a 12 amino acid flexible linker and do not interact with one another in the free protein. This linker becomes ordered when RBD12 binds to the RNA. Analysis of the observed NOEs between the protein and the RNA indicates that both RBDs interact with the RNA loop via their beta-sheet. Each domain binds residues on one side of the loop; specifically, RBD2 contacts the 5' side and RBD1 contacts the 3'.  相似文献   

12.
Structural determinants of RNA recognition and cleavage by Dicer   总被引:5,自引:0,他引:5  
A hallmark of RNA interference is the production of short double-stranded RNA (dsRNA) molecules 21-28 nucleotides in length by the specialized RNase III protein Dicer. Dicer enzymes uniquely generate RNA products of specific lengths by mechanisms that have not been fully elucidated. Here we show that the PAZ domain responsible for dsRNA end recognition confers this measuring ability through both its structural position and RNA-binding specificity. Point mutations define the dsRNA-binding surface and reveal a protein loop important for cleavage of substrates containing perfect or imperfect base pairing. On the basis of these results, we reengineered Dicer with a U1A RNA-binding domain in place of the PAZ domain to create an enzyme with altered end-recognition specificity and RNA product length. These results explain how Dicer functions as a molecular ruler and provide a structural basis for modifying its activity in cells.  相似文献   

13.
We previously reported ATPase, RNA unwinding, and RNA-binding activities of recombinant p68 RNA helicase that was expressed in Escherichia coli. Huang et al. The recombinant protein bound both single-stranded (ss) and double-stranded (ds) RNAs. To further characterize the substrate RNA binding by p68 RNA helicase, we expressed and purified the recombinant N-terminal and C-terminal domains of the protein. RNA-binding property and protein phosphorylation of the recombinant domains of p68 were analyzed. Our data demonstrated that the C-terminal domain of p68 RNA helicase bound ssRNA. More interestingly, the C-terminal domain was a target of protein kinase C (PKC). Phosphorylation of the C-terminal domain of p68 abolished its RNA binding. Based on our observations, we propose that the C-terminal domain is an RNA substrate binding site for p68. The protein phosphorylation by PKC regulates the RNA binding of p68 RNA helicase, which consequently controls the enzymatic activities of the protein.  相似文献   

14.
15.
Identification of the protein domains that are responsible for RNA recognition has lagged behind the characterization of protein-DNA interactions. However, it is now becoming clear that a range of structural motifs bind to RNA and their structures and molecular mechanisms of action are beginning to be elucidated. In this report, we have expressed and purified one of the two putative RNA-binding domains from ZNF265, a protein that has been shown to bind to the spliceosomal components U1-70K and U2AF35 and to direct alternative splicing. We show that this domain, which contains four highly conserved cysteine residues, forms a stable, monomeric structure upon the addition of 1 molar eq of Zn(II). Determination of the solution structure of this domain reveals a conformation comprising two stacked beta-hairpins oriented at approximately 80 degrees to each other and sandwiching the zinc ion; the fold resembles the zinc ribbon class of zinc-binding domains, although with one less beta-strand than most members of the class. Analysis of the structure reveals a striking resemblance to known RNA-binding motifs in terms of the distribution of key surface residues responsible for making RNA contacts, despite a complete lack of structural homology. Furthermore, we have used an RNA gel shift assay to demonstrate that a single crossed finger domain from ZNF265 is capable of binding to an RNA message. Taken together, these results define a new RNA-binding motif and should provide insight into the functions of the >100 uncharacterized proteins in the sequence data bases that contain this domain.  相似文献   

16.
Summary The Rev Response Element (RRE) RNA-Rev protein interaction is important for regulation of gene expression in the human immunodeficiency virus. A model system for this interaction, which includes stem IIB of the RRE RNA and an arginine-rich peptide from the RNA-binding domain of Rev, was studied using multidimensional heteronuclear NMR. Assignment of the RNA when bound to the peptide was obtained from NMR experiments utilizing uniformly and specifically 13C-labeled RNA. Isotopic filtering experiments on the specifically labeled RNA enabled unambiguous assignment of unusual nonsequential NOE patterns present in the internal loop of the RRE. A three-dimensional model of the RNA in the complex was obtained using restrained molecular dynamics calculations. The internal loop contains two purine-purine base pairs, which are stacked to form one continuous helix flanked by two A-form regions. The formation of a G-G base pair in the internal loop requires an unusual structure of the phosphate backbone. This structural feature is consistent with mutational data as being important for the binding of Rev to the RRE. The G-G base pair may play an important role in opening the normally narrow major groove of A-form RNA to permit binding of the Rev basic domain.  相似文献   

17.
Loss of the RNA-binding protein Bicaudal-C (Bicc1) provokes renal and pancreatic cysts as well as ectopic Wnt/β-catenin signaling during visceral left-right patterning. Renal cysts are linked to defective silencing of Bicc1 target mRNAs, including adenylate cyclase 6 (AC6). RNA binding of Bicc1 is mediated by N-terminal KH domains, whereas a C-terminal sterile alpha motif (SAM) self-polymerizes in vitro and localizes Bicc1 in cytoplasmic foci in vivo. To assess a role for multimerization in silencing, we conducted structure modeling and then mutated the SAM domain residues which in this model were predicted to polymerize Bicc1 in a left-handed helix. We show that a SAM-SAM interface concentrates Bicc1 in cytoplasmic clusters to specifically localize and silence bound mRNA. In addition, defective polymerization decreases Bicc1 stability and thus indirectly attenuates inhibition of Dishevelled 2 in the Wnt/β-catenin pathway. Importantly, aberrant C-terminal extension of the SAM domain in bpk mutant Bicc1 phenocopied these defects. We conclude that polymerization is a novel disease-relevant mechanism both to stabilize Bicc1 and to present associated mRNAs in specific silencing platforms.  相似文献   

18.
Tomato bushy stunt virus (TBSV), a tombusvirus with a nonsegmented, plus-stranded RNA genome, codes for two essential replicase proteins. The sequence of one of the replicase proteins, namely p33, overlaps with the N-terminal domain of p92, which contains the signature motifs of RNA-dependent RNA polymerases (RdRps) in its nonoverlapping C-terminal portion. In this work, we demonstrate that both replicase proteins bind to RNA in vitro based on gel mobility shift and surface plasmon resonance measurements. We also show evidence that the binding of p33 to single-stranded RNA (ssRNA) is stronger than binding to double-stranded RNA (dsRNA), ssDNA, or dsDNA in vitro. Competition experiments with ssRNA revealed that p33 binds to a TBSV-derived sequence with higher affinity than to other nonviral ssRNA sequences. Additional studies revealed that p33 could bind to RNA in a cooperative manner. Using deletion derivatives of the Escherichia coli-expressed recombinant proteins in gel mobility shift and Northwestern assays, we demonstrate that p33 and the overlapping domain of p92, based on its sequence identity with p33, contain an arginine- and proline-rich RNA-binding motif (termed RPR, which has the sequence RPRRRP). This motif is highly conserved among tombusviruses and related carmoviruses, and it is similar to the arginine-rich motif present in the Tat trans-activator protein of human immunodeficiency virus type 1. We also find that the nonoverlapping C-terminal domain of p92 contains additional RNA-binding regions. Interestingly, the location of one of the RNA-binding domains in p92 is similar to the RNA-binding domain of the NS5B RdRp protein of hepatitis C virus.  相似文献   

19.
Rnt1 endoribonuclease, the yeast homolog of RNAse III, plays an important role in the maturation of a diverse set of RNAs. The enzymatic activity requires a conserved catalytic domain, while RNA binding requires the double-stranded RNA-binding domain (dsRBD) at the C-terminus of the protein. While bacterial RNAse III enzymes cleave double-stranded RNA, Rnt1p specifically cleaves RNAs that possess short irregular stem-loops containing 12–14 base pairs interrupted by internal loops and bulges and capped by conserved AGNN tetraloops. Consistent with this substrate specificity, the isolated Rnt1p dsRBD and the 30–40 amino acids that follow bind to AGNN-containing stem-loops preferentially in vitro. In order to understand how Rnt1p recognizes its cognate processing sites, we have defined its minimal RNA-binding domain and determined its structure by solution NMR spectroscopy and X-ray crystallography. We observe a new carboxy-terminal helix following a canonical dsRBD structure. Removal of this helix reduces binding to Rnt1p substrates. The results suggest that this helix allows the Rnt1p dsRBD to bind to short RNA stem-loops by modulating the conformation of helix α1, a key RNA-recognition element of the dsRBD.  相似文献   

20.
The pluripotency factor Lin28 is a highly conserved protein comprising a unique combination of RNA-binding motifs, an N-terminal cold-shock domain and a C-terminal region containing two retroviral-type CCHC zinc-binding domains. An important function of Lin28 is to inhibit the biogenesis of the let-7 family of microRNAs through a direct interaction with let-7 precursors. Here, we systematically characterize the determinants of the interaction between Lin28 and pre-let-7 g by investigating the effect of protein and RNA mutations on in vitro binding. We determine that Lin28 binds with high affinity to the extended loop of pre-let-7 g and that its C-terminal domain contributes predominantly to the affinity of this interaction. We uncover remarkable similarities between this C-terminal domain and the NCp7 protein of HIV-1, not only in terms of primary structure but also in their modes of RNA binding. This NCp7-like domain of Lin28 recognizes a G-rich bulge within pre-let-7 g, which is adjacent to one of the Dicer cleavage sites. We hypothesize that the NCp7-like domain initiates RNA binding and partially unfolds the RNA. This partial unfolding would then enable multiple copies of Lin28 to bind the extended loop of pre-let-7 g and protect the RNA from cleavage by the pre-microRNA processing enzyme Dicer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号