首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, there is substantial evidence that nuclear lipid metabolism plays a critical role in a number of signal transduction cascades. Previous work from our laboratory showed that stimulation of quiescent fibroblasts with alpha-thrombin leads to the production of two lipid second messengers in the nucleus: an increase in nuclear diacylglycerol mass and an activation of phospholipase D, which catalyzes the hydrolysis of phosphatidylcholine to generate phosphatidic acid. Diacylglycerol kinase (DGK) catalyzes the conversion of diacylglycerol to phosphatidic acid, making it an attractive candidate for a signal transduction component. There is substantial evidence that this activity is indeed regulated in a number of signaling cascades (reviewed by van Blitterswijk, W. J., and Houssa, B. (1999) Chem. Phys. Lipids 98, 95-108). In this report, we show that the addition of alpha-thrombin to quiescent IIC9 fibroblasts results in an increase in nuclear DGK activity. The examination of nuclei isolated from quiescent IIC9 cells indicates that DGK-theta and DGK-delta are both present. We took advantage of the previous observations that phosphatidylserine inhibits DGK-delta (reviewed by Sakane, F., Imai, S., Kai, M., Wada, I., and Kanoh, H. (1996) J. Biol. Chem. 271, 8394-8401), and constitutively active RhoA inhibits DGK-theta (reviewed by Houssa, B., de Widt, J., Kranenburg, O., Moolenaar, W. H., and van Blitterswijk, W. J. (1999) J. Biol. Chem. 274, 6820-6822) to identify the activity induced by alpha-thrombin. Constitutively active RhoA inhibited the nuclear stimulated activity, whereas phosphatidylserine did not have an inhibitory effect. In addition, a monoclonal anti-DGK-theta antibody inhibited the alpha-thrombin-stimulated nuclear activity in vitro. These results demonstrate that DGK-theta is the isoform responsive to alpha-thrombin stimulation. Western blot and immunofluorescence microscopy analyses showed that alpha-thrombin induced the translocation of DGK-theta to the nucleus, implicating that this translocation is at least partly responsible for the increased nuclear activity. Taken together, these data are the first to demonstrate an agonist-induced activity of nuclear DGK-theta activity and a nuclear localization of DGK-delta.  相似文献   

2.
The mechanism by which an agonist, binding to a cell surface receptor, exerts an effect on events in the nucleus is not known. We have previously shown (Leach, K. L., Ruff, V. A., Wright, T. M., Pessin, M. S., and Raben, D. M. (1991) J. Biol. Chem. 266, 3215-3221) that alpha-thrombin treatment of IIC9 cells results in increased levels of cellular 1,2-diacylglycerol (DAG) and activation of protein kinase C (PKC). Here, we have examined whether changes in nuclear PKC and nuclear DAG also are induced following alpha-thrombin treatment. IIC9 cells were treated with 500 ng/ml alpha-thrombin, and nuclei were then isolated. Western blot analysis using isozyme-specific antibodies demonstrated the presence of PKC alpha, but not PKC epsilon or zeta in the nuclei of cells treated with either phorbol 12-myristate 13-acetate or alpha-thrombin. The increase in nuclear PKC alpha levels was accompanied by a 10-fold increase in nuclear PKC specific activity and stimulated phosphorylation of at least six nuclear proteins. The rise in nuclear PKC levels occurred rapidly and reached a maximum at 30-60 s, which was followed by a decline back to the control level over the next 15 min. In addition, alpha-thrombin treatment resulted in an immediate rise in DAG mass levels in the nuclear fractions. Kinetic analysis indicated that a maximum increase in DAG levels occurred 2.5-5 min after the addition of alpha-thrombin and remained elevated for at least 30 min. In cells labeled with [3H]myristic acid, alpha-thrombin treatment induced an increase in radiolabeled nuclear diglycerides, suggesting that the stimulated nuclear DAGs are derived, at least in part, from phosphatidylcholine. Our results suggest that increases in both nuclear DAG levels and PKC activity following alpha-thrombin treatment may play a role in mediating thrombin-induced nuclear responses such as changes in gene expression and cellular proliferation.  相似文献   

3.
Diacylglycerols (DAGs) derived from phosphatidylcholine (PC) hydrolysis have been shown to activate protein kinase C (PKC) in vitro, but it is not known whether this event occurs in response to DAGs generated via agonist-induced PC hydrolysis in intact cells. In this report we have addressed this question directly, using alpha-thrombin stimulation of IIC9 fibroblasts. PKC activation in intact cells was assessed in two ways, by measuring: 1) PKC membrane association as determined by kinase activity and Western blot analysis and 2) the phosphorylation of an endogenous PKC substrate, an 80-kDa protein. Treatment with 500 ng/ml alpha-thrombin has been shown to stimulate both phosphoinositide and PC hydrolysis, whereas treatment with 100 pg/ml alpha-thrombin stimulates only PC breakdown. Using these two conditions, we show that DAG produced from phosphoinositide, but not PC hydrolysis, is associated with the activation of PKC.  相似文献   

4.
The signaling enzyme phospholipase D1 (PLD1) facilitates membrane vesicle trafficking. Here, we explore how PLD1 subcellular localization is regulated via Phox homology (PX) and pleckstrin homology (PH) domains and a PI4,5P2-binding site critical for its activation. PLD1 localized to perinuclear endosomes and Golgi in COS-7 cells, but on cellular stimulation, translocated to the plasma membrane in an activity-facilitated manner and then returned to the endosomes. The PI4,5P2-interacting site sufficed to mediate outward translocation and association with the plasma membrane. However, in the absence of PX and PH domains, PLD1 was unable to return efficiently to the endosomes. The PX and PH domains appear to facilitate internalization at different steps. The PH domain drives PLD1 entry into lipid rafts, which we show to be a step critical for internalization. In contrast, the PX domain appears to mediate binding to PI5P, a lipid newly recognized to accumulate in endocytosing vesicles. Finally, we show that the PH domain-dependent translocation step, but not the PX domain, is required for PLD1 to function in regulated exocytosis in PC12 cells. We propose that PLD1 localization and function involves regulated and continual cycling through a succession of subcellular sites, mediated by successive combinations of membrane association interactions.  相似文献   

5.
Intracellular localization of phospholipase D1 in mammalian cells   总被引:4,自引:0,他引:4       下载免费PDF全文
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid. In mammalian cells this reaction has been implicated in the recruitment of coatomer to Golgi membranes and release of nascent secretory vesicles from the trans-Golgi network. These observations suggest that PLD is associated with the Golgi complex; however, to date, because of its low abundance, the intracellular localization of PLD has been characterized only indirectly through overexpression of chimeric proteins. We have used highly sensitive antibodies to PLD1 together with immunofluorescence and immunogold electron microscopy as well as cell fractionation to identify the intracellular localization of endogenous PLD1 in several cell types. Although PLD1 had a diffuse staining pattern, it was enriched significantly in the Golgi apparatus and was also present in cell nuclei. On fragmentation of the Golgi apparatus by treatment with nocodazole, PLD1 closely associated with membrane fragments, whereas after inhibition of PA synthesis, PLD1 dissociated from the membranes. Overexpression of an hemagglutinin-tagged form of PLD1 resulted in displacement of the endogenous enzyme from its perinuclear localization to large vesicular structures. Surprisingly, when the Golgi apparatus collapsed in response to brefeldin A, the nuclear localization of PLD1 was enhanced significantly. Our data show that the intracellular localization of PLD1 is consistent with a role in vesicle trafficking from the Golgi apparatus and suggest that it also functions in the cell nucleus.  相似文献   

6.
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid, a molecule known to have multiple physiological roles, including release of nascent secretory vesicles from the trans-Golgi network. In mammalian cells two forms of the enzyme, PLD1 and PLD2, have been described. We recently demonstrated that PLD1 is localized to the Golgi apparatus, nuclei, and to a lesser extent, plasma membrane. Due to its low abundance, the intracellular localization of PLD2 has been characterized only indirectly through overexpression of chimeric proteins. Using antibodies specific to PLD2, together with immunofluorescence microscopy, herein we demonstrate that a significant fraction of endogenous PLD2 localized to the perinuclear Golgi region and was also distributed throughout cells in dense cytoplasmic puncta; a fraction of which colocalized with caveolin-1 and the plasma membrane. On treatment with brefeldin A, PLD2 translocated into the nucleus in a manner similar to PLD1, suggesting a potential role in nuclear signaling. Most significantly, cryoimmunogold electron microscopy demonstrated that in pituitary GH(3) cells >90% of PLD2 present in the Golgi apparatus was localized to cisternal rims and peri-Golgi vesicles exclusively. The data are consistent with a model whereby PLD2 plays a role in Golgi vesicular transport.  相似文献   

7.
《The Journal of cell biology》1993,123(6):1789-1796
alpha-Thrombin induced a change in the cell morphology of IIC9 fibroblasts from a semiround to an elongated form, accompanied by an increase in stress fibers. Incubation of the cells with phospholipase D (PLD) from Streptomyces chromofuscus and exogenous phosphatidic acid (PA) caused similar morphological changes, whereas platelet-derived growth factor (PDGF) and phorbol 12-myristate 13-acetate (PMA) induced different changes, e.g., disruption of stress fibers and cell rounding. alpha-Thrombin, PDGF, and exogenous PLD increased PA by 20-40%, and PMA produced a smaller increase. alpha-Thrombin and exogenous PLD produced rapid increases in the amount of filamentous actin (F-actin) that were sustained for at least 60 min. However, PDGF produced a transient increase of F-actin at 1 min and PMA caused no significant change. Dioctanoylglycerol was ineffective except at 50 micrograms/ml. Phospholipase C from Bacillus cereus, which increased diacylglycerol (DAG) but not PA, did not change F-actin content. Down-regulation of protein kinase C (PKC) did not block actin polymerization induced by alpha-thrombin. H-7 was also ineffective. Exogenous PA activated actin polymerization with a significant effect at 0.01 microgram/ml and a maximal increase at 1 microgram/ml. No other phospholipids tested, including polyphosphoinositides, significantly activated actin polymerization. PDGF partially inhibited PA-induced actin polymerization after an initial increase at 1 min. PMA completely or largely blocked actin polymerization induced by PA or PLD. These results show that PC-derived PA, but not DAG or PKC, activates actin polymerization in IIC9 fibroblasts, and indicate that PDGF and PMA have inhibitory effects on PA-induced actin polymerization.  相似文献   

8.
Cyclin E-associated CDK2 activity is required for the initiation of DNA synthesis in human cells. CDK2 activity is tightly regulated; CDK2 must be in the nucleus, bound to a cyclin, phosphorylated on T160, and dephosphorylated on T14/Y15 for complete kinase activation. Nuclear localization exposes CDK2 to activating enzymes (CAK, Cdc25A) in stimulated cells. Previous studies from our lab indicate CDK2 nuclear localization and cyclin E co-expression are insufficient to cause CDK2 activation or T160 phosphorylation in stimulated IIC9 cells; these activities still require serum stimulation and ERK kinase activity. Recent studies have implicated a role for origin of replication (ORC) licensing proteins in the activation of G1/S Cdks. In this study, we show that CDK2 associates with chromatin and Cdc6 in an ERK-dependent manner following stimulation of IIC9 CHEF cells. We show that nuclear-localized CDK2 (CDK2-NLS) ectopically expressed with cyclin E requires mitogenic stimulation and ERK activation for chromatin association, in addition to previously shown kinase activation and T160 phosphorylation in IIC9 cells. Additionally, we show that expression of Cdc6 in stimulated IIC9 cells treated with ERK inhibitor rescues CDK2-NLS chromatin association, kinase activation, and T160 phosphorylation. From the above data, we deduce ERK-dependent CDK2 activation is due in part to ERK-dependent Cdc6 expression. To examine the role of Cdc6 directly in stimulated primary human fibroblasts, we used RNA interference to attenuate the expression of Cdc6. We show that Cdc6 expression is required for CDK2 chromatin association and kinase activation in stimulated primary human fibroblasts. Additionally, we show that Cdc6 expression is required for the initiation of DNA synthesis and S phase entry in stimulated primary human fibroblasts. Ultimately, this data implicates Cdc6 expression as an important mitogen-induced mechanism in the activation of CDK2/cyclin E, the initiation of DNA synthesis, and the regulation of G1-S phase progression.  相似文献   

9.
Antony P  Kanfer JN  Freysz L 《FEBS letters》2003,541(1-3):93-96
Earlier studies showed that treatment of LA-N-1 cells with TPA, a tumoral promoter, leads to the stimulation of a G protein-regulated phospholipase D (PLD) in the nuclei. Now we demonstrate that retinoic acid, a cellular differentiation inducing agent, activates a nuclear oleate-dependent PLD in LA-N-1 cells. Treatment of the nuclei with retinoic acid induces the breakdown of phosphatidylcholine (PtdCho). Our results indicate that PLD is regulated differentially depending on the nature of the stimulatory agent. These results strongly suggest the existence of two nuclear PLD isoforms in LA-N-1 nuclei that hydrolyze PtdCho.  相似文献   

10.
alpha-Thrombin stimulates a biphasic increase in cellular 1,2-diacylglycerol mass in quiescent IIC9 fibroblasts. This report describes the use of hirudin, a high-affinity inhibitor of alpha-thrombin that renders it catalytically inactive, to investigate the dependence of elevated 1,2-diacylglycerol levels on the presence of catalytically active alpha-thrombin. When cultures were incubated in the presence of alpha-thrombin, 1,2-diacylglycerol levels remained elevated for greater than or equal to 4 h. Inactivation of alpha-thrombin after 15 s did not alter the kinetics of 1,2-diacylglycerol formation occurring over the next 1 h. However, sustained (1-4 h) increases in this lipid were eliminated. Inactivation of alpha-thrombin after 1 h of stimulation resulted in 1) an immediate and reversible decline in 1,2-diacylglycerol levels, 2) elimination of the sustained phase of 1,2-diacylglycerol production, 3) inhibition of the alpha-thrombin-stimulated generation of choline metabolites, and 4) a blunted mitogenic response to alpha-thrombin. These data indicate that early (0-1 h) and late (1-4 h) increases in 1,2-diacylglycerol are differentially dependent on the presence of catalytically active alpha-thrombin. Furthermore, sustained increases in 1,2-diacylglycerol in response to alpha-thrombin are regulated at least in part at the level of generation (via phosphatidylcholine hydrolysis). Our results also support a role for sustained 1,2-diacylglycerol levels in the mitogenic response.  相似文献   

11.
《FEBS letters》1999,442(2-3):221-225
Phospholipase D (PLD) is involved in various aspects of cellular function. Two isoforms, PLD1 and PLD2, have been identified. PLD1, which has two splicing variants, is regulated by various factors, including ADP-ribosylation factor (ARF). We here show that both variants of PLD1 are predominantly localized to late endosomes and lysosomes, but not to the Golgi apparatus or endoplasmic reticulum in contrast to earlier studies. Furthermore, PLD1s show significant colocalization with an ARF6 mutant defective in GTP binding. The data suggest that PLD1, under the regulation of ARF6, plays a role in the function of endosomes and lysosomes.  相似文献   

12.
Recent studies have implicated the hydrolysis of phosphoinositides and phosphatidylcholine in agonist-stimulated events. The potent mitogen, alpha-thrombin, stimulates the generation of diglycerides in a biphasic and sustained manner in IIC9 fibroblasts (Wright, T. M., Rangan, L. A., Shin, H. S., and Raben, D. M. (1988) J. Biol. Chem. 263, 9374-9380). Using measurements of radiolabeled headgroup release and molecular species analysis, we previously determined that alpha-thrombin generates diglycerides through the hydrolysis of both the phosphoinositides and phosphatidylcholine at early times (15 s), and at later times (greater than or equal to 5 min) through the hydrolysis of primarily, if not exclusively, phosphatidylcholine (Pessin, M. S., and Raben, D. M. (1989) J. Biol. Chem. 264, 8729-8738). In contrast, IIC9 fibroblasts respond to the mitogenic treatments of (a) alpha-thrombin following chymotrypsin pretreatment or (b) epidermal growth factor by increasing their levels of diglycerides in a monophasic and sustained manner (Wright, T. M., Rangan, L. A., Shin, H. S., and Raben, D. M. (1988) J. Biol. Chem. 263, 9374-9380). In this report, we have analyzed the molecular species of the diglycerides generated by these two different treatments and have also examined the lipid response of IIC9 fibroblasts to platelet-derived growth factor. Based on both the molecular species analyses and the release of radiolabeled head-groups, all three of these different mitogenic treatments generate diglycerides primarily through the stimulation of phosphatidylcholine hydrolysis. However, while similar, the molecular species profiles of the diglycerides generated by these three treatments are not identical to the molecular species profile of total cellular phosphatidylcholine. In addition, the molecular species profiles of the diglycerides generated by these three mitogenic treatments greatly resemble each other, with significant differences between any two profiles occurring in at most one molecular species. This finding differs from that seen with alpha-thrombin stimulation alone, where the molecular species profile of the diglycerides generated following 5 min of alpha-thrombin stimulation is nearly identical to the molecular species profile of total cellular phosphatidylcholine. These data support the possibility of hormone-sensitive phosphatidylcholine pools or selective diglyceride metabolism.  相似文献   

13.
Activation of cyclin-dependent kinase 2 (CDK2)-cyclin E in the late G(1) phase of the cell cycle is important for transit into S phase. In Chinese hamster embryonic fibroblasts (IIC9) phosphatidylinositol 3-kinase and ERK regulate alpha-thrombin-induced G(1) transit by their effects on cyclin D1 protein accumulation (Phillips-Mason, P. J., Raben, D. M., and Baldassare, J. J. (2000) J. Biol. Chem. 275, 18046-18053). Here, we show that ERK also affects CDK2-cyclin E activation by regulating the subcellular localization of CDK2. Ectopic expression of cyclin E rescues the inhibition of alpha-thrombin-induced activation of CDK2-cyclin E and transit into S phase brought about by treatment of IIC9 cells with LY29004, a selective inhibitor of mitogen stimulation of phosphatidylinositol 3-kinase activity. However, cyclin E expression is ineffectual in rescuing these effects when ERK activation is blocked by treatment with PD98059, a selective inhibitor of MEK activation of ERK. Investigation into the mechanistic reasons for this difference found the following. 1) Although treatment with LY29004 inhibits alpha-thrombin-stimulated nuclear localization, ectopic expression of cyclin E rescues CDK2 translocation. 2) In contrast to treatment with LY29004, ectopic expression of cyclin E fails to restore alpha-thrombin-stimulated nuclear CDK2 translocation in IIC9 cells treated with PD98059. 3) CDK2-cyclin E complexes are not affected by treatment with either inhibitor. These data indicate that, in addition to its effects on cyclin D1 expression, ERK activity is an important controller of the translocation of CDK2 into the nucleus where it is activated.  相似文献   

14.
Phospholipase D     
Phospholipase D catalyses the hydrolysis of phosphatidylcholine to generate phosphatidate. The regulation of PLD activity is complex involving a number of small GTP binding proteins, but in particular Arf and Rho, phosphatidylinositol 4,5-bisphosphate and protein kinase C. The cDNA for PLD1 has recently been cloned and shows homology to the yeast and plant genes but only within four domains. Domains I and IV each contain a putative catalytic triad. PLD activity has been detected in plasma membranes, Golgi membranes and in nuclear membranes; it is unclear if different isoenzymes are responsible for this variation, or if the PLDs are differently regulated. The product of PLD activity, PA, appears to be a messenger molecule regulating the actin cytoskeleton and maybe playing a role in the control of membrane traffic and secretion.  相似文献   

15.
Mitogen-activated protein kinases/extracellular signal regulated kinases (MAPKs/ERKs) are typically thought to be soluble cytoplasmic enzymes that translocate to the nucleus subsequent to their phosphorylation by their activating kinases or mitogen-activated protein/extracellular signal regulated kinase kinase. We report here the first example of nuclear translocation of a MAPK that occurs via temporally regulated exit from a membranous organelle. Confocal microscopy examining the subcellular localization of ERK3 in several cell lines indicated that this enzyme was targeted to the Golgi/endoplasmic reticulum Golgi intermediate compartment. Deletion analysis of green fluorescent protein (GFP)-ERK3 uncovered a nuclear form that was carboxy-terminally truncated and established a Golgi targeting motif at the carboxy terminus. Immunoblot analysis of cells treated with the proteasome inhibitor MG132 further revealed two cleavage products, suggesting that in vivo, carboxy-terminal cleavage of the full-length protein controls its subcellular localization. In support of this hypothesis, we found that deletion of a small region rich in acidic residues within the carboxy terminus eliminated both the cleavage and nuclear translocation of GFP-ERK3. Finally, cell cycle synchronization studies revealed that the subcellular localization of ERK3 is temporally regulated. These data suggest a novel mechanism for the localization of an MAPK family member, ERK3, in which cell cycle-regulated, site-specific proteolysis generates the nuclear form of the protein.  相似文献   

16.
Myocardial phospholipase D (PLD) has been implicated in the regulation of Ca(2+) mobilization and contractile performance in the heart. However, the molecular identity of this myocardial PLD and the mechanisms that regulate it are not well understood. Using subcellular fractionation and Western blot analysis, we found that PLD2 is the major myocardial PLD and that it localizes primarily to sarcolemmal membranes. A 100-kDa PLD2-interacting cardiac protein was detected using a protein overlay assay employing purified PLD2 and then identified as alpha-actinin using peptide-mass fingerprinting with matrix-assisted laser desorption/ionization mass spectroscopy. The direct association between PLD2 and alpha-actinin was confirmed using an in vitro binding assay and localized to PLD2's N-terminal 185 amino acids. Purified alpha-actinin potently inhibits PLD2 activity (IC(50) = 80 nm) in an interaction-dependent and ADP-ribosylation factor-reversible manner. Finally, alpha-actinin co-localizes with actin and with PLD2 in the detergent-insoluble fraction from sarcolemmal membranes. These results suggest that PLD2 is reciprocally regulated in sarcolemmal membranes by alpha-actinin and ARF1 and accordingly that a major role for PLD2 in cardiac function may involve reorganization of the actin cytoskeleton.  相似文献   

17.
beta-1,4-Galactosyltransferase (GalTase) has two functionally distinct subcellular distributions. In the Golgi apparatus, GalTase participates in the glycosylation of secretory and membrane-bound glycoproteins, whereas on the cell surface it mediates specific aspects of intercellular adhesion. For this study, a murine GalTase clone was obtained by screening a lambda gt10 cDNA library made from F9 embryonal carcinoma cells with a heterologous bovine GalTase cDNA probe. The murine GalTase cDNA probe was used in conjunction with assays of GalTase activity to investigate the expression and distribution of GalTase during differentiation of F9 stem cells into secretory endodermal epithelium. During the initial phase of F9 cell differentiation, GalTase mRNA levels remained relatively constant; however, as differentiation progressed, as assayed by expression of the differentiation-specific marker laminin B1, GalTase mRNA levels and enzyme activity rose dramatically. Furthermore, subcellular fractionation of these cells showed that the increased GalTase levels were specifically associated with the Golgi apparatus, whereas GalTase specific activity on the plasma membrane remained constant. These results show that levels of cell surface and Golgi GalTase change relative to one another during F9 cell differentiation and suggest that these functionally distinct pools of GalTase are independently and differentially regulated.  相似文献   

18.
In Chinese hamster embryonic fibroblasts (IIC9 cells) alpha-thrombin activates the MAPK(ERK) and phosphatidylinositol 3-OH-kinase (PI 3-kinase)/Akt pathways, and both are essential for progression through the G(1) phase of the cell cycle. We investigated in IIC9 cells, the role of beta-arrestin1 in alpha-thrombin signaling to these pathways. alpha-Thrombin stimulates rapid and sustained PI 3-kinase and Akt activities. Expression of a dominant negative beta-arrestin1 (beta-arrestin1(V53D)) inhibits rapid but not sustained PI 3-kinase and Akt activities. Surprisingly, expression of beta-arrestin1(V53D) does not block activation of the MAPK(ERK) pathway. PI 3-kinase and Akt activities are also inhibited by expression of a beta-arrestin1 mutant, which impairs binding to c-Src (beta-arrestin1(P91G-P121E)), indicating the involvement of c-Src in the rapid stimulation of the PI 3-kinase/Akt pathway. Consistent with these results, PP1, a selective inhibitor of c-Src family kinases, prevents alpha-thrombin-stimulated Akt phosphorylation. Expression of beta- arrestin1(V53D) does not prevent G(1) progression, as its expression has no effect on [(3)H]thymidine incorporation into DNA. In agreement with the ineffectiveness of beta-arrestin1(V53D) to block G(1) progression, cyclin D1 protein amounts and CDK4-cyclin D1 activity is unaffected by expression of beta-arrestin1(V53D). Thus in IIC9 cells, alpha-thrombin activates rapid beta-arrestin1-dependent and sustained beta-arrestin1-independent Akt activity, suggesting that two mechanisms are involved. Furthermore, although blocking the beta-arrestin1-independent PI 3-kinase/Akt pathway prevents G(1) progression, inhibition of the beta-arrestin1-dependent pathway does not, indicating different roles for the rapid and sustained activities.  相似文献   

19.
The effect of ligating the alpha2-macroglobulin signaling receptor (alpha2MSR) with receptor-recognized forms of alpha2M (alpha2M*) was studied with respect to phospholipase D (PLD) activity in murine macrophages, their plasma membranes, and nuclei. PLD activity in plasma membranes and nuclei increased linearly up to a ligand concentration of about 100 pM of either alpha2M* or a cloned and expressed receptor binding fragment (RBF). The RBF binding site mutant K1370A, which binds with high affinity to alpha2MSR, also increased nuclear PLD activity comparable to RBF and alpha2M*. Phorbol dibutyrate caused a two- to threefold stimulation of membrane and nuclear PLD activity, whereas PLD activity was nearly abolished by downregulation of protein kinase C; prior treatment with staurosporin, genestein, cyclosporin A, actinomycin D; or chelation of intracellular Ca2+. In permeabilized macrophages, isolated plasma membranes, and nuclei, GTP-gamma-S increased alpha2M*-stimulated PLD activity via a pertussis toxin-insensitive G protein and this effect was abolished on preincubation with GDP-beta-S. Incubation of plasma membranes with polyclonal antibody against sARFII, or the addition of cytosol which was immunoprecipitated with antibody against sARFII, greatly reduced alpha2M*-stimulated PLD activity in the presence of GTP-gamma-S. Preincubation of plasma membranes with GDP-beta-S prior to the addition of GTP-gamma-S and recombinant ARF1 significantly inhibited alpha2M*-stimulation of PLD activity. Nuclear PLD activity was maximally stimulated in the presence of both GTP-gamma-S and rARF1, whereas plasma membrane PLD activity was maximally stimulated in the presence of rARF1, GTP-gamma-S, RhoA, and ATP. In contrast, nuclear PLD activity was not affected by RhoA either alone or in combination with GTP-gamma-S or ATP.  相似文献   

20.
Formation of coatomer-coated vesicles from Golgi-enriched membranes requires the activation of a small GTP-binding protein, ADP ribosylation factor (ARF). ARF is also an efficacious activator of phospholipase D (PLD), an activity that is relatively abundant on Golgi- enriched membranes. It has been proposed that ARF, which is recruited onto membranes from cytosolic pools, acts directly to promote coatomer binding and is in a 3:1 stoichiometry with coatomer on coated vesicles. We present evidence that cytosolic ARF is not necessary for initiating coat assembly on Golgi membranes from cell lines with high constitutive PLD activity. Conditions are also described under which ARF is at most a minor component relative to coatomer in coated vesicles from all cell lines tested, including Chinese hamster ovary cells. Formation of coated vesicles was sensitive to ethanol at concentrations that inhibit the production of phosphatidic acid (PA) by PLD. When PA was produced in Golgi membranes by an exogenous bacterial PLD, rather than with ARF and endogenous PLD, coatomer bound to Golgi membranes. Purified coatomer also bound selectively to artificial lipid vesicles that contained PA and phosphatidylinositol (4,5)-bisphosphate (PIP2). We propose that activation of PLD and the subsequent production of PA are key early events for the formation of coatomer-coated vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号